Observations on Pelagic Mollusks Associated with the Siphonophores
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum -
15 Sea Turtle Epibiosis
15 Sea Turtle Epibiosis Michael G. Frick and joseph B. Pfaller CONTENTS 15. I Introduction .......................................................................................................................... 399 15.2 Common Forms .................................................................................................................... 401 15.2.1 Sessile Forms ............................................................................................................ 401 15.2.2 Sedentary Forms ....................................................................................................... 401 15.2.3 Motile Forms ............................................................................................................ 401 15.3 Communities and Community Dynamics ............................................................................ 402 15.3.1 Pelagic/Oceanic Communities .................................................................................. 402 15.3.2 Benthic/Neritic Communities ................................................................................... 402 15.3.3 Obligate Communities .............................................................................................. 403 15.3.4 Community Distribution ........................................................................................... 403 15.3.5 Community Succession ............................................................................................ 404 15.4 Ecological Interactions ........................................................................................................ -
Nudibranchs—Splendid Sea Slugs
Nudibranchs—Splendid Sea Slugs View the video “Nudibranchs” to learn about the adaptations of nudibranchs—colorful sea slugs with a remarkable means of defense. SUBJECT NUDIBRANCHS Science Watch it online at http://www.pbs.org/kqed/oceanadventures/video/nudibranchs GRADE LEVEL 5–10 Video length: 1 minute 52 seconds STANDARDS National Science Education BACKGROUND INFORMATION Standards Nudibranchs are sea slugs. They are soft-bodied animals, and like Grades 5–8 clams, snails and squid, they are mollusks. Nudibranchs belong to www.nap.edu/readingroom/books/ phylum Mollusca, class Gastropoda, order Nudibranchia. Found nses/6d.html#ls in oceans all over the world, they range in size from .25 inch to longer than a foot. There are more than 3,000 known species of Life Science – nudibranchs, and they come in all colors, from bright blue to pink Content Standard C: to white with orange polka dots. Regulation and Behavior Diversity and Adaptations Nudibranchs get their name from the feathery gills exposed on their of Organisms backs. The word nudibranch actually means “naked gills.” The two Ocean Literacy Essential most common groups of nudibranchs are the dorids and aeolids. Principles and Fundamental Dorids have a circular tuft of gills on their back that can be withdrawn Concepts: into their body. Aeolids have fingerlike projections, called cerata, www.coexploration.org/ that function as gills and are always exposed. Cerata also contain oceanliteracy/ branches of the digestive tract. Essential Principle #5: To find food, nudibranchs use their rhinophores—organs that sense The ocean supports a great chemical signals in the water. Most dorid nudibranchs feed on diversity of life and ecosystems. -
The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean
The evolution of siphonophore tentilla for specialized prey capture in the open ocean Alejandro Damian-Serranoa,1, Steven H. D. Haddockb,c, and Casey W. Dunna aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; bResearch Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039; and cEcology and Evolutionary Biology, University of California, Santa Cruz, CA 95064 Edited by Jeremy B. C. Jackson, American Museum of Natural History, New York, NY, and approved December 11, 2020 (received for review April 7, 2020) Predator specialization has often been considered an evolutionary makes them an ideal system to study the relationships between “dead end” due to the constraints associated with the evolution of functional traits and prey specialization. Like a head of coral, a si- morphological and functional optimizations throughout the organ- phonophore is a colony bearing many feeding polyps (Fig. 1). Each ism. However, in some predators, these changes are localized in sep- feeding polyp has a single tentacle, which branches into a series of arate structures dedicated to prey capture. One of the most extreme tentilla. Like other cnidarians, siphonophores capture prey with cases of this modularity can be observed in siphonophores, a clade of nematocysts, harpoon-like stinging capsules borne within special- pelagic colonial cnidarians that use tentilla (tentacle side branches ized cells known as cnidocytes. Unlike the prey-capture apparatus of armed with nematocysts) exclusively for prey capture. Here we study most other cnidarians, siphonophore tentacles carry their cnidocytes how siphonophore specialists and generalists evolve, and what mor- in extremely complex and organized batteries (3), which are located phological changes are associated with these transitions. -
A Radical Solution: the Phylogeny of the Nudibranch Family Fionidae
RESEARCH ARTICLE A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae Kristen Cella1, Leila Carmona2*, Irina Ekimova3,4, Anton Chichvarkhin3,5, Dimitry Schepetov6, Terrence M. Gosliner1 1 Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, California, United States of America, 2 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, 3 Far Eastern Federal University, Vladivostok, Russia, 4 Biological Faculty, Moscow State University, Moscow, Russia, 5 A.V. Zhirmunsky Instutute of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia, 6 National Research University Higher School of Economics, Moscow, Russia a11111 * [email protected] Abstract Tergipedidae represents a diverse and successful group of aeolid nudibranchs, with approx- imately 200 species distributed throughout most marine ecosystems and spanning all bio- OPEN ACCESS geographical regions of the oceans. However, the systematics of this family remains poorly Citation: Cella K, Carmona L, Ekimova I, understood since no modern phylogenetic study has been undertaken to support any of the Chichvarkhin A, Schepetov D, Gosliner TM (2016) A Radical Solution: The Phylogeny of the proposed classifications. The present study is the first molecular phylogeny of Tergipedidae Nudibranch Family Fionidae. PLoS ONE 11(12): based on partial sequences of two mitochondrial (COI and 16S) genes and one nuclear e0167800. doi:10.1371/journal.pone.0167800 gene (H3). Maximum likelihood, maximum parsimony and Bayesian analysis were con- Editor: Geerat J. Vermeij, University of California, ducted in order to elucidate the systematics of this family. Our results do not recover the tra- UNITED STATES ditional Tergipedidae as monophyletic, since it belongs to a larger clade that includes the Received: July 7, 2016 families Eubranchidae, Fionidae and Calmidae. -
Marine Invertebrate Field Guide
Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ........................................................................................................................................................................................... -
US Fish & Wildlife Service Seabird Conservation Plan—Pacific Region
U.S. Fish & Wildlife Service Seabird Conservation Plan Conservation Seabird Pacific Region U.S. Fish & Wildlife Service Seabird Conservation Plan—Pacific Region 120 0’0"E 140 0’0"E 160 0’0"E 180 0’0" 160 0’0"W 140 0’0"W 120 0’0"W 100 0’0"W RUSSIA CANADA 0’0"N 0’0"N 50 50 WA CHINA US Fish and Wildlife Service Pacific Region OR ID AN NV JAP CA H A 0’0"N I W 0’0"N 30 S A 30 N L I ort I Main Hawaiian Islands Commonwealth of the hwe A stern A (see inset below) Northern Mariana Islands Haw N aiian Isla D N nds S P a c i f i c Wake Atoll S ND ANA O c e a n LA RI IS Johnston Atoll MA Guam L I 0’0"N 0’0"N N 10 10 Kingman Reef E Palmyra Atoll I S 160 0’0"W 158 0’0"W 156 0’0"W L Howland Island Equator A M a i n H a w a i i a n I s l a n d s Baker Island Jarvis N P H O E N I X D IN D Island Kauai S 0’0"N ONE 0’0"N I S L A N D S 22 SI 22 A PAPUA NEW Niihau Oahu GUINEA Molokai Maui 0’0"S Lanai 0’0"S 10 AMERICAN P a c i f i c 10 Kahoolawe SAMOA O c e a n Hawaii 0’0"N 0’0"N 20 FIJI 20 AUSTRALIA 0 200 Miles 0 2,000 ES - OTS/FR Miles September 2003 160 0’0"W 158 0’0"W 156 0’0"W (800) 244-WILD http://www.fws.gov Information U.S. -
Pelagic Sargassum Community Change Over a 40-Year Period: Temporal and Spatial Variability
Mar Biol (2014) 161:2735–2751 DOI 10.1007/s00227-014-2539-y ORIGINAL PAPER Pelagic Sargassum community change over a 40-year period: temporal and spatial variability C. L. Huffard · S. von Thun · A. D. Sherman · K. Sealey · K. L. Smith Jr. Received: 20 May 2014 / Accepted: 3 September 2014 / Published online: 14 September 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Pelagic forms of the brown algae (Phaeo- ranging across the Sargasso Sea, Gulf Stream, and south phyceae) Sargassum spp. and their conspicuous rafts are of the subtropical convergence zone. Recent samples also defining characteristics of the Sargasso Sea in the western recorded low coverage by sessile epibionts, both calcifying North Atlantic. Given rising temperatures and acidity in forms and hydroids. The diversity and species composi- the surface ocean, we hypothesized that macrofauna asso- tion of macrofauna communities associated with Sargas- ciated with Sargassum in the Sargasso Sea have changed sum might be inherently unstable. While several biological with respect to species composition, diversity, evenness, and oceanographic factors might have contributed to these and sessile epibiota coverage since studies were con- observations, including a decline in pH, increase in sum- ducted 40 years ago. Sargassum communities were sam- mer temperatures, and changes in the abundance and distri- pled along a transect through the Sargasso Sea in 2011 and bution of Sargassum seaweed in the area, it is not currently 2012 and compared to samples collected in the Sargasso possible to attribute direct causal links. Sea, Gulf Stream, and south of the subtropical conver- gence zone from 1966 to 1975. -
Point Lobos Nudibranch Project Topics for Tonight
Point Lobos Nudibranch Project Topics for Tonight • Project Design, Location and Transect Selection • Nudibranch Identification • Species in the Study • Look-alikes • Sampling Techniques and Data Sheets • Q & A Project Design • Project Design, Location and Transect Selection • Science goals are still being defined. • Hope is to maximize the value of any data we collect. • Cover a variety of species and habitats. • Ease of study was also important. • Sites need to be near each other to maximize data collection time. • Sites need to be easy to find. • Transects need to be easy identify for repeatability. • Species covered need to be common and diverse. Locations • We have chosen two areas for study. • The North end of the Middle Reef • The North end of the Hole-in-the-wall Reef • Each reef will be divided into 4 transect zones. • East Wall • North Wall • West Wall • Top (defined as anything with less than 45 degrees of slope. • Actual transect areas are TBD and will need to be surveyed. • Each transect area needs to be roughly the same size • Transects must be easily identifiable. Locations Rationale • Middle Reef and Hole-in-the-wall Reefs are easily locatable underwater. • Both sites have good populations of nudibranchs. • Both sites have diverse habitat areas. • Hole-in-the-wall Reef may be lacking in “top” and North areas. • A survey will help here. • We’re open to other suggestions. Species in the Study • We have 14 species in the study. • All are at least reasonably common in Whaler’s Cove. • They represent a wide variety of species and prey items. -
Diet of Oceanic Loggerhead Sea Turtles (Caretta Caretta) in the Central North Pacific
Diet of oceanic loggerhead sea turtles (Caretta caretta) in the central North Pacific Item Type article Authors Parker, Denise M.; Cooke, William J.; Balazs, George H. Download date 29/09/2021 11:03:34 Link to Item http://hdl.handle.net/1834/26255 ART & EQUATIONS ARE LINKED Preflight Good 142 Abstract — Diet analysis of 52 log- gerhead sea turtles (Caretta caretta) Diet of oceanic loggerhead sea turtles collected as bycatch from 1990 to 1992 (Caretta caretta) in the central North Pacific in the high-seas driftnet fishery oper- ating between lat. 29.5°N and 43°N and between long. 150°E and 154°W Denise M. Parker demonstrated that these turtles fed Joint Institute for Marine and Atmospheric Research predominately at the surface; few 8604 La Jolla Shores Drive deeper water prey items were pres- La Jolla, California 92037 ent in their stomachs. The turtles Present address: Northwest Fisheries Science Center ranged in size from 13.5 to 74.0 cm National Marine Fisheries Service, NOAA curved carapace length. Whole tur- Newport, Oregon 97365-5275 tles (n=10) and excised stomachs E-mail address: [email protected] (n=42) were frozen and transported to a laboratory for analysis of major faunal components. Neustonic species William J. Cooke accounted for four of the five most AECOS, Inc. common prey taxa. The most common 970 N. Kalaheo Avenue, Suite C311 prey items were Janthina spp. (Gas- Kailua, Hawaii 96734 tropoda); Carinaria cithara Benson 1835 (Heteropoda); a chondrophore, Velella velella (Hydrodia); Lepas spp. George H. Balazs (Cirripedia), Planes spp. (Decapoda: Pacific Islands Fisheries Science Center, Honolulu Laboratory Grapsidae), and pyrosomas (Pyrosoma National Marine Fisheries Service spp.). -
Mollusca: Gastropoda: Epitoniidae)
© The Author, 2017. Journal compilation © Australian Museum, Sydney, 2017 Records of the Australian Museum (2017) Vol. 69, issue number 3, pp. 119–222. ISSN 0067-1975 (print), ISSN 2201-4349 (online) https://doi.org/10.3853/j.2201-4349.69.2017.1666 Evolution of Janthina and Recluzia (Mollusca: Gastropoda: Epitoniidae) A. G. Beu Paleontology Department, GNS Science, PO Box 30368, Lower Hutt, New Zealand 5040 [email protected] Abstract. Fossil and living neustonic gastropods referred previously to Janthinidae are revised and included in Epitoniidae. Species recognized in Janthina Röding, 1798 (= Iodes, Iodina and Amethistina Mörch, 1860, Hartungia Bronn, 1861, Heligmope Tate, 1893, Violetta Iredale, 1929, Parajanthina Tomida & Itoigawa, 1982, and Kaneconcha Kaim, Tucholke & Warén, 2012) are J. typica (Bronn), Messinian–early Piacenzian (latest Miocene–early late Pliocene), c. 7–3.0 Ma (New Zealand, southern Australia, Japan, Morocco, dredged off Brazil, Madeira, Gran Canaria I., Selvagem Grande I., and Santa Maria I., Azores); J. krejcii sp. nov., Zanclean (early Pliocene), c. 4.8–4.3 Ma (Santa Maria I.); J. chavani (Ludbrook), late Piacenzian–early Calabrian (latest Pliocene–early Pleistocene), 3.0–c. 1.7 Ma or later (New Zealand, southern Australia, Japan, mid-Atlantic ridge); J. globosa Swainson, living, and two late Pliocene–early Pleistocene records (Jamaica, Philippines); and J. exigua Lamarck, J. janthina (Linnaeus), J. pallida Thompson, and J. umbilicata d’Orbigny, all Holocene only. Janthina evolved from a benthic epitoniid resembling Alora during Messinian (late Miocene) time, and feeds mainly on colonial cnidarians (Physalia, Velella, Porpita). The extinction of Janthina typica and origination of J. -
A New Variety of Pelagic Janthinid-Gastropoda from Libyan Coast
International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 ISSN 2229-5518 1314 A New Variety of Pelagic Janthinid-Gastropoda from Libyan Coast Ahmed M. Muftah1 and Belkasim Khameiss2 1University of Benghazi, Faculty of Science, Department of Earth Sciences, Benghazi, Libya. 2Department of Geological Sciences Ball State University Fine Arts Building (AR), room 117 Muncie, IN 47306. [email protected] Abstract This is the first record of the pelagic purple janthinid gastropoda from Libyan East coast, it is introduced herein as a new variety Janthina janthina var. minuta. It was found in two spots along Tolmeitha and Susa beaches. This occurrence confirms its Mediterranean affinity. The rarity of these snails along the Libyan coast is indicative to their pelagic mode of life which can be explained by the presence of the air bubbles for floating. However, the ink-like secretion is responsible to shell coloration and is used as a defense mechanism similar to that of Octopus and Sepia cephalopods. Introduction This study based on the collected sea shells from the Northeast coast of Libya in Cyrenaica region (Fig. 1). There are few studies on marine mollusks of Libya. So far the most important manual is that of Abdulsamad et al., (in press) on sea shells of Bengahzi beaches, it contains 103 color photographsIJSER accompanied with text in both Arabic and English. Others are unpublished student report. A study on Land snails from Northeast Libya in particular Cyrenaica, however, is published recently by Muftah and Al-Tarbagiah, (2013). These samples are measured by Caliper. The collected specimens are deposited in the paleontological collections of the Department of the Earth Sciences, in Benghazi University.