Phylogeny and Phylogeography of Altolamprologus: Ancient Introgression and Recent Divergence in a Rock-Dwelling Lake Tanganyika Cichlid Genus

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Phylogeography of Altolamprologus: Ancient Introgression and Recent Divergence in a Rock-Dwelling Lake Tanganyika Cichlid Genus Hydrobiologia DOI 10.1007/s10750-016-2896-2 ADVANCES IN CICHLID RESEARCH II Phylogeny and phylogeography of Altolamprologus: ancient introgression and recent divergence in a rock-dwelling Lake Tanganyika cichlid genus Stephan Koblmu¨ller . Bruno Nevado . Lawrence Makasa . Maarten Van Steenberge . Maarten P. M. Vanhove . Erik Verheyen . Christian Sturmbauer . Kristina M. Sefc Received: 22 February 2016 / Revised: 17 June 2016 / Accepted: 19 June 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Stenotopic specialization to a fragmented divergence among genetic clades. Low rates of habitat promotes the evolution of genetic structure. It dispersal, perhaps along gastropod shell beds that is not yet clear whether small-scale population struc- connect patches of rocky habitat, and periodic sec- ture generally translates into large-scale intraspecific ondary contact during lake level fluctuations are divergence. In the present survey of mitochondrial apparently sufficient to maintain genetic connectivity genetic structure in the Lake Tanganyika endemic within each of the two Altolamprologus species. The Altolamprologus (Teleostei, Cichlidae), a rock-dwell- picture of genetic cohesion was interrupted by a single ing cichlid genus comprising A. compressiceps and A. highly divergent haplotype clade in A. compressiceps calvus, habitat-induced population fragmentation con- restricted to the northern part of the lake. Comparisons trasts with weak phylogeographic structure and recent between mitochondrial and nuclear phylogenetic reconstructions suggested that the divergent mito- chondrial clade originated from ancient interspecific Electronic supplementary material The online version of this article (doi:10.1007/s10750-016-2896-2) contains supple- introgression. Finally, ‘isolation-with-migration’ mentary material, which is available to authorized users. models indicated that divergence between the two Altolamprologus species was recent (67–142 KYA) Guest editors: S. Koblmu¨ller, R. C. Albertson, M. J. Genner, and proceeded with little if any gene flow. As in other K. M. Sefc & T. Takahashi / Advances in Cichlid Research II: Behavior, Ecology and Evolutionary Biology rock-dwelling cichlids, recent population expansions S. Koblmu¨ller (&) Á M. Van Steenberge Á L. Makasa C. Sturmbauer Á K. M. Sefc Lake Tanganyika Research Unit, Department of Fisheries, Institute of Zoology, University of Graz, Universita¨tsplatz Ministry of Fisheries and Livestock, 2, 8010 Graz, Austria P. O. Box 420055, Mpulungu, Zambia e-mail: [email protected] M. Van Steenberge Á M. P. M. Vanhove B. Nevado Á M. Van Steenberge Á E. Verheyen Laboratory of Biodiversity and Evolutionary Genomics, Operational Directorate Taxonomy and Phylogeny, Royal Department of Biology, University of Leuven, Charles Belgian Institute of Natural Sciences, Vautierstraat 29, Debe´riotstraat 32, 3000 Louvain, Belgium 1000 Brussels, Belgium M. Van Steenberge Á M. P. M. Vanhove Present Address: Biology Department, Royal Museum for Central Africa, B. Nevado Leuvensesteenweg 13, 3080 Tervuren, Belgium Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK 123 Hydrobiologia were inferred in both Altolamprologus species, which the open-water habitat contain virtually no barriers to may be connected with drastic lake level fluctuations. dispersal, and cichlid species specialized to these habitats show little if any population genetic structure Keywords Cichlidae Á Mitochondrial replacement Á at all (Shaw et al., 2000; Taylor & Verheyen, 2001; Phylogeography Á Lake level fluctuations Á Pereyra et al., 2004; Genner et al., 2008, 2010a; Lamprologini Á Hybridization Anseeuw et al., 2011; Koblmu¨ller et al., 2015a). The majority of studies addressing the genetic structure of cichlid species in the two lakes did so by Introduction sampling populations within a small portion of the species’ entire distribution range (see references The genetic structure within a species is often above). It is not yet clear whether findings regarding predicted by components of the species’ ecology and small-scale population structure can be extrapolated to life history traits (Wiens & Donoghue, 2004). For large-scale phylogeographic patterns. Significant instance, generalist species and species with good genetic differentiation can evolve among fragmented dispersal abilities tend to show little phylogeographic populations within relatively short periods of time. structure (e.g. Cadena et al., 2011; Koblmu¨ller et al., However, large-scale phylogeographic patterns have 2012; Diedericks & Daniels, 2014), whereas species been shown to be influenced by the long-term history that are specialized to particular, fragmented habitats of the species, including range shifts and introgression or food sources are often divided into distinct popu- among differentiated lineages during secondary con- lations and develop marked phylogeographic patterns tact in the course of lake level fluctuations (Verheyen (e.g. Young et al., 1996; Row et al., 2010; Kajtoch et al., 1996; Sturmbauer et al., 2001; Egger et al., et al., 2014). This contrast is particularly evident when 2007; Nevado et al., 2009). Therefore, distinct pop- the different species occur in the same region. In the ulation genetic structure may, but need not, go along two East African lakes Malawi and Tanganyika, with a clear-cut phylogeographic pattern; and vice stenotopic cichlid species inhabiting the discontinuous versa, species with high levels of gene flow across the rocky littoral consistently show remarkable genetic geographical scale of previous population genetic population differentiation, even across very short studies may still be genetically structured on a larger geographic distances (e.g. van Oppen et al., 1997; scale. Markert et al., 1999; Taylor et al., 2001; Rico & Due to logistic and sometimes political reasons, Turner, 2002; Pereyra et al., 2004; Duftner et al., 2006; lake-wide sampling in Lakes Malawi and Tanganyika Koblmu¨ller et al., 2011; Sefc et al., 2007; Wagner & can be difficult, and only few species have been McCune, 2009; Nevado et al., 2013; Van Steenberge investigated throughout large parts of their distribu- et al., 2015; Sefc et al., 2016). Differentiation is lower tion ranges. The stenotopic rock-dwelling genus and only occurs on a larger geographic scale in less Tropheus from Lake Tanganyika is one example in specialized species and species that inhabit the which both population genetic and lake-wide phylo- intermediate habitat, i.e. the transition between rocky geographic studies have been conducted. In this fish, and sandy habitat surrounding the rocky habitat strong small-scale population differentiation contrasts patches (Koblmu¨ller et al., 2007a, 2009; Sefc et al., with evidence for ancient introgression among phylo- 2007; Kotrschal et al., 2012). Finally, the sandy and genetically old lineages (Sturmbauer et al., 2005; Sefc et al., 2007; Egger et al., 2007; Koblmu¨ller et al., 2011; Sefc et al., 2016). A similar picture—deep intraspeci- M. P. M. Vanhove fic divergences and past introgression among geo- Department of Botany and Zoology, Faculty of Science, graphically distant populations—emerged in a Masaryk University, Kotla´rˇska´ 2, 611 37 Brno, Czech Republic phylogeographic study of another rock-dwelling cich- lid of Lake Tanganyika, the Neolamprologus bri- M. P. M. Vanhove chardi/pulcher complex (Duftner et al., 2007). In Capacities for Biodiversity and Sustainable Development, contrast, two species that are less strictly restricted to Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, rocky habitat (Lamprologus callipterus and Neolam- 1000 Brussels, Belgium prologus fasciatus) exhibit clear phylogeographic 123 Hydrobiologia structure but shallower intraspecific divergence (Ne- variation in colour pattern (Kohda et al., 1996; vado et al., 2009), and a highly mobile benthopelagic Konings, 1998), and comparisons among three popu- species (Boulengerochromis microlepis) shows no lations in the very south of Lake Tanganyika detected phylogeographic structure on a lake-wide scale and significant population genetic and morphometric dif- very shallow intraspecific divergence (Koblmu¨ller ferentiation in A. compressiceps (Spreitzer et al., et al., 2015a). Similarly, in Lake Malawi, the pelagic 2012), a pattern potentially indicating pronounced species Diplotaxodon limnothrissa shows no phylo- levels of lake-wide phylogeographic structuring. Fur- geographic structure on a lake-wide scale (Shaw et al., thermore, if habitat preferences correlate with phylo- 2000). geographic structure, we expect to see a similar Here, we investigate the phylogeographic structure phylogeographic pattern in Altolamprologus as in the in two closely related species of the Lake Tanganyika rock-dwellers Tropheus spp. and N. pulcher/brichardi, cichlid genus Altolamprologus, a member of the with ancient introgression among deeply divergent ‘ossified group’ within the tribe Lamprologini (Sti- genetic lineages (Sturmbauer et al., 2005; Duftner assny, 1997). The genus diverged from its sister group et al., 2007; Egger et al., 2007). In this study, we use [1 MYA (Sturmbauer et al., 2010) and includes only mitochondrial and nuclear sequence data to uncover two described species, Altolamprologus compressi- the phylogeographic structure and demographic his- ceps and A. calvus. A. compressiceps has a lake-wide tory of A. calvus and A. compressiceps,
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Cichlid Diversity, Speciation and Systematics: Examples from the Great African Lakes
    Cichlid diversity, speciation and systematics: examples from the Great African Lakes Jos Snoeks, Africa Museum, Ichthyology- Cichlid Research Unit, Leuvensesteenweg 13, B-3080 Ter­ vuren,.Belgium. Tel: (32) 2 769 56 28, Fax: (32) 2 769 56 42(e-mail: [email protected]) ABSTRACT The cichlid faunas of the large East African lakes pro vide many fascina ting research tapies. They are unique because of the large number of species involved and the ir exceptional degree ofendemicity. In addition, certain taxa exhibit a substantial degree of intra~lacustrine endemism. These features al one make the Great African Lakes the largest centers of biodiversity in the vertebrate world. The numbers of cichlid species in these lakes are considered from different angles. A review is given of the data available on the tempo of their speciation, and sorne of the biological implications of its explosive character are discussed. The confusion in the definition of many genera is illustrated and the current methodology of phylogenetic research briefly commented upon. Theresults of the systematic research within the SADC/GEFLake Malawi/NyasaBiodiversity Conservation Project are discussed. It is argued that systematic research on the East African lake cichlids is entering an era of lesser chaos but increasing complexity. INTRODUCTION The main value of the cichlids of the Great African Grea ter awareness of the scientific and economi­ Lakes is their economie importance as a readily cal value of these fishes has led to the establishment accessible source of protein for the riparian people. In of varioüs recent research projects such as the three addition, these fishes are important to the specialized GEF (Global Environmental Facility) projects on the aquarium trade as one of the more exci ting fish groups larger lakes (Victoria, Tanganyika, Malawi/Nyasa).
    [Show full text]
  • Neolamprologus Longicaudatus, a New Cichlid Fish from the Zairean Coast of Lake Tanganyika
    Japan. J. Ichthyol. 魚 類 学 雑 誌 42(1): 39-43, 1995 42(1): 39-43, 1995 Neolamprologus longicaudatus, a New Cichlid Fish from the Zairean Coast of Lake Tanganyika Kazuhiro Nakaya1 and Masta Mukwaya Gashagaza2 Laboratory of Marine Zoology, Faculty of Fisheries, Hokkaido1 University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041, Japan 2Centre de Recherche en Hydrobiologie , Uvira, Zaire, B.P. 254, Bujumbura, Burundi (Received September 9, 1994; in revised form February 10, 1995; accepted March 17, 1995) Abstract A new cichlid, Neolamprologus longicaudatus sp. nov. is described , based on three specimens from the north Zairean coast of Lake Tanganyika. Although similar to N. furcifer, N. christyi and N. buescheri in having an elongate body, strongly emarginate caudal fin, and vertical fins partly covered with scales, this species is distinguishable from them by its small orbit, light grayish-brown coloration of body, dorsal fin lacking a submarginal dark band, 37 longitudinal body scales, 8 gill rakers on lower limb of the 1st gill arch, and a long pointed snout. Neolamprologus is a genus of the family Cichlidae Neolamprologus longicaudatus sp. nov. in Lake Tanganyika, one of the Great Rift Valley (Figs. 1, 2) lakes in the central east Africa. Lake Tanganyika is famous for its remarkable endemism seen in the Neolamprologussp. "Kavalla" Konings and Dieckhof ,f cichlid fishes, and the genus Neolamprologus is also 1992:150, fig. (Milima Island, Zair e) . endemic to the lake. Neolamprologus is the largest Holotype. HUMZ (Laboratory of Marine Zoolog y , genus among Lake Tanganyikan cichlids, and 42 Faculty of Fisheries, Hokkaido University) 12767 0 , species are presently known from the lake (Biischer, 85.5mm in standard length (SL), Cape Banza, Ubwar i 1991, 1992a, 1992b, 1993; Marechal and Poll, 1991).
    [Show full text]
  • Eco-Ethology of Shell-Dwelling Cichlids in Lake Tanganyika
    ECO-ETHOLOGY OF SHELL-DWELLING CICHLIDS IN LAKE TANGANYIKA THESIS Submitted in Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE of Rhodes University by IAN ROGER BILLS February 1996 'The more we get to know about the two greatest of the African Rift Valley Lakes, Tanganyika and Malawi, the more interesting and exciting they become.' L.C. Beadle (1974). A male Lamprologus ocel/alus displaying at a heterospecific intruder. ACKNOWLEDGMENTS The field work for this study was conducted part time whilst gworking for Chris and Jeane Blignaut, Cape Kachese Fisheries, Zambia. I am indebted to them for allowing me time off from work, fuel, boats, diving staff and equipment and their friendship through out this period. This study could not have been occured without their support. I also thank all the members of Cape Kachese Fisheries who helped with field work, in particular: Lackson Kachali, Hanold Musonda, Evans Chingambo, Luka Musonda, Whichway Mazimba, Rogers Mazimba and Mathew Chama. Chris and Jeane Blignaut provided funds for travel to South Africa and partially supported my work in Grahamstown. The permit for fish collection was granted by the Director of Fisheries, Mr. H.D.Mudenda. Many discussions were held with Mr. Martin Pearce, then the Chief Fisheries Officer at Mpulungu, my thanks to them both. The staff of the JLB Smith Institute and DIFS (Rhodes University) are thanked for help in many fields: Ms. Daksha Naran helped with computing and organisation of many tables and graphs; Mrs. S.E. Radloff (Statistics Department, Rhodes University) and Dr. Horst Kaiser gave advice on statistics; Mrs Nikki Kohly, Mrs Elaine Heemstra and Mr.
    [Show full text]
  • Spatial Models of Speciation 1.0Cm Modelos Espaciais De Especiação
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA CAROLINA LEMES NASCIMENTO COSTA SPATIAL MODELS OF SPECIATION MODELOS ESPACIAIS DE ESPECIAÇÃO CAMPINAS 2019 CAROLINA LEMES NASCIMENTO COSTA SPATIAL MODELS OF SPECIATION MODELOS ESPACIAIS DE ESPECIAÇÃO Thesis presented to the Institute of Biology of the University of Campinas in partial fulfill- ment of the requirements for the degree of Doc- tor in Ecology Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutora em Ecologia Orientador: Marcus Aloizio Martinez de Aguiar ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA CAROLINA LEMES NASCIMENTO COSTA, E ORIENTADA PELO PROF DR. MAR- CUS ALOIZIO MARTINEZ DE AGUIAR. CAMPINAS 2019 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Costa, Carolina Lemes Nascimento, 1989- C823s CosSpatial models of speciation / Carolina Lemes Nascimento Costa. – Campinas, SP : [s.n.], 2019. CosOrientador: Marcus Aloizio Martinez de Aguiar. CosTese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. Cos1. Especiação. 2. Radiação adaptativa (Evolução). 3. Modelos biológicos. 4. Padrão espacial. 5. Macroevolução. I. Aguiar, Marcus Aloizio Martinez de, 1960-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: Modelos espaciais de especiação Palavras-chave em inglês: Speciation Adaptive radiation (Evolution) Biological models Spatial pattern Macroevolution Área de concentração: Ecologia Titulação: Doutora em Ecologia Banca examinadora: Marcus Aloizio Martinez de Aguiar [Orientador] Mathias Mistretta Pires Sabrina Borges Lino Araujo Rodrigo André Caetano Gustavo Burin Ferreira Data de defesa: 25-02-2019 Programa de Pós-Graduação: Ecologia Powered by TCPDF (www.tcpdf.org) Comissão Examinadora: Prof.
    [Show full text]
  • AN ECOLOGICAL and SYSTEMATIC SURVEY of FISHES in the RAPIDS of the LOWER ZA.Fre OR CONGO RIVER
    AN ECOLOGICAL AND SYSTEMATIC SURVEY OF FISHES IN THE RAPIDS OF THE LOWER ZA.fRE OR CONGO RIVER TYSON R. ROBERTS1 and DONALD J. STEWART2 CONTENTS the rapids habitats, and the adaptations and mode of reproduction of the fishes discussed. Abstract ______________ ----------------------------------------------- 239 Nineteen new species are described from the Acknowledgments ----------------------------------- 240 Lower Zaire rapids, belonging to the genera Introduction _______________________________________________ 240 Mormyrus, Alestes, Labeo, Bagrus, Chrysichthys, Limnology ---------------------------------------------------------- 242 Notoglanidium, Gymnallabes, Chiloglanis, Lampro­ Collecting Methods and Localities __________________ 244 logus, Nanochromis, Steatocranus, Teleogramma, Tabulation of species ---------------------------------------- 249 and Mastacembelus, most of them with obvious Systematics -------------------------------------------------------- 249 modifications for life in the rapids. Caecomasta­ Campylomormyrus _______________ 255 cembelus is placed in the synonymy of Mastacem­ M ormyrus ____ --------------------------------- _______________ 268 belus, and morphologically intermediate hybrids Alestes __________________ _________________ 270 reported between blind, depigmented Mastacem­ Bryconaethiops -------------------------------------------- 271 belus brichardi and normally eyed, darkly pig­ Labeo ---------------------------------------------------- _______ 274 mented M astacembelus brachyrhinus. The genera Bagrus
    [Show full text]
  • Indian and Madagascan Cichlids
    FAMILY Cichlidae Bonaparte, 1835 - cichlids SUBFAMILY Etroplinae Kullander, 1998 - Indian and Madagascan cichlids [=Etroplinae H] GENUS Etroplus Cuvier, in Cuvier & Valenciennes, 1830 - cichlids [=Chaetolabrus, Microgaster] Species Etroplus canarensis Day, 1877 - Canara pearlspot Species Etroplus suratensis (Bloch, 1790) - green chromide [=caris, meleagris] GENUS Paretroplus Bleeker, 1868 - cichlids [=Lamena] Species Paretroplus dambabe Sparks, 2002 - dambabe cichlid Species Paretroplus damii Bleeker, 1868 - damba Species Paretroplus gymnopreopercularis Sparks, 2008 - Sparks' cichlid Species Paretroplus kieneri Arnoult, 1960 - kotsovato Species Paretroplus lamenabe Sparks, 2008 - big red cichlid Species Paretroplus loisellei Sparks & Schelly, 2011 - Loiselle's cichlid Species Paretroplus maculatus Kiener & Mauge, 1966 - damba mipentina Species Paretroplus maromandia Sparks & Reinthal, 1999 - maromandia cichlid Species Paretroplus menarambo Allgayer, 1996 - pinstripe damba Species Paretroplus nourissati (Allgayer, 1998) - lamena Species Paretroplus petiti Pellegrin, 1929 - kotso Species Paretroplus polyactis Bleeker, 1878 - Bleeker's paretroplus Species Paretroplus tsimoly Stiassny et al., 2001 - tsimoly cichlid GENUS Pseudetroplus Bleeker, in G, 1862 - cichlids Species Pseudetroplus maculatus (Bloch, 1795) - orange chromide [=coruchi] SUBFAMILY Ptychochrominae Sparks, 2004 - Malagasy cichlids [=Ptychochrominae S2002] GENUS Katria Stiassny & Sparks, 2006 - cichlids Species Katria katria (Reinthal & Stiassny, 1997) - Katria cichlid GENUS
    [Show full text]
  • Presentation
    Evolution in Darwin’s Dreampond: The genomic substrate for adaptive radiation in Lake Tanganyika cichlid fish Walter Salzburger Zoological Institute drawings: Julie Johnson drawings: !Charles R. Darwin’s (1809-1882) journey onboard of the HMS Beagle lasted from 27 December 1831 until 2 October 1836 Adaptive Radiation !Darwin’s specimens were classified as “an entirely new group” of 12 species by ornithologist John Gould (1804-1881) African Great Lakes taxonomic diversity at the species level L. Turkana 1 5 50 500 species 0 50 100 % endemics 4°N L. Tanganyika L. Tanganyika L. Albert 2°N L. Malawi L. Malawi L. Edward L. Victoria L. Victoria 0° L. Edward L. Edward L. Kivu L. Victoria 2°S L. Turkana L. Turkana L. Albert L. Albert 4°S L. Kivu L. Kivu L. Tanganyika 6°S taxonomic diversity at the genus level 10 20 30 40 50 genera 0 50 100 % endemics 8°S Rungwe L. Tanganyika L. Tanganyika Volcanic Field L. Malawi 10°S L. Malawi L. Victoria L. Victoria 12°S L. Malawi L. Edward L. Edward L. Turkana L. Turkana 14°S cichlid fish non-cichlid fish L. Albert L. Albert gastropods bivalves 28°E 30°E 32°E 34°E 36°E L. Kivu L. Kivu ostracods ••• W Salzburger, B Van Bockxlaer, AS Cohen (2017), AREES | AS Cohen & W Salzburger (2017) Scientific Drilling Cichlid Fishes Fotos: Angel M. Fitor Angel M. Fotos: !About every 20th fish species on our planet is the product of the ongoing explosive radiations of cichlids in the East African Great Lakes taxonomic~Diversity Victoria [~500 sp.] Tanganyika [250 sp.] Malawi [~1000 sp.] ••• ME Santos & W Salzburger (2012) Science ecological morphological~Diversity zooplanktivore insectivore piscivore algae scraper leaf eater fin biter eye biter mud digger scale eater ••• H Hofer & W Salzburger (2008) Biologie III ecological morphological~Diversity ••• W Salzburger (2009) Molecular Ecology astbur Astbur.:1-90001 Alignment 1 neobri 100% Neobri.
    [Show full text]
  • Towards a Regional Information Base for Lake Tanganyika Research
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • Out of Lake Tanganyika: Endemic Lake Fishes Inhabit Rapids of the Lukuga River
    355 Ichthyol. Explor. Freshwaters, Vol. 22, No. 4, pp. 355-376, 5 figs., 3 tabs., December 2011 © 2011 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Out of Lake Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River Sven O. Kullander* and Tyson R. Roberts** The Lukuga River is a large permanent river intermittently serving as the only effluent of Lake Tanganyika. For at least the first one hundred km its water is almost pure lake water. Seventy-seven species of fish were collected from six localities along the Lukuga River. Species of cichlids, cyprinids, and clupeids otherwise known only from Lake Tanganyika were identified from rapids in the Lukuga River at Niemba, 100 km from the lake, whereas downstream localities represent a Congo River fish fauna. Cichlid species from Niemba include special- ized algal browsers that also occur in the lake (Simochromis babaulti, S. diagramma) and one invertebrate picker representing a new species of a genus (Tanganicodus) otherwise only known from the lake. Other fish species from Niemba include an abundant species of clupeid, Stolothrissa tanganicae, otherwise only known from Lake Tangan- yika that has a pelagic mode of life in the lake. These species demonstrate that their adaptations are not neces- sarily dependent upon the lake habitat. Other endemic taxa occurring at Niemba are known to frequent vegetat- ed shore habitats or river mouths similar to the conditions at the entrance of the Lukuga, viz. Chelaethiops minutus (Cyprinidae), Lates mariae (Latidae), Mastacembelus cunningtoni (Mastacembelidae), Astatotilapia burtoni, Ctenochromis horei, Telmatochromis dhonti, and Tylochromis polylepis (Cichlidae). The Lukuga frequently did not serve as an ef- fluent due to weed masses and sand bars building up at the exit, and low water levels of Lake Tanganyika.
    [Show full text]
  • Lepidiolamprologus Kamambae, a New Species of Cichlid Fish (Teleostei: Cichlidae) from Lake Tanganyika
    Zootaxa 3492: 30–48 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:F49C00E7-C7CF-4C2C-A888-A3CAA030E9F4 Lepidiolamprologus kamambae, a new species of cichlid fish (Teleostei: Cichlidae) from Lake Tanganyika SVEN O. KULLANDER1, MAGNUS KARLSSON2 & MIKAEL KARLSSON2 1Department of Vertebrate Zoology, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden. E-mail: [email protected] 2African Diving Ltd, P. O. Box 7095, Dar es Salaam, Tanzania. E-mail: [email protected] Abstract Lepidiolamprologus kamambae is described from the Kamamba Island off the southeastern coast of Lake Tanganyika. It is similar to L. elongatus, L. kendalli, and L. mimicus in the presence of three horizontal rows of dark blotches along the sides. It differs from those species in the presence of a distinct suborbital stripe across the cheek. It is further distinguished from L. elongatus and L. mimicus by the presence of a marbled pattern on the top of the head, and narrower interorbital width (4.9–5.9% of SL vs. 6.0–7.0%). It is distinguished from L. kendalli by a shorter last dorsal-fin spine (11.2–13.3% of SL vs. 13.3–15.1 %) and presence of distinct dark blotches on the side instead of contiguous blotches forming stripes separated by light interspaces. Lepidiolamprologus profundicola is unique in the genus having the cheeks covered with small scales. Scales are absent from the cheek in L. kamambae, and in the other species scales are either absent or very few and deeply embedded.
    [Show full text]
  • First Genomic Study on Lake Tanganyika Sprat Stolothrissa
    De Keyzer et al. BMC Evolutionary Biology (2019) 19:6 https://doi.org/10.1186/s12862-018-1325-8 RESEARCH ARTICLE Open Access First genomic study on Lake Tanganyika sprat Stolothrissa tanganicae: a lack of population structure calls for integrated management of this important fisheries target species Els L. R. De Keyzer1,2*† , Zoë De Corte3,4†, Maarten Van Steenberge1,3,4, Joost A. M. Raeymaekers1,5, Federico C. F. Calboli1, Nikol Kmentová6, Théophile N’Sibula Mulimbwa7, Massimiliano Virgilio3, Carl Vangestel4, Pascal Masilya Mulungula7, Filip A. M. Volckaert1 and Maarten P. M. Vanhove1,2,6,8,9 Abstract Background: Clupeid fisheries in Lake Tanganyika (East Africa) provide food for millions of people in one of the world’s poorest regions. Due to climate change and overfishing, the clupeid stocks of Lake Tanganyika are declining. We investigate the population structure of the Lake Tanganyika sprat Stolothrissa tanganicae, using for the first time a genomic approach on this species. This is an important step towards knowing if the species should be managed separately or as a single stock. Population structure is important for fisheries management, yet understudied for many African freshwater species. We hypothesize that distinct stocks of S. tanganicae could be presentduetothelargesizeofthelake(isolationbydistance),limnological variation (adaptive evolution), or past separation of the lake (historical subdivision). On the other hand, high mobility of the species and lack of obvious migration barriers might have resulted in a homogenous population. Results: We performed a population genetic study on wild-caught S. tanganicae through a combination of mitochondrial genotyping (96 individuals) and RAD sequencing (83 individuals).
    [Show full text]