Downloaded from the PDB Lacking Either Metal Ion(S) in the Active Centers Or Putative Peptidases Were Excluded from the Study

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from the PDB Lacking Either Metal Ion(S) in the Active Centers Or Putative Peptidases Were Excluded from the Study biomolecules Article 0 P1 Residue-Oriented Virtual Screening for Potent and Selective Phosphinic (Dehydro) Dipeptide Inhibitors of Metallo-Aminopeptidases Michał Talma and Artur Mucha * Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrze˙zeWyspia´nskiego 27, 50-370 Wrocław, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-71-320-3446 Received: 20 March 2020; Accepted: 20 April 2020; Published: 24 April 2020 Abstract: Designing side chain substituents complementary to enzyme binding pockets is of great importance in the construction of potent and selective phosphinic dipeptide inhibitors of metallo-aminopeptidases. Proper structure selection makes inhibitor construction more economic, as the development process typically consists of multiple iterative preparation/bioassay steps. On the basis of these principles, using noncomplex computation and modeling methodologies, we comprehensively screened 900 commercial precursors of the P10 residues of phosphinic dipeptide and dehydrodipeptide analogs to identify the most promising ligands of 52 metallo-dependent aminopeptidases with known crystal structures. The results revealed several nonproteinogenic residues with an improved energy of binding compared with the best known inhibitors. The data are discussed taking into account the selectivity and stereochemical implications of the enzymes. Using this approach, we were able to identify nontrivial structural elements substituting the recognized phosphinic peptidomimetic scaffold of metallo-aminopeptidase inhibitors. Keywords: organophosphorus compounds; peptide analogs; enzyme inhibitors; ligand–enzyme interactions; molecular modeling and docking 1. Introduction Phosphinic dipeptides are generally acknowledged as transition-state analog inhibitors of metallo-aminopeptidases [1–3], a large and homogenous class of exopeptidases that specifically cleave the N-terminal amino acid residues of polypeptides and proteins and contain metal ion(s) in their active sites. Being ubiquitously distributed in subcellular organelles, cytoplasm, and cellular membranes throughout all of the biological kingdoms, these enzymes perform critical roles in physiological processes and diseases. In humans, they are responsible for processing peptides and proteins involved in, for example, angiogenesis, antigen presentation, cancer and metastasis, blood pressure regulation, and bacterial and protozoal infections [3–5]. The inhibitory potential of phosphinic dipeptides originates from two fundamental structural features that determine the competitive mechanism of binding, and govern the potency and specificity of the ligands. First, the presence of the central phosphinic functional group ensures steric and electronic resemblance to the scissile amide bond of hydrolyzed substrates in the tetrahedral transition state. This also involves the ability to coordinate with catalytic metal ion(s). Second, the optimized structures of the P1 and P10 side chains guarantee complementarity to the corresponding S1 and S10 binding pockets (encryptions according to the nomenclature proposed by Schechter and Berger to define the N-terminal, non-primed and C-terminal, primed residues of the scissile amide bond in peptide substrates, and the corresponding binding pockets [6]). Mammalian, protozoan, and bacterial enzymes of the M01 and M17 families have probably been the most comprehensively studied metallo-aminopeptidases with phosphinic dipeptides [2,5]. Biomolecules 2020, 10, 659; doi:10.3390/biom10040659 www.mdpi.com/journal/biomolecules Biomolecules 2020, 10, x 2 of 26 Biomolecules 2020, 10, 659 2 of 25 Mammalian, protozoan, and bacterial enzymes of the M01 and M17 families have probably been the most comprehensively studied metallo-aminopeptidases with phosphinic dipeptides [2,5]. Alanine aminopeptidaseaminopeptidase (aminopeptidase (aminopeptidase N, APN, N, M01.001,APN, M01.001, EC 3.4.11.2) EC and 3.4.11.2) leucine aminopeptidase and leucine (LAP,aminopeptidase M17.001, EC(LAP, 3.4.11.1) M17.001, can EC be 3.4.11.1) considered can be as considered the prototypical as the representatives.prototypical representatives. Importantly, Importantly,the greatest results the greatest of inhibition results of were inhibition achieved we forre achieved compounds for compounds comprising sidecomprising chains originatingside chains originatingfrom nonproteinogenic from nonproteinogenic amino acids. amino Such acids. fragments Such of fragments optimal ligandsof optimal are ligands not trivial are and not cantrivial hardly and canbe predicted hardly be by predicted directly translatingby directly thetranslating results of the studies results on of peptidyl studies substrates.on peptidyl These substrates. residues These can residuesbe conveniently can be conveniently designed with designed the aid ofwith molecular the aid of modeling molecular methods; modeling however, methods; this however, process maythis processdemand may a few demand iterations a few of iterations design, synthesis, of design, andsynthesis, evaluation. and evaluation. For example, For example, it took us it ten took years us ten to yearsinhibit (toK i)inhibit mammalian (Ki) APNmammalian and LAP byAPN phosphinic and LAP dipeptides by phosphinic at a low nanomolar dipeptides/subnanomolar at a low nanomolar/subnanomollevel [7,8]. ar level [7,8]. The synthesis of each individuallyindividually modifiedmodified metallo-aminopeptidasemetallo-aminopeptidase inhibitor requires the development of multistep synthetic pathways with orthogonal protective strategies, leading to fundamental building blocks. In In the the most most typical typical procedure, procedure, P1-specific P1-specific N-protected N-protected aminoalkyl-H- aminoalkyl-H- phosphinic acidacid and and P1 0-specificP1′-specificα-substituted α-substituted acrylate acrylate are such are components such components (Scheme 1)[(Scheme1]. Aldehydes, 1) [1]. whoseAldehydes, structures whose encode structures the P1 encode and P1 0 theresidues, P1 and are P1 primary′ residues, substrates are primary for the preparation substrates offor these the preparationsynthons. Thus, of these the proper synthons. and reliableThus, the selection proper of and the reliable fundamental selection starting of the materials fundamental is of invaluable starting materialssignificance is of as invaluable it results in significance either fruitful as orit results vain e ffinorts. either fruitful or vain efforts. Scheme 1. Retrosynthetic analysis of phosphinic dipeptidedipeptide and dehydrodipeptidedehydrodipeptide analogs. The P1 phenylethyl residueresidue (homophenylalanine) (homophenylalanine) is conservedis conserved as canonical. as canonical. The pathwaysThe pathways involve involve P10-specific P1′- specificelectrophiles electrophiles that can that be obtained can be obtained from aldehydes. from aldehydes. In the current work, we address the design issue to a virtual screening approach. In In particular, particular, the P1P10′ residuesresidues of of active active and and specific specific phosphinic phosphinic dipeptide dipeptide inhibitors inhibitors of metallo-aminopeptidases of metallo-aminopeptidases were weretargeted. targeted. A total A oftotal 900 of commercially 900 commercially available available aldehydes aldehydes were selected were selected as potential as potential precursors precursors of these ofP1 0theseresidues, P1′ residues, while the while P1 fragment the P1 frag (mimickingment (mimicking homophenylalanine) homophenylalanine) remained remained conserved. conserved. Docking Dockinganalysis wasanalysis performed was performed with 52 crystal with structures 52 crystal of 27structures enzymes. of In addition,27 enzymes. P10-dehydrodipeptide In addition, P1′- dehydrodipeptideanalogs were included analogs in the were study, included as the aldehydes in the stud mayy, as also the be aldehydes the substrates may ofalso the be P1 the0-unsaturated substrates ofcounterparts. the P1′-unsaturated One of the counterparts. methods for theirOne of preparation the methods involves for their substitution preparation of P1-specific involves substitution N-protected ofaminoalkyl-H-phosphinic P1-specific N-protected acids aminoalkyl-H-phosphinic with Morita–Baylis–Hillman acids with acetates Morita–Baylis–Hillman (Scheme1)[ 9]. The latteracetates are (Schemeobtained 1) by [9]. acetylation The latter ofare allyl obtained alcohols, by acetylation which, in turn, of allyl are alcohols, synthesized which, from in turn, aldehydes are synthesized and alkyl fromacrylates. aldehydes Similar toand the alkyl saturated acrylates. compounds, Simila phosphinicr to the dehydrodipeptidessaturated compounds, were reportedphosphinic as dehydrodipeptidesinhibitors of metallo-aminopeptidases, were reported as inhibitors although toof a metallo-aminopeptidases, lesser extent [10]. although to a lesser extentAs [10]. the main outcome of this study, we defined a set of novel nonproteinogenic P10 substituents that areAs potentialthe main structuraloutcome of fragments this study, of active we defined pseudodipeptide a set of novel inhibitors nonproteinogenic of metallo-aminopeptidases. P1′ substituents Thethat detailsare potential of interactions structural with thefragments target proteins of ac weretive analyzedpseudodipeptide at the molecular inhibitors level of by metallo- docking aminopeptidases.of the individual stereoisomersThe details of interactions in the enzyme with active the target sites. proteins Stereochemical were analyzed considerations
Recommended publications
  • Table of Contents
    Table of contents SUMMARY IX ZUSAMMENFASSUNG XI 1. INTRODUCTION 1 1.1 The immune system 1 1.1.1 Function 1 1.1.2 Overview 1 1.1.3 Function of MHC molecules 1 1.1.4 The Major Histocompatibility Complex (MHC) Genes 2 1.1.5 Structure of MHC molecules 2 1.2 Antigen presentation 5 1.2.1 Outline of the conventional MHC class I pathway 5 1.3 The components of the peptide loading complex 7 1.3.1 Transporter associated with antigen presentation (TAP) 7 1.3.2 Calreticulin and calnexin 9 1.3.4 ERp 57/ER60 10 1.3.5 Tapasin (Tpn) 11 1.4 (a) The proteasomes 12 1.4 (b) Cytosolic peptidase 15 1.5 Endoplasmic Reticulum Associated Peptidase/s 16 1.6 Protein sorting 17 1.6.2 Vesicular transport in the Golgi apparatus 20 1.6.3 Endocytic pathway 20 1.6.4 Endocytic proteases 24 1.6.4.1 Biosynthesis and transport of cathepsins 25 1.6.4.2 Activation of cathepsins 26 1.6.4.3 Inhibitors of endosomal proteases. 26 1.7 Antigen processing by alternative pathways 27 1.8 Aim of the thesis 30 i 2. MATERIALS AND METHODS 31 2.1 Materials 31 2.1.1 Bacterial strains 31 2.1.2 Plasmids 31 2.1.2.1 Construction of plasmids 31 2.1.3 Primer list 32 2.1.4 PCR conditions 33 2.1.5 Antibiotics 34 2.1.6 Chemicals 34 2.1.7 Media for bacterial cells 34 2.1.8 Protein Chemicals 35 2.1.9 Animal cell culture media 37 2.1.11 Antibodies 39 2.1.11 siRNA oligonucleotides.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Co-Catalytic Metallopeptidases As Pharmaceutical Targets Richard C
    Marquette University e-Publications@Marquette Chemistry Faculty Research and Publications Chemistry, Department of 4-1-2003 Co-Catalytic Metallopeptidases as Pharmaceutical Targets Richard C. Holz Marquette University, [email protected] Krzysztof P. Bzymek Utah State University Sabina I. Swierczek Utah State University Accepted version. Current Opinion in Chemical Biology, Vol. 7, No. 2 (April 2003): 197-206. DOI. © 2003 Elsevier Science Ltd. Used with permission. Richard Holz was affiliated with the Utah State University at the time of publication. Marquette University e-Publications@Marquette Chemistry Faculty Research and Publications/College of Arts and Sciences This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation below. Current Opinion in Chemical Biology, Vol.7, No. 2 (2003): 197-206. DOI. This article is © Elsevier and permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. Co-catalytic metallopeptidases as pharmaceutical targets Richard C Holz Department of Chemistry, Marquette University, Milwaukee, WI Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA Krzysztof P Bzymek Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA Sabina I Swierczek Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA Abstract Understanding the reaction mechanism of co-catalytic metallopeptidases provides a starting point for the design and synthesis of new molecules that can be screened as potential pharmaceuticals.
    [Show full text]
  • Catalytic Properties and Inhibition of Proline-Specific Dipeptidyl Peptidases II, IV and VII
    UC Berkeley UC Berkeley Previously Published Works Title Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII Permalink https://escholarship.org/uc/item/4nf146zf Journal Biochemical Journal, 371 ISSN 0264-6021 Authors Leiting, B Pryor, K D Wu, J K et al. Publication Date 2003-04-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biochem. J. (2003) 371, 525–532 (Printed in Great Britain) 525 Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII Barbara LEITING*1, KellyAnn D. PRYOR*, Joseph K. WU*, Frank MARSILIO*, Reshma A. PATEL*, Charles S. CRAIK†, Jonathan A. ELLMAN‡, Richard T. CUMMINGS* and Nancy A. THORNBERRY* *Department of Metabolic Disorders, Merck Research Laboratories, Mail code RY50G-236, P.O. Box 2000, Rahway, NJ 07065, U.S.A., †Department of Pharmaceutical Chemistry, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0446, U.S.A., and ‡Department of Chemistry, University of California, Berkeley, CA 94720, U.S.A. There is currently intense interest in the emerging group of strates and inhibitors for these enzymes, a complete biochemical proline-specific dipeptidases, and their roles in the regulation profile of these enzymes was obtained. The pH profiles, substrate of biological processes. Dipeptidyl peptidase IV (DPP-IV) is specificities as determined by positional scanning, Michaelis– involved in glucose metabolism by contributing to the regulation Menten constants and inhibition profiles for DPP-VII and DPP- of glucagon family peptides and has emerged as a potential target II were shown to be virtually identical, strongly supporting the for the treatment of metabolic diseases.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Mitochondrial Protein Quality Control Mechanisms
    G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions.
    [Show full text]
  • Marine Organisms: a Source of Biomedically Relevant Metallo M1
    Marine organisms : a source of biomedically relevant metallo M1, M2 and M17 exopeptidase inhibitors Isel Pascual Alonso, Laura Rivera Méndez, Fabiola Almeida, Mario Ernesto Valdés Tresano, Yarini Arrebola Sánchez, Aida Hernández-Zanuy, Luis Álvarez-Lajonchere, Dagmara Díaz, Belinda Sánchez, Isabelle Florent, et al. To cite this version: Isel Pascual Alonso, Laura Rivera Méndez, Fabiola Almeida, Mario Ernesto Valdés Tresano, Yarini Arrebola Sánchez, et al.. Marine organisms : a source of biomedically relevant metallo M1, M2 and M17 exopeptidase inhibitors. REVISTA CUBANA DE CIENCIAS BIOLÓGICAS, 2020, 8 (2), pp.1- 36. hal-02944434 HAL Id: hal-02944434 https://hal.archives-ouvertes.fr/hal-02944434 Submitted on 21 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVISTA CUBANA DE CIENCIAS BIOLÓGICAS http://www.rccb.uh.cu ARTÍCULO DE REVISIÓN Marine organisms: a source of biomedically relevant metallo M1, M2 and M17 exopeptidase inhibitors Los organismos marinos: Fuente de inhibidores de exopeptidasas de tipo metalo M1, M2 y M17 de relevancia biomédica Isel Pascual Alonso1 , Laura Rivera Méndez1 , Fabiola Almeida1 , Mario Ernesto Valdés Tresanco1,2 , Yarini Arrebola Sánchez1 , Aida Hernández-Zanuy3 , Luis Álvarez-Lajonchere4 , Dagmara Díaz1 , Belinda Sánchez5 , Isabelle Florent6 , Marjorie Schmitt7 , Miguel Cisneros8 , Jean Louis Charli8 1 Center for Protein Studies, Faculty of ABSTRACT Biology, University of Havana, Cuba.
    [Show full text]
  • Genetic Polymorphism of the Angiotensin-Converting Enzyme (ACE) in Asthmatic Patients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector RESPIRATORY MEDICINE (1998) 92, 1305-1310 Original Articles Genetic polymorphism of the angiotensin-converting enzyme (ACE) in asthmatic patients H. TOMITA, S. SATO, R. MATSUDA, N. OGISU, T. MORI, T. NIIMI AND S. SHIMIZU 2nd Department of Intemal Medicine, Nagoya City University Medical School, Nagoya, Japan Angiotensin-converting enzyme (ACE) inactivates bradykinin, substance P and neurokinin A, which are believed to play important roles in the pathogenesis of asthma, especially in neurogenic inflammation. It has recently been shown that an insertion (1)ldeletion (D) polymorphism in the ACE gene accounts for variation in serum ACE levels. There are thus three genotypes (insertion homozygote, II; deletion homozygote, DD; heterozygotes, DI). The serum ACE level with the DD type is reported to be about double that of the II type and intermediate in the DI case. In the present study, we examined whether asthma is linked with this ACE gene polymorphism. Seventy-one patients with asthma (27 males and 44 females) and 142 sex- and age-matched healthy controls were determined for their genotype by the polymerase chain reaction (PCR) method. Twenty-five asthmatics demonstrated the II type (352%) 37 the DI type (52.1%), and nine the DD type (12.7%). There were no significant differences in the distributions of genotypes and serum ACE levels between healthy controls and patients. No significant differences were evident in serum IgE levels, age at onset, proportion of atopic type patients and severity of asthma among the three genotypes.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • B Number Gene Name Mrna Intensity Mrna
    sample) total list predicted B number Gene name assignment mRNA present mRNA intensity Gene description Protein detected - Membrane protein membrane sample detected (total list) Proteins detected - Functional category # of tryptic peptides # of tryptic peptides # of tryptic peptides detected (membrane b0002 thrA 13624 P 39 P 18 P(m) 2 aspartokinase I, homoserine dehydrogenase I Metabolism of small molecules b0003 thrB 6781 P 9 P 3 0 homoserine kinase Metabolism of small molecules b0004 thrC 15039 P 18 P 10 0 threonine synthase Metabolism of small molecules b0008 talB 20561 P 20 P 13 0 transaldolase B Metabolism of small molecules chaperone Hsp70; DNA biosynthesis; autoregulated heat shock b0014 dnaK 13283 P 32 P 23 0 proteins Cell processes b0015 dnaJ 4492 P 13 P 4 P(m) 1 chaperone with DnaK; heat shock protein Cell processes b0029 lytB 1331 P 16 P 2 0 control of stringent response; involved in penicillin tolerance Global functions b0032 carA 9312 P 14 P 8 0 carbamoyl-phosphate synthetase, glutamine (small) subunit Metabolism of small molecules b0033 carB 7656 P 48 P 17 0 carbamoyl-phosphate synthase large subunit Metabolism of small molecules b0048 folA 1588 P 7 P 1 0 dihydrofolate reductase type I; trimethoprim resistance Metabolism of small molecules peptidyl-prolyl cis-trans isomerase (PPIase), involved in maturation of b0053 surA 3825 P 19 P 4 P(m) 1 GenProt outer membrane proteins (1st module) Cell processes b0054 imp 2737 P 42 P 5 P(m) 5 GenProt organic solvent tolerance Cell processes b0071 leuD 4770 P 10 P 9 0 isopropylmalate
    [Show full text]
  • Methionine Aminopeptidase Emerging Role in Angiogenesis
    Chapter 2 Methionine Aminopeptidase Emerging role in angiogenesis Joseph A. Vetro1, Benjamin Dummitt2, and Yie-Hwa Chang2 1Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA. 2Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, 1402 S. Grand Blvd., St. Louis, MO 63104, USA. Abstract: Angiogenesis, the formation of new blood vessels from existing vasculature, is a key factor in a number of vascular-related pathologies such as the metastasis and growth of solid tumors. Thus, the inhibition of angiogenesis has great potential as a therapeutic modality in the treatment of cancer and other vascular-related diseases. Recent evidence suggests that the inhibition of mammalian methionine aminopeptidase type 2 (MetAP2) catalytic activity in vascular endothelial cells plays an essential role in the pharmacological activity of the most potent small molecule angiogenesis inhibitors discovered to date, the fumagillin class. Methionine aminopeptidase (MetAP, EC 3.4.11.18) catalyzes the non-processive, co-translational hydrolysis of initiator N-terminal methionine when the second residue of the nascent polypeptide is small and uncharged. Initiator Met removal is a ubiquitous and essential modification. Indirect evidence suggests that removal of initiator Met by MetAP is important for the normal function of many proteins involved in DNA repair, signal transduction, cell transformation, secretory vesicle trafficking, and viral capsid assembly and infection. Currently, much effort is focused on understanding the essential nature of methionine aminopeptidase activity and elucidating the role of methionine aminopeptidase type 2 catalytic activity in angiogenesis. In this chapter, we give an overview of the MetAP proteins, outline the importance of initiator Met hydrolysis, and discuss the possible mechanism(s) through which MetAP2 inhibition by the fumagillin class of angiogenesis inhibitors leads to cytostatic growth arrest in vascular endothelial cells.
    [Show full text]