Lepidiolamprologus Kamambae, a New Species of Cichlid Fish (Teleostei: Cichlidae) from Lake Tanganyika

Total Page:16

File Type:pdf, Size:1020Kb

Lepidiolamprologus Kamambae, a New Species of Cichlid Fish (Teleostei: Cichlidae) from Lake Tanganyika Zootaxa 3492: 30–48 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:F49C00E7-C7CF-4C2C-A888-A3CAA030E9F4 Lepidiolamprologus kamambae, a new species of cichlid fish (Teleostei: Cichlidae) from Lake Tanganyika SVEN O. KULLANDER1, MAGNUS KARLSSON2 & MIKAEL KARLSSON2 1Department of Vertebrate Zoology, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden. E-mail: [email protected] 2African Diving Ltd, P. O. Box 7095, Dar es Salaam, Tanzania. E-mail: [email protected] Abstract Lepidiolamprologus kamambae is described from the Kamamba Island off the southeastern coast of Lake Tanganyika. It is similar to L. elongatus, L. kendalli, and L. mimicus in the presence of three horizontal rows of dark blotches along the sides. It differs from those species in the presence of a distinct suborbital stripe across the cheek. It is further distinguished from L. elongatus and L. mimicus by the presence of a marbled pattern on the top of the head, and narrower interorbital width (4.9–5.9% of SL vs. 6.0–7.0%). It is distinguished from L. kendalli by a shorter last dorsal-fin spine (11.2–13.3% of SL vs. 13.3–15.1 %) and presence of distinct dark blotches on the side instead of contiguous blotches forming stripes separated by light interspaces. Lepidiolamprologus profundicola is unique in the genus having the cheeks covered with small scales. Scales are absent from the cheek in L. kamambae, and in the other species scales are either absent or very few and deeply embedded. Lepidiolamprologus nkambae was diagnosed from L. kendalli by the absence of scales on the cheek. The presence of scales in L. kendalli is variable, however, and L. nkambae is tentatively synonymized with L. kendalli for want of other diagnostic characters. Key words: color pattern, endemism, meristics, morphometry, taxonomy Introduction The endemic Lake Tanganyika cichlid genus Lepidiolamprologus Pellegrin (1904) presently includes eleven species characterized by the presence of a sesamoid ossification in the labial ligament of the lower jaw, and paired coronalis foramina (Stiassny 1997; Schelly 2007). Species of the genus present considerable diversity in color pattern and body shape, and the composition of the genus has been challenged in several studies (Schelly 2007; Schelly et al. 2006; Sturmbauer et al. 2010; Day et al. 2007). Schelly (2007) proposed a more restricted Lepidiolamprologus characterized by a gracile anterior portion of the hyoid, a strongly emarginate caudal fin, scales reduced in size and presence of a dermosphenotic, in addition to the labial ossification and paired coronalis foramina. Five species conforming to Lepidiolamprologus sensu Schelly share a distinctive color pattern characterized by horizontal rows of contiguous or discrete dark blotches, viz., L. elongatus (Boulenger, 1898), L. kendalli (Poll & Stewart, 1977), L. nkambae (Staeck, 1978), and the most recently described species L. mimicus (Schelly, Takahashi, Bills & Hori, 2007). Lepidiolamprologus profundicola (Poll, 1949), placed in the restricted Lepidiolamprologus by Schelly (2007) is overall dark in color and the dark blotches on the side are much less conspicuous than in the other species of Lepidiolamprologus. The remaining species in Lepidiolamprologus as restricted by Schelly (2007) is L. attenuatus (Steindachner, 1909). It differs from the others in having only two rows of dark blotches along the side, one along the dorsal-fin base, and the other along the middle of the side. The median blotch in the lower row is elongate and much more prominent than the remaining blotches which may fade away completely. Surveys by the two junior authors along the Tanzanian coast provided material identified as L. elongatus, L. kendalli, and L. mimicus, establishing considerably extended vouchered geographical distributions for the latter two species, but also a sample very similar to those species, differing from known species in details of the color pattern and a combination of other character states. The objective of this paper is to provide a formal description of the new species. 30 Accepted by J. Friel: 22 Aug. 2012; published: 20 Sept. 2012 Material and Methods Measurements and counts were recorded as described by Roberts & Kullander (1986). The length of the caudal peduncle is measured from the base of the last ray of the anal fin to the middle of the base of the caudal fin. Scales in a longitudinal row are counted as described by Trewavas (1946) and include the scales of the upper lateral line followed by those of the horizontal row containing the lower lateral line, starting with the first scale in the oblique row (sloping rostrad and ventrad) next behind that containing the last scale of the upper lateral line. Lateral line scales on the caudal fin are not counted. Counts of lateral line scales include all scales up to the posteriormost canal-bearing scales in the upper lateral line, and to the anteriormost canal-bearing scale in the lower lateral line. That means that, especially in the lower lateral line, the count may include several scales from which neuromasts or bone canals are absent. Vertebral counts and counts of fin rays in unpaired fins were taken from X-radiographs. Vertebral counts include the last half-centrum. Teeth were counted in the outer row on one side (predominantly the left side) of the upper and lower jaw. Counts of caudal-fin rays include unsegmented procurrent rays, the marginal unbranched segmented ray, and the branched rays separated by periods, counts of upper and lower lobe separated by a plus sign. X-radiographs were made on Kodak X-omat V film using a Philips MG-105 low voltage X-ray unit. Abbreviations: NLF0 = neurocranial lateral line foramen 0; SL = Standard length. Morphometric data were managed and analysed using PASW Statistics 18 (SPSS, 2009), except that the principal component analysis (PCA) of measurements was made using a separate procedure for component shearing, partialling out multivariate size residues from the second and further components as described by Humphries et al. (1981). The PCA analysis was made with log-transformed measurement data to tenth of a millimetre in a covariance matrix, and without rotation. Specimens studied are deposited in the Swedish Museum of Natural History, Stockholm (NRM). Comparative material. Lepidiolamprologus attenuatus: NRM 24148. 10, 70.7–118.1 mm SL. Zambia, Northern Province: Lake Tanganyika, ca 1 km E of Lufubu River mouth, Mwense Fishing Camp. 8 33' 0'' S, 30 44' 0'' E. 1 Mar. 1993. E. Schwanck & D. Kawage. Lepidiolamprologus elongatus: NRM 12887. 2, 115.7–150.4 mm SL. Democratic Republic of the Congo, Sud- Kivu Province: Lake Tanganyika, Luhanga. 3 31' 0'' S, 29 9' 0'' E. 30 Nov. 1957. G. Marlier.—NRM 24147. 2, 108.3–115.8 mm SL. Zambia, Northern Province: Lake Tanganyika, ca 1 km E of Lufubu River mouth, Mwense Fishing Camp. 8 33' 0'' S, 30 44' 0'' E. 1 Mar. 1993. E. Schwanck & D. Kawage.—NRM 17449. 1, 111.3 mm SL. Tanzania, Kigoma Province: Lake Tanganyika, Kigoma Bay, tip of Nondwa Point. 4 51' 51'' S, 29 35' 39'' E. 5 Jul. 1976. G. Berglund.—NRM 59555. 9, 91.5–154.9 mm SL. Tanzania, Rukwa Province: Lake Tanganyika, Udachi. 7 3' 30'' S, 30 33' 10'' E. 2 Jun. 2008. M. Karlsson & M. Karlsson.—NRM 59600. 1, 136.6 mm SL. Tanzania, Rukwa Province: Lake Tanganyika, Udachi. 7 3' 30'' S, 30 33' 10'' E. 2 Jun. 2008. M. Karlsson & M. Karlsson.—NRM 60241. 1, 150.5 mm SL. Tanzania, Rukwa Province: Lake Tanganyika, Kansombo. 6 56' 42'' S, 30 32' 26'' E. 1 Dec. 2008. M. Karlsson & M. Karlsson. Lepidiolamprologus kendalli: NRM 51544. 1, 124.0 mm SL; NRM 51590. 10, 74.3–124.9 mm SL.Tanzania, Rukwa Province: Lake Tanganyika, Muzi. 8 25' 59'' S, 31 8' 44'' E. 13 Oct. 2008. M. Karlsson & M. Karlsson. Lepidiolamprologus mimicus: NRM 51595. 8, 103.8–141.8 mm SL; NRM 16249. 1, 133.9 mm SL. Tanzania, Rukwa Province: Lake Tanganyika, Frontosa Reef. 7 6' 38'' S, 30 27' 44'' E. 29 Nov. 2008. M. Karlsson & M. Karlsson. Lepidiolamprologus profundicola: NRM 61570. 1, 260.9 mm SL. Tanzania, Rukwa Province: Lake Tanganyika, Kansombo. 6 56' 42'' S, 30 32' 26'' E. 30 Nov. 2010. M. Karlsson & M. Karlsson. Lepidiolamprologus kamambae, new species (Figs. 1–5; Table 1) Holotype. NRM 61943. 1, 137.2 mm SL. Tanzania, Rukwa Province: Nkansi: Lake Tanganyika, Kamamba Island. 7 23' 51'' S, 30 33' 16'' E. 27 Oct. 2008. M. Karlsson & M. Karlsson. Paratypes. All with same data as holotype. NRM 51514. 1, 119.2 mm SL.—NRM 51558. 9, 118.9–135.2 mm SL. A NEW SPECIES OF LEPIDIOLAMPROLOGUS Zootaxa 3492 © 2012 Magnolia Press · 31 TABLE 1. Standard length (in millimeters) and proportional measurements in percents of standard length of L. kamambae. SD= standard deviation. Regression line parameters, a (intercept), b (slope), and r (Pearson’s correlation coefficient) are calculated from measurements expressed in millimeters and shown for p < 0.05. N Holotype Min Max Mean SD a b r SL mm 11 137.2 118.9 137.2 127.3 6.34 Head Length 11 33.2 31.1 34.2 32.8 0.78 -4251 0.361 0.914 Snout length 11 12.8 11.8 13.0 12.4 0.37 -0.903 0.721 0.917 Body depth 11 20.9 20.8 22.7 21.8 0.63 7.782 0.157 0.815 Orbital diameter 11 7.9 7.5 8.6 8.0 0.30 -0.617 0.085 0.831 Interorbital width 11 4.9 4.9 5.9 5.4 0.28 Preorbital depth 11 6.1 5.9 6.5 6.2 0.20 1.848 0.047 0.785 Caudal peduncle depth 11 9.9 9.8 10.6 10.1 0.25 2.727 0.080 0.869 Caudal peduncle length 11 15.4 15.4 17.6 16.5 0.75 2.622 0.144 0.691 Pectoral-fin length 11 20.3 19.3 20.9 20.1 0.47 6.075 0.153 0.878 Upper jaw length 11 12.5 12.5 13.5 13.1 0.28 0.621 0.126 0.904 Lower jaw length 11 15.9 15.9 17.4 16.5 0.48 -0.903 0.172 0.868 Last dorsal-fin spine length 11 13.1 11.2 13.3 12.5 0.69 Diagnosis.
Recommended publications
  • Towards a Regional Information Base for Lake Tanganyika Research
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • Out of Lake Tanganyika: Endemic Lake Fishes Inhabit Rapids of the Lukuga River
    355 Ichthyol. Explor. Freshwaters, Vol. 22, No. 4, pp. 355-376, 5 figs., 3 tabs., December 2011 © 2011 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Out of Lake Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River Sven O. Kullander* and Tyson R. Roberts** The Lukuga River is a large permanent river intermittently serving as the only effluent of Lake Tanganyika. For at least the first one hundred km its water is almost pure lake water. Seventy-seven species of fish were collected from six localities along the Lukuga River. Species of cichlids, cyprinids, and clupeids otherwise known only from Lake Tanganyika were identified from rapids in the Lukuga River at Niemba, 100 km from the lake, whereas downstream localities represent a Congo River fish fauna. Cichlid species from Niemba include special- ized algal browsers that also occur in the lake (Simochromis babaulti, S. diagramma) and one invertebrate picker representing a new species of a genus (Tanganicodus) otherwise only known from the lake. Other fish species from Niemba include an abundant species of clupeid, Stolothrissa tanganicae, otherwise only known from Lake Tangan- yika that has a pelagic mode of life in the lake. These species demonstrate that their adaptations are not neces- sarily dependent upon the lake habitat. Other endemic taxa occurring at Niemba are known to frequent vegetat- ed shore habitats or river mouths similar to the conditions at the entrance of the Lukuga, viz. Chelaethiops minutus (Cyprinidae), Lates mariae (Latidae), Mastacembelus cunningtoni (Mastacembelidae), Astatotilapia burtoni, Ctenochromis horei, Telmatochromis dhonti, and Tylochromis polylepis (Cichlidae). The Lukuga frequently did not serve as an ef- fluent due to weed masses and sand bars building up at the exit, and low water levels of Lake Tanganyika.
    [Show full text]
  • Lepidiolamprologus Kamambae, a New Species of Cichlid Fish (Teleostei: Cichlidae) from Lake Tanganyika
    Zootaxa 3492: 30–48 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:F49C00E7-C7CF-4C2C-A888-A3CAA030E9F4 Lepidiolamprologus kamambae, a new species of cichlid fish (Teleostei: Cichlidae) from Lake Tanganyika SVEN O. KULLANDER1, MAGNUS KARLSSON2 & MIKAEL KARLSSON2 1Department of Vertebrate Zoology, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden. E-mail: [email protected] 2African Diving Ltd, P. O. Box 7095, Dar es Salaam, Tanzania. E-mail: [email protected] Abstract Lepidiolamprologus kamambae is described from the Kamamba Island off the southeastern coast of Lake Tanganyika. It is similar to L. elongatus, L. kendalli, and L. mimicus in the presence of three horizontal rows of dark blotches along the sides. It differs from those species in the presence of a distinct suborbital stripe across the cheek. It is further distinguished from L. elongatus and L. mimicus by the presence of a marbled pattern on the top of the head, and narrower interorbital width (4.9–5.9% of SL vs. 6.0–7.0%). It is distinguished from L. kendalli by a shorter last dorsal-fin spine (11.2–13.3% of SL vs. 13.3–15.1 %) and presence of distinct dark blotches on the side instead of contiguous blotches forming stripes separated by light interspaces. Lepidiolamprologus profundicola is unique in the genus having the cheeks covered with small scales. Scales are absent from the cheek in L. kamambae, and in the other species scales are either absent or very few and deeply embedded.
    [Show full text]
  • 1471-2148-7-7.Pdf
    BMC Evolutionary Biology BioMed Central Research article Open Access Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika – the result of repeated introgressive hybridization Stephan Koblmüller1, Nina Duftner2, Kristina M Sefc1, Mitsuto Aibara3, Martina Stipacek1, Michel Blanc1, Bernd Egger1 and Christian Sturmbauer*1 Address: 1Department of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria, 2Section of Integrative Biology, University of Texas at Austin,1 University Station, #C0930, Austin, TX 78712, USA and 3Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B21-4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan Email: Stephan Koblmüller - [email protected]; Nina Duftner - [email protected]; Kristina M Sefc - [email protected]; Mitsuto Aibara - [email protected]; Martina Stipacek - [email protected]; Michel Blanc - [email protected]; Bernd Egger - [email protected]; Christian Sturmbauer* - [email protected] * Corresponding author Published: 25 January 2007 Received: 12 October 2006 Accepted: 25 January 2007 BMC Evolutionary Biology 2007, 7:7 doi:10.1186/1471-2148-7-7 This article is available from: http://www.biomedcentral.com/1471-2148/7/7 © 2007 Koblmüller et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The tribe Lamprologini is the major substrate breeding lineage of Lake Tanganyika's cichlid species flock. Among several different life history strategies found in lamprologines, the adaptation to live and breed in empty gastropod shells is probably the most peculiar.
    [Show full text]
  • The Use of Different Sensory Modalities in Predator Discrimination
    Behav Ecol Sociobiol (2017) 71: 143 DOI 10.1007/s00265-017-2371-8 ORIGINAL ARTICLE Smell or vision? The use of different sensory modalities in predator discrimination Stefan Fischer1,2,3 & Evelyne Oberhummer1 & Filipa Cunha-Saraiva1,4 & Nina Gerber1,5 & Barbara Taborsky1 Received: 6 November 2016 /Revised: 19 August 2017 /Accepted: 28 August 2017 /Published online: 8 September 2017 # The Author(s) 2017. This article is an open access publication Abstract to a standardized threat stimulus combined with either preda- Theory predicts that animals should adjust their escape re- tor or non-predator cues presented either visually or chemical- sponses to the perceived predation risk. The information ani- ly. We predicted that flight responses towards a threat stimulus mals obtain about potential predation risk may differ qualita- are more pronounced if cues of dangerous rather than harm- tively depending on the sensory modality by which a cue is less heterospecifics are presented and that N. pulcher,beingan perceived. For instance, olfactory cues may reveal better in- aquatic species, relies more on olfaction when discriminating formation about the presence or absence of threats, whereas between dangerous and harmless heterospecifics. N. pulcher visual information can reliably transmit the position and po- responded faster to the threat stimulus, reached a refuge faster tential attack distance of a predator. While this suggests a and entered a refuge more likely when predator cues were differential use of information perceived through the two sen- perceived. Unexpectedly, the sensory modality used to per- sory channels, the relative importance of visual vs. olfactory ceive the cues did not affect the escape response or the dura- cues when distinguishing between different predation threats tion of the recovery phase.
    [Show full text]
  • Effects of Increased Temperature And
    EFFECTS OF INCREASED TEMPERATURE AND DECREASED FOOD QUALITY ON METABOLISM AND GROWTH OF AN ALGIVOROUS CICHLID, TROPHEUS DUBOISI, AND EFFECT OF FOOD HABIT ON THE FIELD METABOLISM OF AFRICAN CICHLIDS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By LESLEY YU-JUNG KIM B.S., The Ohio State University, 2011 2014 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL September 2, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Lesley Yu-Jung Kim ENTITLED Effect of Increased Temperature and Decreased Food Quality on Metabolism and Growth of an Algivorous cichlid, Tropheus duboisi, and Effect of Food Habit on the Field Metabolism of African Cichlids BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. __________________________ Yvonne Vadeboncoeur, Ph.D. Thesis Director __________________________ David Goldstein, Ph.D. Chair, Department of Biological Sciences Committee on Final Examination __________________________ Yvonne Vadeboncoeur, Ph.D. __________________________ Lynn Hartzler, Ph.D. __________________________ Volker Bahn, Ph.D. __________________________ Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School ABSTRACT Kim, Lesley Yu-Jung. M.S. Department of Biological Sciences, Wright State University, 2014. Effect of increased temperature and decreased food quality on metabolism and growth of an algivorous cichlid, Tropheus duboisi, and effect of food habit on the field metabolism of African Cichlids. The metabolic rate of an organism is influenced by mass, temperature, and diet. Climate change is anticipated to increase ambient temperatures of aquatic systems and decrease the quality of food available to algivorous fish.
    [Show full text]
  • Testing the Potential of Environmental DNA Methods for Surveying Lake Tanganyika's Highly Diverse Fish Communities Christopher J
    Testing the potential of environmental DNA methods for surveying Lake Tanganyika's highly diverse fish communities Christopher James Doble A thesis submitted for the degree of Doctor of Philosophy Department of Genetics, Evolution and Environment University College London April 2020 1 Declaration I, Christopher James Doble, confirm the work presented in this thesis is my own. Where information has been derived from other sources, I confirm this has been indicated in the thesis. Christopher James Doble Date: 27/04/2020 2 Statement of authorship I planned and undertook fieldwork to the Kigoma region of Lake Tanganyika, Tanzania in 2016 and 2017. This included obtaining research permits, collecting environmental DNA samples and undertaking fish community visual survey data used in Chapters three and four. For Chapter two, cichlid reference database sequences were sequenced by Walter Salzburger’s research group at the University of Basel. I extracted required regions from mitochondrial genome alignments during a visit to Walter’s research group. Other reference sequences were obtained by Sanger sequencing. I undertook the DNA extractions and PCR amplifications for all samples, with the clean-up and sequencing undertaken by the UCL Sequencing facility. I undertook the method development, DNA extractions, PCR amplifications and library preparations for each of the next generation sequencing runs in Chapters three and four at the NERC Biomolecular Analysis Facility Sheffield. Following training by Helen Hipperson at the NERC Biomolecular Analysis Facility in Sheffield, I undertook the bioinformatic analysis of sequence data in Chapters three and four. I also carried out all the data analysis within each chapter. Chapters two, three and parts of four have formed a manuscript recently published in Environmental DNA (Doble et al.
    [Show full text]
  • Food Resources of Lake Tanganyika Sardines Metabarcoding of the Stomach Content of Limnothrissa Miodon and Stolothrissa Tanganicae
    FACULTY OF SCIENCE Food resources of Lake Tanganyika sardines Metabarcoding of the stomach content of Limnothrissa miodon and Stolothrissa tanganicae Charlotte HUYGHE Supervisor: Prof. F. Volckaert Thesis presented in Laboratory of Biodiversity and Evolutionary Genomics fulfillment of the requirements Mentor: E. De Keyzer for the degree of Master of Science Laboratory of Biodiversity and Evolutionary in Biology Genomics Academic year 2018-2019 © Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests. i ii Acknowledgments First of all, I would like to thank my promotor Filip for giving me this opportunity and guiding me through the thesis. A very special thanks to my supervisor Els for helping and guiding me during every aspect of my thesis, from the sampling nights in the middle of Lake Tanganyika to the last review of my master thesis. Also a special thanks to Franz who helped me during the lab work and statistics but also guided me throughout the thesis. I am very grateful for all your help and advice during the past year.
    [Show full text]
  • Vital but Vulnerable: Climate Change Vulnerability and Human Use of Wildlife in Africa’S Albertine Rift
    Vital but vulnerable: Climate change vulnerability and human use of wildlife in Africa’s Albertine Rift J.A. Carr, W.E. Outhwaite, G.L. Goodman, T.E.E. Oldfield and W.B. Foden Occasional Paper for the IUCN Species Survival Commission No. 48 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or the compilers concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2013 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Carr, J.A., Outhwaite, W.E., Goodman, G.L., Oldfield, T.E.E. and Foden, W.B. 2013. Vital but vulnerable: Climate change vulnerability and human use of wildlife in Africa’s Albertine Rift. Occasional Paper of the IUCN Species Survival Commission No. 48. IUCN, Gland, Switzerland and Cambridge, UK. xii + 224pp. ISBN: 978-2-8317-1591-9 Front cover: A Burundian fisherman makes a good catch. © R. Allgayer and A. Sapoli. Back cover: © T. Knowles Available from: IUCN (International Union for Conservation of Nature) Publications Services Rue Mauverney 28 1196 Gland Switzerland Tel +41 22 999 0000 Fax +41 22 999 0020 [email protected] www.iucn.org/publications Also available at http://www.iucn.org/dbtw-wpd/edocs/SSC-OP-048.pdf About IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges.
    [Show full text]
  • Journal of Great Lakes Research 46 (2020) 1067–1078
    Journal of Great Lakes Research 46 (2020) 1067–1078 Contents lists available at ScienceDirect Journal of Great Lakes Research journal homepage: www.elsevier.com/locate/ijglr Review The taxonomic diversity of the cichlid fish fauna of ancient Lake Tanganyika, East Africa ⇑ Fabrizia Ronco , Heinz H. Büscher, Adrian Indermaur, Walter Salzburger Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland article info abstract Article history: Ancient Lake Tanganyika in East Africa houses the world’s ecologically and morphologically most diverse Received 29 January 2019 assemblage of cichlid fishes, and the third most species-rich after lakes Malawi and Victoria. Despite Received in revised form 10 April 2019 long-lasting scientific interest in the cichlid species flocks of the East African Great Lakes, for example Accepted 29 April 2019 in the context of adaptive radiation and explosive diversification, their taxonomy and systematics are Available online 30 June 2019 only partially explored; and many cichlid species still await their formal description. Here, we provide Communicated by Björn Stelbrink a current inventory of the cichlid fish fauna of Lake Tanganyika, providing a complete list of all valid 208 Tanganyikan cichlid species, and discuss the taxonomic status of more than 50 undescribed taxa on the basis of the available literature as well as our own observations and collections around the lake. Keywords: This leads us to conclude that there are at least 241 cichlid species present in Lake Tanganyika, all but two Biodiversity are endemic to the basin. We finally summarize some of the major taxonomic challenges regarding Lake Ichthyodiversity Tanganyika’s cichlid fauna.
    [Show full text]
  • East African Cichlid Lineages (Teleostei: Cichlidae) Might Be
    Schedel et al. BMC Evolutionary Biology (2019) 19:94 https://doi.org/10.1186/s12862-019-1417-0 RESEARCH ARTICLE Open Access East African cichlid lineages (Teleostei: Cichlidae) might be older than their ancient host lakes: new divergence estimates for the east African cichlid radiation Frederic Dieter Benedikt Schedel1, Zuzana Musilova2 and Ulrich Kurt Schliewen1* Abstract Background: Cichlids are a prime model system in evolutionary research and several of the most prominent examples of adaptive radiations are found in the East African Lakes Tanganyika, Malawi and Victoria, all part of the East African cichlid radiation (EAR). In the past, great effort has been invested in reconstructing the evolutionary and biogeographic history of cichlids (Teleostei: Cichlidae). In this study, we present new divergence age estimates for the major cichlid lineages with the main focus on the EAR based on a dataset encompassing representative taxa of almost all recognized cichlid tribes and ten mitochondrial protein genes. We have thoroughly re-evaluated both fossil and geological calibration points, and we included the recently described fossil †Tugenchromis pickfordi in the cichlid divergence age estimates. Results: Our results estimate the origin of the EAR to Late Eocene/Early Oligocene (28.71 Ma; 95% HPD: 24.43–33.15 Ma). More importantly divergence ages of the most recent common ancestor (MRCA) of several Tanganyika cichlid tribes were estimated to be substantially older than the oldest estimated maximum age of the Lake Tanganyika: Trematocarini (16.13 Ma, 95% HPD: 11.89–20.46 Ma), Bathybatini (20.62 Ma, 95% HPD: 16.88–25.34 Ma), Lamprologini (15.27 Ma; 95% HPD: 12.23–18.49 Ma).
    [Show full text]
  • Replicated Divergence in Cichlid Radiations Mirrors a Major
    Downloaded from http://rspb.royalsocietypublishing.org/ on January 27, 2016 Replicated divergence in cichlid radiations rspb.royalsocietypublishing.org mirrors a major vertebrate innovation Matthew D. McGee1, Brant C. Faircloth2, Samuel R. Borstein3, Jimmy Zheng4, C. Darrin Hulsey5, Peter C. Wainwright1 and Michael E. Alfaro4 Research 1Department of Evolution and Ecology, University of California, Davis, CA 95616, USA 2Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Cite this article: McGee MD, Faircloth BC, LA 70803, USA 3 Borstein SR, Zheng J, Darrin Hulsey C, Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Wainwright PC, Alfaro ME. 2016 Replicated 5Department of Biology, University of Konstanz, Konstanz, Germany divergence in cichlid radiations mirrors a major vertebrate innovation. Proc. R. Soc. B Decoupling of the upper jaw bones—jaw kinesis—is a distinctive feature of the 283: 20151413. ray-finned fishes, but it is not clear how the innovation is related to the extra- http://dx.doi.org/10.1098/rspb.2015.1413 ordinary diversity of feeding behaviours and feeding ecology in this group. We address this issue in a lineage of ray-finned fishes that is well known for its ecological and functional diversity—African rift lake cichlids. We sequenced ultraconserved elements to generate a phylogenomic tree of the Received: 11 June 2015 Lake Tanganyika and Lake Malawi cichlid radiations. We filmed a diverse array of over 50 cichlid species capturing live prey and quantified the extent Accepted: 30 November 2015 of jaw kinesis in the premaxillary and maxillary bones.
    [Show full text]