Assessment Frameworks for Science

Total Page:16

File Type:pdf, Size:1020Kb

Assessment Frameworks for Science Wisconsin Student Assessment System Criterion-Referenced Test Framework For the fall Wisconsin Knowledge and Concepts Examinations Statewide Assessment Assessment Framework for Science In Grades 4, 8, and 10 Developed from Wisconsin’s K-12 Model Academic Standards for Science Elizabeth Burmaster, State Superintendent Wisconsin Department of Public Instruction CTB/McGraw-Hill Test Development Contractor March, 2006 This document provides an indication of the range of coverage on the science portion of the Wisconsin Knowledge and Concepts Examination that will be administered statewide in Wisconsin each November beginning in 2007 in grades 4, 8, and 10. It is intended to foster discussion among educators and others across grades and across subject areas. It should be used in conjunction with the Wisconsin’s Model Academic Standards for Science and your local curriculum. March, 2006 Office of Educational Accountability Wisconsin Department of Public Instruction 125 South Webster Street P.O. Box 7841 Madison, WI 53707-7841 The Wisconsin Department of Public Instruction does not discriminate on the basis of sex, race, religion, age, national origin, ancestry, creed, pregnancy, marital or parental status, sexual orientation, or physical, mental, emotional or learning disability. Table of Contents Overview …………………………………………………………………………………. 1 General Test Specifications ………………………………………………………………. 1 Reporting Categories ……………………………………………………………………... 2 Frequently Asked Questions ……………………………………………………………… 5 What is the framework? ………………….………………………………………... 6 How can I use the framework? …………...………………………………………... 6 Do I need to teach something if it isn’t assessed at my grade level? …………….... 7 Does the science framework replace our local curriculum or Wisconsin’s Model Academic Standards for Science? ………………………….................................. 7 How does the framework relate to our local curriculum? …………………………. 8 What is a criterion-referenced test? ………………………………………………... 8 What kinds of questions will be on the test? ……………………………................. 8 How can I help my students prepare for the test? …………………………………. 9 Whom can I contact with questions or suggestions? …………………………….... 9 Science Frameworks ………………………………………………………………... 10 Beginning of Grade 4 ……………………………………………………………... 10 Beginning of Grade 8 ……………………………………………………………... 22 Beginning of Grade 10 ……………………………………………………………. 37 Glossary of Terms Used in the Wisconsin Science Assessment Framework ……………. 58 WKCE Science Assessment Framework Overview and General Test Specifications Overview The federal No Child Left Behind Act requires all states to test all students in science once in grades 3 through 5, once in grades 6 through 8, and once in high school. Under Wisconsin law s. 118.30, students are to be assessed in grades 4, 8, and 10. Thus, beginning in 2007-08 school year, both state and federal laws apply to science; the result is that students will be assessed in grades 4, 8, and 10. These tests are referred to as the Wisconsin Knowledge and Concepts Examination (WKCE) and will replace WKCE science tests beginning in fall 2007. The Wisconsin Department of Public Instruction published a request for proposals to support the development of customized criterion-referenced reading, mathematics, and science tests. CTB/McGraw-Hill was awarded the contract. Panels of Wisconsin teachers began meeting during the 2004–2005 school year to develop a science framework that provides content information about science for the beginning of grades 4, 8, and 10. Those teachers also reviewed (accept/reject/edit) all customized items developed by the contractor. The Wisconsin Department of Public Instruction contracted with three national experts to evaluate the work of CTB/McGraw-Hill as well as to advise the department on issues of validity and reliabil- ity of the new WKCE test design for reading, mathematics, and science. This Technical Advisory Committee (TAC) met initially in February 2004 and will meet twice annually in the future to assure the continued technical validity of the tests. General Test Specifications Beginning in the 2007-08 school year, items developed for the new WKCE tests in science will be either selected-response (multiple-choice) or constructed-response (CR) format. The test reporting categories and items assigned to measure each reporting category are aligned to the Wisconsin’s Model Academic Standards for Science with appropriate science framework descriptors supporting learning expectations for tests administered in the fall semester. The test design draws approximately 80% of the total score points from selected-response items and 20% of the score points from student- generated constructed-response items. It is important to point out that CR items will be used for certain standards when selected-response (SR) items are not available or feasible to use. All students in grades 4, 8, and 10 will be tested in science using these new customized WKCE tests beginning in fall 2007. Students with disabilities will be allowed accommodations during these tests unless an alternate assessment is required based on an IEP process. Students whose English language proficiency as tested on state-approved language proficiency examinations is level three or higher will take the WKCE tests with allowable accommodations. English language learners with language proficiency scores less than three will take an alternate assessment. All alternate assessments are aligned to state standards. Students in grades 4, 8, and 10 will continue to be assessed in language arts and social studies as required by s. 118.30 Wisconsin Statutes. These assessments will be a shelf-test provided under the terms of the department’s contract with CTB/McGraw-Hill. March, 2006 1 Reporting Categories WKCE Science Assessment Framework Table 1. Science Assessment Framework Information WKCE Science REPORTING CATEGORIES A. SCIENCE CONNECTIONS B. NATURE OF SCIENCE C. SCIENCE INQUIRY D. PHYSICAL SCIENCE E. EARTH AND SPACE SCIENCE F. LIFE AND ENVIRONMENTAL SCIENCE G. SCIENCE APPLICATIONS H. SCIENCE IN SOCIAL AND PERSONAL PERSPECTIVES 2 March, 2006 WKCE Science Assessment Framework Reporting Categories Table 2. Science Assessment Framework WKCE Science* REPORTING CATEGORIES, 2007-08 (80% of score points: selected response/20% constructed-response**) Science Standard Estimated Percentage of Score Points per Grade Gr4 Gr8 Gr10 A. Science Connections 15 10 10 B. Nature of Science 10 10 10 C. Science Inquiry 18 20 20 D. Physical Science 13 14 14 E. Earth and Space Science 13 13 13 F. Life and Environmental Science 13 14 14 G. Science Applications 8 10 10 H. Science in Social and Personal Perspectives 10 10 10 * Distribution of items across standards may vary slightly from year to year. ** CR items will be used for certain standards if SR items are not available or feasible to use. March, 2006 3 Reporting Categories WKCE Science Assessment Framework Figure 1. Distribution of WKCE science score points by benchmark grades of 4, 8, and 10. Bands indicate percent of score points at grade elvel related to each standard. Blueprint for the WKCE Science* Science Connections Nature of Science Scientific Inquiry Physical Science Earth Science Life & Environmental Science Science Applications Social/Personal Perspectives Grade 4 Grade 8 Grade 10 * Distribution of items across standards may vary slightly from year to year. 4 March, 2006 WKCE Science Assessment Framework Reporting Categories Figure 2. Represents content benchmark points for science from both the Science Framework and Wisconsin’s Model Academic Standards for Science. K-12 Wisconsin Science Content Known Benchmark Points K 1 2 3 4 5 6 7 8 9 10 11 12 Science framework benchmark point (beginning of grades 4, 8, and 10) Science standards benchmark point (end of grades 4, 8, and 12) March, 2006 5 WKCE Science Assessment Framework Frequently Asked Questions Frequently Asked Questions What is the framework? The framework was derived from Wisconsin’s Model Academic Standards for Science and designed to provide clarity and specificity to the standards and to provide greater details about what will be assessed on the WKCE for science. The blueprint (Figure 1) provides information about the range and coverage for each content standard in science for the three grades being assessed. Relationships among the Wisconsin Model Academic Standards, test blueprint, test, and framework. WKCE Wisconsin’s Test Test for Model Academic Framework Blueprint Science Standards for (Fig. 1) Science How can I use the framework? You can use the framework to ensure that your local curriculum includes the knowledge and skills described in the framework. However, since the science assessment framework is only an indication of the knowledge and skills that will be assessed on the November WKCE, this information does not replace your local curriculum. Another way to use the framework is as a basis for teachers to engage in multi-grade-level discussions. Since the test is administered in the fall, students should have an opportunity to acquire the knowledge and skills that will be assessed prior to the tested grade. Similarly, teachers will want to examine test results for feedback on what is happening at their own grade level, as illustrated in the example in Figure 3. Finally, the science framework (and standards) is not grade specific, discussions can take place about what portion or aspects of the framework should be learned at each grade leading to the tested grades. March, 2006 6 WKCE Science Assessment Framework
Recommended publications
  • Introduction to the Cell Cell History Cell Structures and Functions
    Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology.
    [Show full text]
  • The Cell-Theory: a Restatement, History, and Critique Part III
    *57 The Cell-theory: A Restatement, History, and Critique Part III. The Cell as a Morphological Unit By JOHN R. BAKER (From the Department of Zoology and Comparative Anatomy, Oxford) SUMMARY A long time elapsed after the discovery of cells before they came to be generally regarded as morphological units. As a first step it was necessary to show that the cell-walls of plants were double and that cells could therefore be separated. The earliest advances in this direction were made by Treviranus (1805) and Link (1807). The idea of a cell was very imperfect, however, so long as attention was con- centrated on its wall. The first person who stated clearly that the cell-wall is not a necessary constituent was Leydig (1857). Subsequently the cell came to be regarded as a naked mass of protoplasm with a nucleus, and to this unit the name of protoplast was given. The true nature of the limiting membrane of the protoplast was discovered by Overton (1895). The plasmodesmata or connective strands that sometimes connect cells were prob- ably first seen by Hartig, in sieve-plates (1837). They are best regarded from the point of view of their functions in particular cases. They do not provide evidence for the view that the whole of a multicellular organism is basically a protoplasmic unit. Two or more nuclei in a continuous mass of protoplasm appear to have been seen for the first time in 1802, by Bauer. That an organism may consist wholly of a syn- cytium was discovered in i860, in the Mycetozoa.
    [Show full text]
  • Unifying Principles of Biology - Advanced
    Unifying Principles of Biology - Advanced Douglas Wilkin, Ph.D. Niamh Gray-Wilson Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHORS Douglas Wilkin, Ph.D. To access a customizable version of this book, as well as other Niamh Gray-Wilson interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2016 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • Biology (BIOL) 1
    Biology (BIOL) 1 Biology (BIOL) Courses BIOL 0848. DNA: Friend or Foe. 3 Credit Hours. This course is typically offered in Fall. Through the study of basic biological concepts, think critically about modern biotechnology. Consider questions like: What are the ethical and legal implications involving the gathering and analysis of DNA samples for forensic analysis and DNA fingerprinting? Are there potential discriminatory implications that might result from the human genome project? What are embryonic stem cells, and why has this topic become an important social and political issue? Will advances in medicine allow humans to live considerably longer, and how will a longer human life span affect life on earth? We will learn through lectures, lecture demonstrations, problem solving in small groups and classroom discussion, and make vivid use of technology, including short videos from internet sources such as YouTube, electronic quizzes, imaging and video microscopy. NOTE: This course fulfills a Science & Technology (GS) requirement for students under GenEd and the Science & Technology Second Level (SB) requirement for students under Core. Students cannot receive credit for this course if they have successfully completed Biology 0948. Course Attributes: GS Repeatability: This course may not be repeated for additional credits. BIOL 0948. Honors DNA: Friend or Foe. 3 Credit Hours. This course is not offered every year. Through the study of basic biological concepts, think critically about modern biotechnology. Consider questions like: What are
    [Show full text]
  • Biological Atomism and Cell Theory
    Studies in History and Philosophy of Biological and Biomedical Sciences 41 (2010) 202–211 Contents lists available at ScienceDirect Studies in History and Philosophy of Biological and Biomedical Sciences journal homepage: www.elsevier.com/locate/shpsc Biological atomism and cell theory Daniel J. Nicholson ESRC Research Centre for Genomics in Society (Egenis), University of Exeter, Byrne House, St. Germans Road, Exeter EX4 4PJ, UK article info abstract Keywords: Biological atomism postulates that all life is composed of elementary and indivisible vital units. The activ- Biological atomism ity of a living organism is thus conceived as the result of the activities and interactions of its elementary Cell theory constituents, each of which individually already exhibits all the attributes proper to life. This paper sur- Organismal theory veys some of the key episodes in the history of biological atomism, and situates cell theory within this Reductionism tradition. The atomistic foundations of cell theory are subsequently dissected and discussed, together with the theory’s conceptual development and eventual consolidation. This paper then examines the major criticisms that have been waged against cell theory, and argues that these too can be interpreted through the prism of biological atomism as attempts to relocate the true biological atom away from the cell to a level of organization above or below it. Overall, biological atomism provides a useful perspective through which to examine the history and philosophy of cell theory, and it also opens up a new way of thinking about the epistemic decomposition of living organisms that significantly departs from the phys- icochemical reductionism of mechanistic biology.
    [Show full text]
  • Course Descriptions
    COURSE DESCRIPTIONS ABR 1103 Basic Metal Repair I (3-0-3) construction using frame alignment equipment will be The straightening, alignment, and fitting of major panels is provided. The fundamentals of welding, heating, cutting, taught. Procedures necessary to rough, shrink, bump, and and shaping are included. Prerequisite: ABR 1203 Body finish are included. Emphasis in this course is on theory and Frame Alignment I. and practical application. Safety is emphasized. ABR 2702 Painting and Estimating II (2-0-2) ABR 1202 Application Lab I (0-4-2) This course is a continuation of ABR 1302 (Painting and This is a practical application lab that supports course Estimating I) with emphasis on practical application. This objectives for ABR 1103 (Basic Metal Repair I), ABR 1203 course includes skills and technical knowledge in the (Body and Frame Alignment I), and ABR 1302 (Painting preparation of metal for paint, chemical stripping of old and Estimating I). finishes, use and maintenance of spray painting equipment, mixing and spraying of all types of automotive finishes, ABR 1203 Body and Frame Alignment I (3-0-3) and identification of common materials used. Safety is Students will receive instruction in the use of frame emphasized. Prerequisite: ABR 1302 Painting and equipment and frame construction, sectioning, and Estimating straightening. Experience working with unitized construction using frame alignment equipment will be ABR 2905 Related Body Repair (0-10-5) provided. The fundamentals of welding, heating, cutting, This course includes the removal and replacement of glass, and shaping are included. Emphasis in this course is on trim, electrical wiring, and the repair of plastic components.
    [Show full text]
  • Cell Theory the CELL THEORY GREW out of the WORK of MANY SCIENTISTS and IMPROVEMENTS in the MICROSCOPE
    Cell Theory THE CELL THEORY GREW OUT OF THE WORK OF MANY SCIENTISTS AND IMPROVEMENTS IN THE MICROSCOPE. Many scientists contributed to the cell theory. ROBERT HOOKE He was the first person to look at cells and named them. He looked at cork cells which are not living. It is the bark of a tree so they are dead plant cells. They are small squares and they reminded him of the small rooms in a monastery called cells ANTON VAN LEEUWENHOEK Credited with improving the microscope. (Zacharias Janssen is credited with discovering/creating microscope). Leeuwenhoek’s microscope could magnify 200x the human eye! Today’s microscopes can magnify up to 1500! MATTHIAS SCHLEIDEN was a German botanist (scientist who studies plants.) He found that the plant parts he examined were made of cells. He made the generalization that all plants were made of cells. THEODOR SCHWANN Studied animals. His microscopic investigations of animal parts led him to generalize that all animals are made of cells After looking at Schleiden’s work ,he further proposed that all organisms are made of cells. RUDOLF VIRCHOW- OMNIS CELLULA C CELLULA”: ALL CELLS FROM CELLS (1855) German doctor that said that new plant cells arise only from existing plant cells, and new animal cells arise only from existing animal cells. Building off the work of Redi (1668) who disproved the idea of spontaneous generation in his experiments about rotting meat. LOUIS PASTEUR-GERM THEORY 1856-Used the microscope to discover that tiny, one- celled (eukaryotic) yeast created alcoholic fermentation and that other one-celled, rod-shaped organisms (prokaryotic bacteria) caused beverages to spoil.
    [Show full text]
  • Cell Theory VOCABULARY Unit 2: Cells Unit 2: > RE B
    3.1 Cell Theory KEY CONCEPT Cells are the basic unit of life. VOCABULARY cell theory MAIN IDEAS cytoplasm Early studies led to the development of the cell theory. organelle Prokaryotic cells lack a nucleus and most internal structures of eukaryotic cells. prokaryotic cell eukaryotic cell Connect to Your World You and all other organisms are made of cells. As you saw on the previous page, > a cell’s structure is closely related to its function. Today we know that cells are the smallest unit of living matter that can carry out all processes required for life. But before the 1600s, people had many other ideas about the basis of life. Like many breakthroughs, the discovery of cells was aided by the development of new technology—in this case, the microscope. MAIN IDEA Early studies led to the development of the READING TOOLBOX cell theory. TAKING NOTES As you read, make an outline Almost all cells are too small to see without the aid of a microscope. Although using the headings as topics. glass lenses had been used to magnify images for hundreds of years, the early Summarize details that further lenses were not powerful enough to reveal individual cells. The invention of explain those ideas. the compound microscope in the late 1500s was an early step toward this I. Main Idea discovery. The Dutch eyeglass maker Zacharias Janssen, who was probably A. Supporting idea assisted by his father, Hans, usually gets credit for this invention. 1. Detail A compound microscope contains two or more lenses. Total magnification, the 2.
    [Show full text]
  • All About Cells Literacy Foundations Science: Biology © 2012 by Open School BC
    Version 01 All About Cells Literacy Foundations Science: Biology © 2012 by Open School BC This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/ Acknowledgements Project Manager: Jennifer Riddel Production Technician: Caitlin Flanders Course History New, June 2012 Table of Contents Learning Package Overview ....................................3 All About Cells . .. 5 Lesson A: Cell Theory and the Characteristics of Living Things. 7 Lesson B: Plant and Animal Cells ..............................13 Lesson C: Bacteria and Viruses ................................21 Lesson D: Diffusion and Osmosis ..............................27 Appendix . 57 Activity Solutions ..........................................58 Glossary ................................................65 © OPEN SCHOOL BC LITERACY FOUNDATIONS eTEXT SCIENCE: BIOLOGY | 1 Viewing Your PDF Learning Package This PDF learning package is designed to be viewed in Acrobat. If you are using the optional media resources, you should be able to link directly to the resource from the pdf viewed in Acrobat Reader. The links may not work as expected with other pdf viewers. Download Adobe Acrobat Reader: http://get.adobe.com/reader/ Learning Package Overview This learning package is made up of several lessons. Lessons Lessons have a combination of reading and hands-on activities to give you a chance to process the material while being an active learner. Each lesson contains several topics, self-marked activities, and some lessons contain links to online multimedia resources. At the end of the learning package you will find: Solutions This contains all of the solutions to the Activities. Glossary This is a list of key terms and their definitions.
    [Show full text]
  • Kapi'olani Community College Courses 2021 – 2022, A-B, Page 1
    Kapi'olani Community College Courses 2021 – 2022, A-B, page 1 ACCOUNTING ACC 124 Principles of Accounting I (3) 3 hours lecture per week Prerequisite(s): Qualification for ENG 22 or qualification for a higher-level English course. Recommended Preparation: Credit or concurrent enrollment in SP 151 or credit or concurrent enrollment in SP 181 or credit or concurrent enrollment in SP 251. Comment: The sequence of ACC 124, ACC 125 and ACC 202 is equivalent to the sequence of ACC 201 and ACC 202, and vice versa. The ACC 124 and ACC 125 sequence is transferable to other University of Hawai`i community colleges, the University of Hawai`i - West O`ahu, or the University of Hawai'i at Hilo. The ACC 124 and ACC 125 sequence also satisfies the ACC 201 entrance requirement to the University of Hawai`i at Mânoa Shidler College of Business, but does not provide transfer credits towards graduation. ACC 124 introduces basic accounting principles and practices for service and merchandising businesses. Areas include: accounting as an information system, the accounting cycle, financial statements, internal control, current and long-term assets, and current liabilities and payroll. Special emphasis will be placed upon the practical application of accounting principles. Upon successful completion of ACC 124, the student should be able to: 1. Complete the accounting cycle from source documents to financial statements with emphasis on practical application of accounting principles. 2. Analyze, record, report and interpret business activities of a service and/or merchandising organization using current accounting and ethical standards. 3. Demonstrate effective communication and teamwork skills.
    [Show full text]
  • B-2 the Student Will Demonstrate an Understanding of the Structure and Function of Cells and Their Organelles. Effective June 20
    B-2 The student will demonstrate an understanding of the structure and function of cells and their organelles. B-2.1 Recall the three major tenets of cell theory (all living things are composed of one or more cells; cells are the basic units of structure and function in living things; and all presently existing cells arose from previously existing cells). Taxonomy Level: 1.2-B Remember Conceptual Knowledge Key Concepts: Cell theory Unicellular organism, multicellular organism Previous knowledge: In 5th grade (5-2.1), students recalled the cell as the smallest unit of life and identified its major structures (including cell membrane, cytoplasm, nucleus, and vacuole). In 7th grade, students summarized the structures and functions of the major components of plant and animal cells (including the cell wall, the cell membrane, the nucleus, chloroplasts, mitochondria, and vacuoles) (7-2.1), compared the major components of plant and animal cells (7-2.2), and explained how cellular processes (including respiration, photosynthesis in plants, mitosis, and waste elimination) are essential to the survival of the organism (7-2.4). It is essential for students to know the three major tenets of the cell theory: • All living things are composed of one or more cells. • Cells are the basic unit of structure of all living things. ○ The lowest level of structure capable of performing all the activities of life is the cell. ○ A unicellular organism is composed of one cell and all of life’s activities occur within that single cell. ○ In a multicellular organism, each cell carries on most of the major functions of life.
    [Show full text]
  • The Cell Theory Notes
    The Cell Theory Notes 1. Many important scientists aided in the discovery of the cell and the formulation of the cell theory. Scientist Contribution Zacharias Janssen Anton Von Leeuwenhoek Robert Hooke Matthias Schleiden Theodor Schwann Rudolf Virchow The Cell Theory 1 2. The Cell Theory a. all organisms are made of b. are the basic units of structure and function for all things c. All cells come from other _. Match the scientist with the correct letter stating his contribution to cell discovery. 1. Zacharias Janssen A German histologist that concluded all cells come from other cells 2. Rudolf Virchow B German physiologist that concluded all animals are made of cells 3. Robert Hooke C Came up with the word "cell" after studying cork under the microscope 4. Theodor Schwann D German botanist who concluded that all plants are made of cells 5. Anton Von Leeuwenhoek E Dutch tradesman who made the first simple microscope 6. Matthias Schleiden F Dutch scientist that built a compound microscope with his father. All living things, plant or animal, have one thing in common. Which of the following is the common thing? A They all have cells that are held up by cell walls. B They all have the same way to get water and food into their cells. C They all have cells. D They all have special cells that can do many different things. In all living things, the presence of what structure supports the cell theory. A cell wall B cell membrane C vacuole D chloroplast 4 The Cell Theory One of the most important general However, the credit for pulling it all together principles in the science of biology is the usually goes to a pair of German scientists.
    [Show full text]