The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean The evolution of siphonophore tentilla for specialized prey capture in the open ocean Alejandro Damian-Serranoa,1, Steven H. D. Haddockb,c, and Casey W. Dunna aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; bResearch Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039; and cEcology and Evolutionary Biology, University of California, Santa Cruz, CA 95064 Edited by Jeremy B. C. Jackson, American Museum of Natural History, New York, NY, and approved December 11, 2020 (received for review April 7, 2020) Predator specialization has often been considered an evolutionary makes them an ideal system to study the relationships between “dead end” due to the constraints associated with the evolution of functional traits and prey specialization. Like a head of coral, a si- morphological and functional optimizations throughout the organ- phonophore is a colony bearing many feeding polyps (Fig. 1). Each ism. However, in some predators, these changes are localized in sep- feeding polyp has a single tentacle, which branches into a series of arate structures dedicated to prey capture. One of the most extreme tentilla. Like other cnidarians, siphonophores capture prey with cases of this modularity can be observed in siphonophores, a clade of nematocysts, harpoon-like stinging capsules borne within special- pelagic colonial cnidarians that use tentilla (tentacle side branches ized cells known as cnidocytes. Unlike the prey-capture apparatus of armed with nematocysts) exclusively for prey capture. Here we study most other cnidarians, siphonophore tentacles carry their cnidocytes how siphonophore specialists and generalists evolve, and what mor- in extremely complex and organized batteries (3), which are located phological changes are associated with these transitions. To answer in their tentilla. While nematocyst batteries and clusters in other these questions, we: a) Measured 29 morphological characters of cnidarians are simple static scaffolds for cnidocytes, siphonophore tentacles from 45 siphonophore species, b) mapped these data to a tentilla have their own reaction mechanism, triggered upon en- phylogenetic tree, and c) analyzed the evolutionary associations be- counter with prey. When it fires, a tentillum undergoes an ex- tween morphological characters and prey-type data from the litera- tremely fast conformational change that wraps it around the prey, ture. Instead of a dead end, we found that siphonophore specialists maximizing the surface area of contact for nematocysts to fire on can evolve into generalists, and that specialists on one prey type the prey (4). In addition, some species have elaborate fluorescent have directly evolved into specialists on other prey types. Our results or bioluminescent lures on their tentilla to attract prey with EVOLUTION show that siphonophore tentillum morphology has strong evolution- aggressive mimicry (5–7). ary associations with prey type, and suggest that shifts between Siphonophores bear four major nematocyst types in their ten- prey types are linked to shifts in the morphology, mode of evolution, tacles and tentilla (Fig. 1F). The largest type, heteronemes, have and evolutionary correlations of tentilla and their nematocysts. The open-tip tubules characterized by bearing a distinctly wider spiny evolutionary history of siphonophore specialization helps build a shaft at the proximal end of the everted tubule. These are typically broader perspective on predatory niche diversification via morpho- found flanking the proximal end of the cnidoband (nematocyst logical innovation and evolution. These findings contribute to under- standing how specialization and morphological evolution have shaped present-day food webs. Significance siphonophores | nematocysts | predation | specialization | Predatory specialization is often associated with the evolution character evolution of modifications in the morphology of the prey-capture appa- ratus. Specialization has been considered an evolutionary “ ” ost animal predators use specific structures to capture and dead end due to the constraints associated with these mor- Msubdue prey. Raptors have claws and beaks, snakes have phological changes. However, in predators like siphonophores, fangs, wasps have stingers, and cnidarians have nematocyst-laden armed with modular structures used exclusively for prey cap- tentacles. The functional morphology of these structures is crit- ture, this assumption is challenged. Our results show that si- ical to their ability to successfully capture prey (1). Long-term phonophores can evolve generalism and new prey-type adaptive evolution in response to the defense mechanisms of the specializations by modifying the morphological states, modes of evolution, and evolutionary correlations between the parts prey (e.g., avoidance, escape, protective barriers) leads to mod- of their prey-capture apparatus. These findings demonstrate ifications that can counter those defenses. The more specialized how studying open-ocean nonbilaterian predators can reveal the diet of a predator is, the more specialized its structures need to novel patterns and mechanisms in the evolution of specializa- be to efficiently overcome the challenges posed by the prey. tion. Understanding these evolutionary processes is funda- Characterizing the relationships between morphology and preda- mental to the study of food web structure and complexity. tory specialization is necessary to understand how the phenotypic diversity of predators determines food web structure. However, for Author contributions: A.D.-S., S.H.D.H, and C.W.D. designed research; A.D.-S. performed many clades of predators, there is scarce knowledge on how these research; A.D.-S. analyzed data; S.H.D.H. contributed by facilitating the access to the field specializations evolved. The primary questions we set out to an- and collection tools, and directing the remotely operated vehicles and blue-water diving swer are: How do predator specialists and generalists evolve, and operations in the field; S.H.D.H. edited the paper, collected specimens, and contributed extensive knowledge of the biology and ecology of the organisms; C.W.D. contributed by how does predatory specialization shape morphological evolution? collecting specimens, editing the paper, and providing mentoring; and A.D.-S. wrote Siphonophores (Cnidaria: Hydrozoa) are a clade of gelatinous, the paper. colonial organisms that swim in the open ocean, feeding on a wide The authors declare no competing interest. diversity of prey (often fish, crustaceans, and jellyfish). Siphono- This article is a PNAS Direct Submission. phorecolonieshaveamodularbodyplanwithdifferentzooids This open access article is distributed under Creative Commons Attribution-NonCommercial- specialized for different tasks. This modularity extends also within NoDerivatives License 4.0 (CC BY-NC-ND). the feeding gastrozooids, which carry modular structures on the 1To whom correspondence may be addressed. Email: [email protected]. tentacle that are exclusively used for prey capture: The tentilla This article contains supporting information online at https://www.pnas.org/lookup/suppl/ (Fig. 1). The tentilla have great morphological variation across doi:10.1073/pnas.2005063118/-/DCSupplemental. species (2). Together with their well-understood function, this Published February 15, 2021. PNAS 2021 Vol. 118 No. 8 e2005063118 https://doi.org/10.1073/pnas.2005063118 | 1of9 Downloaded by guest on September 26, 2021 A B C D E Float Tentilla (budding) Peduncle Swimming bells Gastrozooid Mouth Gastrozooid and tentacle Tentacle Pedicle Involucrum Tentilla Cnidoband (mature) 1.0 cm Elastic strands F Terminal filament Cnidoband nematocysts Terminal filament nematocysts Heteronemes Haplonemes Spironemes Rhopalonemes Mastigophores Stenoteles Euryteles Birhopaloids Isorhizas Anisorhizas Desmonemes Anacrophores Acrophores Tubule Tubule Shaft + spines 50µm 20µm 20µm 20µm 20µm 50µm 20µm 50µm 20µm 20µm Fig. 1. Siphonophore anatomy. (A) Nanomia sp. siphonophore colony (photo by Catriona Munro). (B and C) Illustration of a Nanomia colony, gastrozooid, and tentacle close-up (by Freya Goetz). (D) Nanomia sp. Tentillum illustration and main parts. (E) Differential interference contrast micrograph of the ten- tillum illustrated in D.(F) Nematocyst types [illustration reproduced with permission from Mapstone (2)], hypothesized homologies, and locations in the tentillum. Undischarged to the left, discharged to the right. battery). The most abundant type, haplonemes, have no distinct specialization can be considered a dead end if lineages that are shaft, but similarly to heteronemes, their tubules have open tips feeding specialists do not give rise to feeding generalists or spe- and can be found in the cnidoband. Both heteronemes and hap- cialists on other prey. However, recent studies have found that lonemes bear short spines along the tubule. Both can be toxic and ecological mechanisms, such as interspecific competition, can fa- penetrate the surface of some prey types. In the terminal filament, vor the evolution of generalists from specialists (17–19) and spe- siphonophores bear two other types of nematocysts, characterized cialist resource switching (20, 21). In addition to studying by their adhesive function, closed tip tubules and lack of spines on relationships with morphology, we seek to identify what evolutionary the tubule. These are the desmonemes (a type of adhesive coiled- transitions in trophic niche breadth
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
    Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c.
    [Show full text]
  • Sexual Reproduction 7.2: Meiosis 7.3: Errors in Meiosis
    Concepts of Biology Chapter 6 | Reproduction at the Cellular Level 135 6 | REPRODUCTION AT THE CELLULAR LEVEL Figure 6.1 A sea urchin begins life as a single cell that (a) divides to form two cells, visible by scanning electron microscopy. After four rounds of cell division, (b) there are 16 cells, as seen in this SEM image. After many rounds of cell division, the individual develops into a complex, multicellular organism, as seen in this (c) mature sea urchin. (credit a: modification of work by Evelyn Spiegel, Louisa Howard; credit b: modification of work by Evelyn Spiegel, Louisa Howard; credit c: modification of work by Marco Busdraghi; scale-bar data from Matt Russell) Chapter Outline 6.1: The Genome 6.2: The Cell Cycle 6.3: Cancer and the Cell Cycle 6.4: Prokaryotic Cell Division Introduction The individual sexually reproducing organism—including humans—begins life as a fertilized egg, or zygote. Trillions of cell divisions subsequently occur in a controlled manner to produce a complex, multicellular human. In other words, that original single cell was the ancestor of every other cell in the body. Once a human individual is fully grown, cell reproduction is still necessary to repair or regenerate tissues. For example, new blood and skin cells are constantly being produced. All multicellular organisms use cell division for growth, and in most cases, the maintenance and repair of cells and tissues. Single-celled organisms use cell division as their method of reproduction. 6.1 | The Genome By the end of this section, you will be able to: • Describe the prokaryotic and eukaryotic genome • Distinguish between chromosomes, genes, and traits The continuity of life from one cell to another has its foundation in the reproduction of cells by way of the cell cycle.
    [Show full text]
  • A New Computing Environment for Modeling Species Distribution
    EXPLORATORY RESEARCH RECOGNIZED WORLDWIDE Botany, ecology, zoology, plant and animal genetics. In these and other sub-areas of Biological Sciences, Brazilian scientists contributed with results recognized worldwide. FAPESP,São Paulo Research Foundation, is one of the main Brazilian agencies for the promotion of research.The foundation supports the training of human resources and the consolidation and expansion of research in the state of São Paulo. Thematic Projects are research projects that aim at world class results, usually gathering multidisciplinary teams around a major theme. Because of their exploratory nature, the projects can have a duration of up to five years. SCIENTIFIC OPPORTUNITIES IN SÃO PAULO,BRAZIL Brazil is one of the four main emerging nations. More than ten thousand doctorate level scientists are formed yearly and the country ranks 13th in the number of scientific papers published. The State of São Paulo, with 40 million people and 34% of Brazil’s GNP responds for 52% of the science created in Brazil.The state hosts important universities like the University of São Paulo (USP) and the State University of Campinas (Unicamp), the growing São Paulo State University (UNESP), Federal University of São Paulo (UNIFESP), Federal University of ABC (ABC is a metropolitan region in São Paulo), Federal University of São Carlos, the Aeronautics Technology Institute (ITA) and the National Space Research Institute (INPE). Universities in the state of São Paulo have strong graduate programs: the University of São Paulo forms two thousand doctorates every year, the State University of Campinas forms eight hundred and the University of the State of São Paulo six hundred.
    [Show full text]
  • Comprehensive Phylogenomic Analyses Resolve Cnidarian Relationships and the Origins of Key Organismal Traits
    Comprehensive phylogenomic analyses resolve cnidarian relationships and the origins of key organismal traits Ehsan Kayal1,2, Bastian Bentlage1,3, M. Sabrina Pankey5, Aki H. Ohdera4, Monica Medina4, David C. Plachetzki5*, Allen G. Collins1,6, Joseph F. Ryan7,8* Authors Institutions: 1. Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution 2. UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France 3. Marine Laboratory, university of Guam, UOG Station, Mangilao, GU 96923, USA 4. Department of Biology, Pennsylvania State University, University Park, PA, USA 5. Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA 6. National Systematics Laboratory, NOAA Fisheries, National Museum of Natural History, Smithsonian Institution 7. Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA 8. Department of Biology, University of Florida, Gainesville, FL, USA PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3172v1 | CC BY 4.0 Open Access | rec: 21 Aug 2017, publ: 21 Aug 20171 Abstract Background: The phylogeny of Cnidaria has been a source of debate for decades, during which nearly all-possible relationships among the major lineages have been proposed. The ecological success of Cnidaria is predicated on several fascinating organismal innovations including symbiosis, colonial body plans and elaborate life histories, however, understanding the origins and subsequent diversification of these traits remains difficult due to persistent uncertainty surrounding the evolutionary relationships within Cnidaria. While recent phylogenomic studies have advanced our knowledge of the cnidarian tree of life, no analysis to date has included genome scale data for each major cnidarian lineage. Results: Here we describe a well-supported hypothesis for cnidarian phylogeny based on phylogenomic analyses of new and existing genome scale data that includes representatives of all cnidarian classes.
    [Show full text]
  • Downloaded from Brill.Com10/07/2021 03:16:02AM Via Free Access 176 A
    Contributions to Zoology, 70 (3) 175-179 (2001) SPB Academic Publishing bv, The Hague Short notes and reviews classification: of the Simplifying hydrozoan inappropriateness group Hydroidomedusae in a phylogenetic context Antonio+C. Marques Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil, e-mail: [email protected] Keywords:: Hydrozoa, Hydroidomedusae, classification, nomenclature, taxonomy Abstract ated classifications and models of phylogeny si- multaneously. In phonetics, classifications reflect The systematics ofHydrozoa is consideredfrom the viewpoint overall similarity, not necessarily phylogeny (Hull, of logical consistency between phylogeny and classification. 1988: 122; Mayr and Ashlock, 1991: 128). With The validity of the nominal taxon Hydroidomedusae (includ- regard to the higher levels of hydrozoan classifi- all of the is dis- ing groups Hydrozoa except Siphonophorae) cation, no cladistic or phenetic classifications have cussed with regard to its distinctness and inclusive relationships. In been proposed. All classifications seem general, phylogenetic systematic evidence suggest that the hydrozoan use of the is term Hydroidomedusae inappropriate given our to be based on gradistic or essentialistic principles, current level of It is concluded that understanding. no new, or although the majority of their proponents would names until broader resurrected, are necessary before or a not characterize
    [Show full text]
  • A Comparative Study of Populations of Ectopleura Crocea and Ectopleura Ralphi (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean
    Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Centro de Biologia Marinha - CEBIMar Artigos e Materiais de Revistas Científicas - CEBIMar 2014 A comparative study of populations of Ectopleura crocea and Ectopleura ralphi (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean http://www.producao.usp.br/handle/BDPI/46763 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo Zootaxa 3753 (5): 421–439 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3753.5.2 http://zoobank.org/urn:lsid:zoobank.org:pub:B50B31BB-E140-4C6E-B903-1612B7B674AD A comparative study of populations of Ectopleura crocea and Ectopleura ralphi (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean MAURÍCIO ANTUNES IMAZU1, EZEQUIEL ALE2, GABRIEL NESTOR GENZANO3 & ANTONIO CARLOS MARQUES1,4 1Departamento de Zoologia, Instituto de Biociências, USP, CEP 05508–090 São Paulo, SP, Brazil. E-mail : [email protected] 2Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, USP, CEP 05508–090 São Paulo, SP, Brazil 3Estación Costera Nágera, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, Instituto de Investiga- ciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Mar del Plata – CONICET, Argentina. E-mail: [email protected] 4Corresponding author Abstract Ectopleura crocea (L. Agassiz, 1862) and Ectopleura ralphi (Bale, 1884) are two of the nominal tubulariid species re- corded for the Southwestern Atlantic Ocean (SWAO), presumably with wide but disjunct geographical ranges and similar morphologies. Our goal is to bring together data from morphology, histology, morphometry, cnidome, and molecules (COI and ITS1+5.8S) to assess the taxonomic identity of two populations of these nominal species in the SWAO.
    [Show full text]
  • Feeding-Dependent Tentacle Development in the Sea Anemone Nematostella Vectensis ✉ Aissam Ikmi 1,2 , Petrus J
    ARTICLE https://doi.org/10.1038/s41467-020-18133-0 OPEN Feeding-dependent tentacle development in the sea anemone Nematostella vectensis ✉ Aissam Ikmi 1,2 , Petrus J. Steenbergen1, Marie Anzo 1, Mason R. McMullen2,3, Anniek Stokkermans1, Lacey R. Ellington2 & Matthew C. Gibson2,4 In cnidarians, axial patterning is not restricted to embryogenesis but continues throughout a prolonged life history filled with unpredictable environmental changes. How this develop- 1234567890():,; mental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. Here we utilize the tentacles of the sea anemone Nematostella vectensis as an experimental paradigm for developmental patterning across distinct life history stages. By analyzing over 1000 growing polyps, we find that tentacle progression is stereotyped and occurs in a feeding-dependent manner. Using a combination of genetic, cellular and molecular approaches, we demonstrate that the crosstalk between Target of Rapamycin (TOR) and Fibroblast growth factor receptor b (Fgfrb) signaling in ring muscles defines tentacle primordia in fed polyps. Interestingly, Fgfrb-dependent polarized growth is observed in polyp but not embryonic tentacle primordia. These findings show an unexpected plasticity of tentacle development, and link post-embryonic body patterning with food availability. 1 Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany. 2 Stowers Institute for Medical Research, Kansas City, MO 64110,
    [Show full text]
  • Downloaded from Genbank (Table S1)
    water Article Integrated Taxonomy for Halistemma Species from the Northwest Pacific Ocean Nayeon Park 1 , Andrey A. Prudkovsky 2,* and Wonchoel Lee 1,* 1 Department of Life Science, Hanyang University, Seoul 04763, Korea; [email protected] 2 Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected] (A.A.P.); [email protected] (W.L.) Received: 16 October 2020; Accepted: 20 November 2020; Published: 22 November 2020 Abstract: During a survey of the siphonophore community in the Kuroshio Extension, Northwest Pacific Ocean, a new Halistemma Huxley, 1859 was described using integrated molecular and morphological approaches. The Halistemma isabu sp. nov. nectophore is most closely related morphologically to H. striata Totton, 1965 and H. maculatum Pugh and Baxter, 2014. These species can be differentiated by their nectosac shape, thrust block size, ectodermal cell patches and ridge patterns. The new species’ bracts are divided into two distinct types according to the number of teeth. Type A bracts are more closely related to ventral bracts in H. foliacea (Quoy and Gaimard, 1833) while Type B bracts are more similar to H. rubrum (Vogt, 1852). Each type differs, however, from the proximal end shape, distal process and bracteal canal. Both of the new species’ morphological type and phylogenetic position within the genus Halistemma are supported by phylogenetic analysis of concatenated DNA dataset (mtCOI, 16S rRNA and 18S rRNA). Integrated morphological and molecular approaches to the taxonomy of siphonophores showed a clear delimitation of the new species from the congeners. Halistemma isabu sp. nov. is distributed with the congeners H.
    [Show full text]
  • Hazardous Marine Life
    JOIN US AT DAN.ORG HAZARDOUS MARINE LIFE STINGS Cnidarians (nematocyst-carrying species) are HEALTH & DIVING REFERENCE SERIES responsible for more evenomations than any other marine phylum. These organisms contain stinging cells called cnidocyte that excel at venom delivery. 6 West Colony Place Durham, NC 27705 USA HAZARDOUS JELLYFISH PHONE: +1-919-684-2948 Of all the cnidarians, jellyfish cause the most MARINE LIFE: DAN EMERGENCY HOTLINE: +1-919-684-9111 frequent and severe human injuries. These result LEARN MORE AT DAN.ORG/HEALTH STINGS from direct contact with tentacles, and though painful, are not typically life threatening. PORTUGUESE MAN-OF-WAR Portuguese man-of-wars are free-floating cnidarians characterized by blue gas-filled bladders and long tentacles that drift on the ocean’s surface. Contact with a man-of-war’s Part #: 013-1040 Rev. 7.27.15 tentacles can cause significant pain and systemic symptoms. Their tentacles contain cnidocytes that deliver a potent proteic neurotoxin. Despite its resemblance to jellyfish, Portuguese man-of-war are more closely related to fire coral than to true jellyfish. HYDROIDS Although hydroids look like plants, these feathery cnidarians are actually a colony of small zooids that work together as a functioning animal. Like all cnidarians, these animals are armed with stinging cnidocytes. Hydroids, Portuguese man-of-war and fire coral belong to the same family, and contact with them can cause very similar reactions. Granted, their smaller contact area usually results in more localized and less dramatic reactions. FIRE CORAL Fire coral are colonial marine cnidarians that cause a mild to moderate burning reaction when touched.
    [Show full text]
  • Hydrozoan Insights in Animal Development and Evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston
    Hydrozoan insights in animal development and evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston To cite this version: Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston. Hydrozoan insights in animal development and evolution. Current Opinion in Genetics and Development, Elsevier, 2016, Devel- opmental mechanisms, patterning and evolution, 39, pp.157-167. 10.1016/j.gde.2016.07.006. hal- 01470553 HAL Id: hal-01470553 https://hal.sorbonne-universite.fr/hal-01470553 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Current Opinion in Genetics and Development 2016, 39:157–167 http://dx.doi.org/10.1016/j.gde.2016.07.006 Hydrozoan insights in animal development and evolution Lucas Leclère, Richard R. Copley, Tsuyoshi Momose and Evelyn Houliston Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV), 181 chemin du Lazaret, 06230 Villefranche‐sur‐mer, France. Corresponding author: Leclère, Lucas (leclere@obs‐vlfr.fr). Abstract The fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities.
    [Show full text]
  • A Preliminary Report on Expeditions Monsoon And
    A Preliminary Report on Expeditions Monsoon and Lusiad 1960 - 1963 University of California, San Diego Scripps Institution of Oceanography Cruises to the Indian Ocean By The Members of the Expedition Edited by Robert L. Fisher S. I. O. Reference 64-19 ― i ― FOREWORD Field participation in the International Indian Ocean Expedition by scientists and research vessels of the University of California's Scripps Institution of Oceanography comprises three multi- program investigations: MONSOON (1960-1), LUSIAD (1962-3) and DODO (1964). All three expeditions, though first broadly outlined in 1959, lie within the cooperative international exploration of the Indian Ocean being sponsored by the Scientific Committee on Oceanic Research and UNESCO. Therefore, though original schedules have to date been met, the programs have in fact been influenced and modified by the plans, interests and findings of other agencies and laboratories, and direct participation by marine scientists, students and trainees from other areas has been welcomed. Although the final SIO IIOE cruise, DODO, is just underway, a preliminary report on some generalized results of the first two expeditions seems appropriate now, with the clear understanding that many conclusions stated here may indeed be premature. Final analyses, syntheses and results will appear in more specialized formal publications and in the proposed SCOR-sponsored atlases which eventually will summarize Indian Ocean Expedition findings. At Scripps Institution, it is customary to give names, rather than number designations, to the major expeditions. The 1960-1 investigation, 3 ½ months in the Indian Ocean, embraced the first SIO field work in the "monsoon seas". It was funded primarily by the Office of Naval Research of the Navy Department, with auxiliary support for personnel and special equipment from the Bureau of Ships and the National Science Foundation.
    [Show full text]