Ohio's Learning Standards and Model Curriculum for Science

Total Page:16

File Type:pdf, Size:1020Kb

Ohio's Learning Standards and Model Curriculum for Science Ohio’s Learning Standards and Model Curriculum STANDARDS ADOPTED FEBRUARY 2018 Science MODEL CURRICULUM ADOPTED MAY 2019 OHIO’S LEARNING STANDARDS AND MODEL CURRICULUM | SCIENCE | ADOPTED 2018-2019 2 Table of Contents Grade 5 ............................................................................................. 107 Introduction ................................................................................................ 3 Grade 6 ............................................................................................. 125 5E Learning cycle....................................................................................... 6 Grade 7 ............................................................................................. 153 Model Curriculum Definitions .................................................................... 7 Grade 8 ............................................................................................. 181 Table 1: Nature of Science ......................................................................... 8 Physical Science ............................................................................. 207 Table 2: Ohio’s Cognitive Demands for Science .................................... 13 Biology ............................................................................................. 234 Description of a Scientific Model ............................................................ 14 Chemistry......................................................................................... 259 Ohio’s Learning Standards for Science .................................................. 17 Environmental Science ................................................................... 287 Kindergarten ...................................................................................... 17 Physical Geology ............................................................................. 308 Grade 1 ............................................................................................... 33 Physics ............................................................................................ 328 Grade 2 ............................................................................................... 48 Human Anatomy and Physiology ................................................... 358 Grade 3 ............................................................................................... 63 Grade 4 ............................................................................................... 87 OHIO’S LEARNING STANDARDS AND MODEL CURRICULUM | SCIENCE | ADOPTED 2018-2019 3 others as “experts.” With scientific knowledge, we Introduction are empowered to become participants rather than merely observers. Science, in this sense, is more OVERVIEW than a means for getting ahead in the world of This overview outlines the visions and goals of Ohio’s Learning Standards work. It is a resource for becoming a critical and and Model Curriculum for Science, provides the guiding principles that engaged citizen in a democracy.” framed the development of the materials and contains the definitions used Michaels, S., Shouse, A.W., & Schweingruber H. A. (2008). Ready, Set, SCIENCE! Washington DC: The National in the document. The Expectations for Learning encompasses the Nature of Academies Press. Science and the Cognitive Demands. This overview introduces the Nature of Science, which is the foundation for all aspects of science instruction. It The K-8 and high school sections are designed to provide guidance for also contains definitions for the Cognitive Demands. educators who have the responsibility to teach science to Ohio students. Each Content Statement and Content Elaboration presents what students VISION should know about that science. The accompanying Expectations for Each Child, Our Future is Ohio’s five-year strategic plan to ensure each Learning incorporates the Nature of Science and the Cognitive Demands. student enjoys a bright future thanks to an excellent preK-12 education The Visions into Practice section offers optional examples of tasks that experience. The plan’s vision is for each child to be challenged to discover students may perform to learn about the science as well as demonstrate their and learn, prepared to pursue a fulfilling post-high school path and mastery of grade level materials. empowered to become a resilient, lifelong learner who contributes to society. It is the blending of the Content Statements and Content Elaborations with The strategic plan details four equal learning domains that contribute to the the Expectations for Learning (Cognitive Demands and Nature of Science) holistic success of each child. These include foundational knowledge and that provides the basis for future assessments. skills, well-rounded content, leadership and reasoning skills and social- GOALS emotional learning. Ohio’s Learning Standards and Model Curriculum for Science support the four domains. Ohio’s student-centered goals (Duschl et. al., 2007; Bell et. al. 2009) for science education include helping students: Ohio’s Learning Standards and Model Curriculum for Science serves as a basis for what all students should know and be able to do in order to become 1. Experience excitement, interest and motivation to learn about scientifically literate citizens, equipped with knowledge and skills for the 21st phenomena in the natural and physical world. century workforce and higher education. Ohio educators are provided with 2. Come to generate, understand, remember and use concepts, the content and expectations for learning at each grade level. From this explanations, arguments, models and facts related to science. information, district curriculum can be developed. By the end of high school, 3. Manipulate, test, explore, predict, question, observe and make sense students should graduate with sufficient proficiency in science to: of the natural and physical world. 4. Reflect on science as a way of knowing; on processes, concepts and • Know, use and interpret scientific explanations of the natural world; institutions of science; and on their own process of learning about • Generate and evaluate scientific evidence and explanations, phenomena. distinguishing science from pseudoscience; 5. Participate in scientific activities and learning practices with others, • Understand the nature and development of scientific knowledge; using scientific language and tools. • Participate productively in scientific practices and discourse.1 6. Think about themselves as science learners and develop an identity 1Taking Science to School Learning and Teaching Science in Grades K-8. National Research as someone who knows about, uses and sometimes contributes to Council of the National Academies. science. “Knowledge of science can enable us to think These goals are consistent with the expectations of Ohio law. critically and frame productive questions. Without scientific knowledge, we are wholly dependent on Back to Table of Contents OHIO’S LEARNING STANDARDS AND MODEL CURRICULUM | SCIENCE | ADOPTED 2018-2019 4 GUIDING PRINCIPLES using science, technology, engineering and mathematics and fosters 21st Century Skills. Ohio’s Learning Standards and Model Curriculum for Science has been • informed by international and national studies, education stakeholders and Technology and Engineering: Technology modifies the natural academic content experts. The guiding principles include: world through innovative processes, systems, structures and devices to extend human abilities. Engineering is design under constraint that • Definition of Science: Scientific knowledge is logical, predictive and develops and applies technology to satisfy human needs and wants. testable, and expands and advances as new evidence is discovered. Technology and engineering, coupled with the knowledge and Science is a process of continuing investigation, based on methods derived from science and mathematics, profoundly observation, scientific hypothesis testing, measurement, influence the quality of life. experimentation and theory building which leads to explanations of • Depth of Content: It is vital that the Content Statements and natural phenomena, processes or objects that are open to further Content Elaborations within this document communicate the most testing and revision based on evidence. essential concepts and the complexity of the discipline in a manner • Scientific and Engineering Practices: that is manageable and accessible for teachers. The focus is on 1. Asking questions (for science) and defining problems (for what students must know to master the specific grade-level content. engineering) The Expectations for Learning provides the means by which students 2. Developing and using models can demonstrate this grade-level mastery. 3. Planning and carrying out investigations • Ohio’s Learning Standards and 4. Analyzing and interpreting data Internationally Benchmarked: 5. Using mathematics and computational thinking Model Curriculum for Science incorporates research from 6. Constructing explanations (for science) and designing solutions investigations of the science standards of: (for engineering) o Countries whose students demonstrate high-performance on 7. Engaging in argument from evidence both the Trends in International Mathematics and Science 8. Obtaining, evaluating, and communicating information3 Studies (TIMSS) and Program in Student Assessment (PISA) tests; and 3 National Research Council. 2012. A Framework for K-12 Science States with students
Recommended publications
  • Science Standards
    SCIENCE It is the policy of the Oklahoma State Department of Education (OSDE) not to discriminate on the basis of race, color, religion, gender, national origin, age, or disability in its programs or employment practices as required by Title VI and VII of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, and Section 504 of the Rehabilitation Act of 1973. Civil rights compliance inquiries related to the OSDE may be directed to the Affirmative Action Officer, Room 111, 2500 North Lincoln Boulevard, Oklahoma City, Oklahoma 73105-4599, telephone number (405) 522-4930; or, the United States Department of Education’s Assistant Secretary for Civil Rights. Inquires or concerns regarding compliance with Title IX by local school districts should be presented to the local school district Title IX coordinator. This publication, printed by the State Department of Education Printing Services, is issued by the Oklahoma State Department of Education as authorized by 70 O.S. § 3-104. Five hundred copies have been prepared using Title I, Part A, School Improvement funds at a cost of $.15 per copy. Copies have been deposited with the Publications Clearinghouse of the Oklahoma Department of Libraries. DECEMBER 2013. SCIENCE Table of Contents 5-8 Introduction 9 K-5 Overview 10-18 ■ KINDERGARTEN 19-28 ■ 1ST GRADE 29-39 ■ 2ND GRADE 40-54 ■ 3RD GRADE 55-68 ■ 4TH GRADE 69-82 ■ 5TH GRADE 83 6-12 Overview 84-101 ■ 6TH GRADE 102-119 ■ 7TH GRADE 120-137 ■ 8TH GRADE 138-152 ■ PHYSICAL SCIENCE 153-165 ■ CHEMISTRY 166-181 ■ PHYSICS 182-203 ■ BIOLOGY I 204-219 ■ EARTH & SPACE SCIENCE 220-235 ■ ENVIRONMENTAL SCIENCE Introduction Science uses observation and experimentation to explain natural phenomena.
    [Show full text]
  • Instruction Manual
    IINNSSTTRRUUCCTTIIOONN MMAANNUUAALL NexStar 60 . NexStar 80 . NexStar 102 . NexStar 114 . NexStar 130 T A B L E O F C O N T E N T S INTRODUCTION ............................................................................................................................................................ 4 Warning .......................................................................................................................................................................... 4 ASSEMBLY ...................................................................................................................................................................... 7 Assembling the NexStar ................................................................................................................................................. 7 Attaching the Hand Control Holder ............................................................................................................................ 8 Attaching the Fork Arm to the Tripod......................................................................................................................... 8 Attaching the Telescope to the Fork Arm ................................................................................................................... 8 The Star Diagonal ....................................................................................................................................................... 8 The Eyepiece..............................................................................................................................................................
    [Show full text]
  • A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools
    applied sciences Article A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools Tatiana Person 1,* , Iván Ruiz-Rube 1 , José Miguel Mota 1 , Manuel Jesús Cobo 1 , Alexey Tselykh 2 and Juan Manuel Dodero 1 1 Department of Informatics Engineering, University of Cadiz, 11519 Puerto Real, Spain; [email protected] (I.R.-R.); [email protected] (J.M.M.); [email protected] (M.J.C.); [email protected] (J.M.D.) 2 Department of Information and Analytical Security Systems, Institute of Computer Technologies and Information Security, Southern Federal University, 347922 Taganrog, Russia; [email protected] * Correspondence: [email protected] Abstract: Systematic reviews are powerful methods used to determine the state-of-the-art in a given field from existing studies and literature. They are critical but time-consuming in research and decision making for various disciplines. When conducting a review, a large volume of data is usually generated from relevant studies. Computer-based tools are often used to manage such data and to support the systematic review process. This paper describes a comprehensive analysis to gather the required features of a systematic review tool, in order to support the complete evidence synthesis process. We propose a framework, elaborated by consulting experts in different knowledge areas, to evaluate significant features and thus reinforce existing tool capabilities. The framework will be used to enhance the currently available functionality of CloudSERA, a cloud-based systematic review Citation: Person, T.; Ruiz-Rube, I.; Mota, J.M.; Cobo, M.J.; Tselykh, A.; tool focused on Computer Science, to implement evidence-based systematic review processes in Dodero, J.M.
    [Show full text]
  • The Significance of Anime As a Novel Animation Form, Referencing Selected Works by Hayao Miyazaki, Satoshi Kon and Mamoru Oshii
    The significance of anime as a novel animation form, referencing selected works by Hayao Miyazaki, Satoshi Kon and Mamoru Oshii Ywain Tomos submitted for the degree of Doctor of Philosophy Aberystwyth University Department of Theatre, Film and Television Studies, September 2013 DECLARATION This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Signed………………………………………………………(candidate) Date …………………………………………………. STATEMENT 1 This dissertation is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged explicit references. A bibliography is appended. Signed………………………………………………………(candidate) Date …………………………………………………. STATEMENT 2 I hereby give consent for my dissertation, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed………………………………………………………(candidate) Date …………………………………………………. 2 Acknowledgements I would to take this opportunity to sincerely thank my supervisors, Elin Haf Gruffydd Jones and Dr Dafydd Sills-Jones for all their help and support during this research study. Thanks are also due to my colleagues in the Department of Theatre, Film and Television Studies, Aberystwyth University for their friendship during my time at Aberystwyth. I would also like to thank Prof Josephine Berndt and Dr Sheuo Gan, Kyoto Seiko University, Kyoto for their valuable insights during my visit in 2011. In addition, I would like to express my thanks to the Coleg Cenedlaethol for the scholarship and the opportunity to develop research skills in the Welsh language. Finally I would like to thank my wife Tomoko for her support, patience and tolerance over the last four years – diolch o’r galon Tomoko, ありがとう 智子.
    [Show full text]
  • Introduction to the Cell Cell History Cell Structures and Functions
    Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology.
    [Show full text]
  • The Cell-Theory: a Restatement, History, and Critique Part III
    *57 The Cell-theory: A Restatement, History, and Critique Part III. The Cell as a Morphological Unit By JOHN R. BAKER (From the Department of Zoology and Comparative Anatomy, Oxford) SUMMARY A long time elapsed after the discovery of cells before they came to be generally regarded as morphological units. As a first step it was necessary to show that the cell-walls of plants were double and that cells could therefore be separated. The earliest advances in this direction were made by Treviranus (1805) and Link (1807). The idea of a cell was very imperfect, however, so long as attention was con- centrated on its wall. The first person who stated clearly that the cell-wall is not a necessary constituent was Leydig (1857). Subsequently the cell came to be regarded as a naked mass of protoplasm with a nucleus, and to this unit the name of protoplast was given. The true nature of the limiting membrane of the protoplast was discovered by Overton (1895). The plasmodesmata or connective strands that sometimes connect cells were prob- ably first seen by Hartig, in sieve-plates (1837). They are best regarded from the point of view of their functions in particular cases. They do not provide evidence for the view that the whole of a multicellular organism is basically a protoplasmic unit. Two or more nuclei in a continuous mass of protoplasm appear to have been seen for the first time in 1802, by Bauer. That an organism may consist wholly of a syn- cytium was discovered in i860, in the Mycetozoa.
    [Show full text]
  • Instruction Manual Manuel D'instructions Manual De Instrucciones Bedienungsanleitung Manuale Di Istruzioni
    78-8840, 78-8850, 78-8890 MAKSUTOV-CASSEGRAIN WITH REAlVOICE™ OUTPUT AVEC SORTIE REALVOICE™ 78-8831 76MM REFLECTOR CON SALIDA REALVOICE™ MIT REALVOICE™ SPRACHAUSGABE CON USCITA REALVOICE™ INSTRUCTION MANUAL MANUEL D’INSTRUCTIONS MANUAL DE INSTRUCCIONES BEDIENUNGSANLEITUNG MANUALE DI ISTRUZIONI 78-8846 114MM REFLECTOR Lit.#: 98-0433/04-13 ENGLISH ENJOYING YOUR NEW TELESCOPE 1. You may already be trying to decide what you plan to look at first, once your telescope is setup and aligned. Any bright object in the night sky is a good starting point. One of the favorite starting points in astronomy is the moon. This is an object sure to please any budding astronomer or experienced veteran. When you have developed proficiency at this level, other objects become good targets. Saturn, Mars, Jupiter, and Venus are good second steps to take. 2. The low power eyepiece (the one with the largest number printed on it) is perfect for viewing the full moon, planets, star clusters, nebulae, and even constellations. These should build your foundation. Avoid the temptation to move directly to the highest power. The low power eyepiece will give you a wider field of view, and brighter image—thus making it very easy to find your target object. However, for more detail, try bumping up in magnification to a higher power eyepiece on some of these objects. During calm and crisp nights, the light/dark separation line on the moon (called the “Terminator”) is marvelous at high power. You can see mountains, ridges and craters jump out at you due to the highlights. Similarly, you can move up to higher magnifications on the planets and nebulae.
    [Show full text]
  • Unifying Principles of Biology - Advanced
    Unifying Principles of Biology - Advanced Douglas Wilkin, Ph.D. Niamh Gray-Wilson Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHORS Douglas Wilkin, Ph.D. To access a customizable version of this book, as well as other Niamh Gray-Wilson interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2016 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • The Fine-Tuning of the Universe for Intelligent Life
    CSIRO PUBLISHING Publications of the Astronomical Society of Australia, 2012, 29, 529–564 Review http://dx.doi.org/10.1071/AS12015 The Fine-Tuning of the Universe for Intelligent Life L. A. Barnes Institute for Astronomy, ETH Zurich, Switzerland, and Sydney Institute for Astronomy, School of Physics, University of Sydney, Australia. Email: [email protected] Abstract: The fine-tuning of the universe for intelligent life has received a great deal of attention in recent years, both in the philosophical and scientific literature. The claim is that in the space of possible physical laws, parameters and initial conditions, the set that permits the evolution of intelligent life is very small. I present here a review of the scientific literature, outlining cases of fine-tuning in the classic works of Carter, Carr and Rees, and Barrow and Tipler, as well as more recent work. To sharpen the discussion, the role of the antagonist will be played by Victor Stenger’s recent book The Fallacy of Fine-Tuning: Why the Universe is Not Designed for Us. Stenger claims that all known fine-tuning cases can be explained without the need for a multiverse. Many of Stenger’s claims will be found to be highly problematic. We will touch on such issues as the logical necessity of the laws of nature; objectivity, invariance and symmetry; theoretical physics and possible universes; entropy in cosmology; cosmic inflation and initial conditions; galaxy formation; the cosmological constant; stars and their formation; the properties of elementary particles and their effect on chemistry and the macroscopic world; the origin of mass; grand unified theories; and the dimensionality of space and time.
    [Show full text]
  • Bern Symbols
    T H E S Y M B O L S O F B E R N U N I O N C H U R C H R.D.1, LEESPORT, PENNSYSLVANIA By the grace of God, I was able to prepare this booklet as a member of BERN REFORMED CHURCH in the year 1974. I dedicate it to my wife, DOROTHY M. (SEIFRIT) REESER, who has given of her best for the advancement of the Kingdom of God in Bern Reformed and Lutheran Church and also in memory of my wife, Dorothy’s parents, FRANK AND TAMIE SEIFRIT who gave of their best in support of Bern United Church of Christ of the Bern Union Church. EARL H. REESER Note: Typos and minor grammar errors have been corrected. THE SYMBOLS OF BERN UNION CHURCH Earl H. Reeser I heard people say that the stained-glass windows in the Bern Reformed and Lutheran Church of Leesport, R.D.1, along Rt. 183, are the most beautiful they have ever seen. It is with these thoughts in mind that prompted me to undertake my interpretation of the meaning of the symbols as well as other work you see before you, which the building committee saw fit to install in the building of this church. The first church built was exclusively by the Reformed. When this organization was affected, is not definitely known, but the belief is, that it may have been as early as 1739. The earliest baptism is recorded in that year. When the first building was erected, is also not definitely known.
    [Show full text]
  • Biology (BIOL) 1
    Biology (BIOL) 1 Biology (BIOL) Courses BIOL 0848. DNA: Friend or Foe. 3 Credit Hours. This course is typically offered in Fall. Through the study of basic biological concepts, think critically about modern biotechnology. Consider questions like: What are the ethical and legal implications involving the gathering and analysis of DNA samples for forensic analysis and DNA fingerprinting? Are there potential discriminatory implications that might result from the human genome project? What are embryonic stem cells, and why has this topic become an important social and political issue? Will advances in medicine allow humans to live considerably longer, and how will a longer human life span affect life on earth? We will learn through lectures, lecture demonstrations, problem solving in small groups and classroom discussion, and make vivid use of technology, including short videos from internet sources such as YouTube, electronic quizzes, imaging and video microscopy. NOTE: This course fulfills a Science & Technology (GS) requirement for students under GenEd and the Science & Technology Second Level (SB) requirement for students under Core. Students cannot receive credit for this course if they have successfully completed Biology 0948. Course Attributes: GS Repeatability: This course may not be repeated for additional credits. BIOL 0948. Honors DNA: Friend or Foe. 3 Credit Hours. This course is not offered every year. Through the study of basic biological concepts, think critically about modern biotechnology. Consider questions like: What are
    [Show full text]
  • " All That Matter... in One Big Bang...," & Other Cosmological Singularities
    “All that matter ... in one Big Bang ...,” & other cosmological singularities∗ Emilio Elizalde 1,2,3,† 1 Spanish National Higher Council for Scientific Research, ICE/CSIC and IEEC Campus UAB, C/ Can Magrans s/n, 08193 Bellaterra (Barcelona) Spain 2 International Laboratory for Theoretical Cosmology, TUSUR University, 634050 Tomsk, Russia 3 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602, Japan e-mail: [email protected] February 23, 2018 Abstract The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singular- ity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, R2, f(R), and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given.
    [Show full text]