Finding the Radiation from the Big Bang
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Is the Universe Expanding?: an Historical and Philosophical Perspective for Cosmologists Starting Anew
Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-1996 Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew David A. Vlosak Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Cosmology, Relativity, and Gravity Commons Recommended Citation Vlosak, David A., "Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew" (1996). Master's Theses. 3474. https://scholarworks.wmich.edu/masters_theses/3474 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. IS THEUN IVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STAR TING ANEW by David A Vlasak A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements forthe Degree of Master of Arts Department of Philosophy Western Michigan University Kalamazoo, Michigan June 1996 IS THE UNIVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STARTING ANEW David A Vlasak, M.A. Western Michigan University, 1996 This study addresses the problem of how scientists ought to go about resolving the current crisis in big bang cosmology. Although this problem can be addressed by scientists themselves at the level of their own practice, this study addresses it at the meta level by using the resources offered by philosophy of science. There are two ways to resolve the current crisis. -
AAO of the FUTURE AAO of Next Generation Fibre Positioning Robots
IAU SPECIAL EDITION JULY 2003 NEWSLETTER ANGLO-AUSTRALIAN OBSERVATORY AAO OF THE FUTURE Next generation fibre positioning robots. Microrobotic technology based on the AAO’s Echidna system allows accurate positioning of payloads such as single fibres, guide bundles, mini- IFUs or even pick-off mirrors to be accurately positioned on large focal plates for large and ‘extremely large’ telescopes. See article on page 18. contents 3The Anglo-Australian Planet Search finDs a new “Solar System”-like gas giant (Chris Tinney et al.) 4RAVE hits the galaxy (FreD Watson et al.) 8A search for the highest reDshift raDio galaxies (Carlos De Breuck et al.) 9The 6DF Galaxy Survey (Will SaunDers et al.) 14 The end of observations for the 2dF Galaxy Redshift Survey (Matthew Colless et al.) 18 Directions for future instrumentation Development by the AAO (AnDrew McGrath et al.) 20 AAΩ: the successor to 2dF (Terry Bridges et al.) DIRECTOR’S MESSAGE DIRECTOR’S DIRECTOR’S MESSAGE On behalf of the staff of the Anglo-Australian Observatory, I would like to extend a warm welcome to Sydney to all IAU General Assembly delegates. This special GA edition of the AAO newsletter showcases some of the AAO’s achievements over the past year as well as some exciting new directions in which the AAO is heading in the future. Over the past few years the AAO has increasingly sought to build on its scientific and technical expertise through the design and building of astronomical instrumentation for overseas observatories, whilst maintaining its own telescopes as world-class facilities. The success of science programs such as the Anglo-Australian Planet Search and the 2dF Galaxy Redshift Survey amply demonstrate that the AAO is still facilitating the production of outstanding science by its user communities. -
Physical Cosmology," Organized by a Committee Chaired by David N
Proc. Natl. Acad. Sci. USA Vol. 90, p. 4765, June 1993 Colloquium Paper This paper serves as an introduction to the following papers, which were presented at a colloquium entitled "Physical Cosmology," organized by a committee chaired by David N. Schramm, held March 27 and 28, 1992, at the National Academy of Sciences, Irvine, CA. Physical cosmology DAVID N. SCHRAMM Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 The Colloquium on Physical Cosmology was attended by 180 much notoriety. The recent report by COBE of a small cosmologists and science writers representing a wide range of primordial anisotropy has certainly brought wide recognition scientific disciplines. The purpose of the colloquium was to to the nature of the problems. The interrelationship of address the timely questions that have been raised in recent structure formation scenarios with the established parts of years on the interdisciplinary topic of physical cosmology by the cosmological framework, as well as the plethora of new bringing together experts of the various scientific subfields observations and experiments, has made it timely for a that deal with cosmology. high-level international scientific colloquium on the subject. Cosmology has entered a "golden age" in which there is a The papers presented in this issue give a wonderful mul- tifaceted view of the current state of modem physical cos- close interplay between theory and observation-experimen- mology. Although the actual COBE anisotropy announce- tation. Pioneering early contributions by Hubble are not ment was made after the meeting reported here, the following negated but are amplified by this current, unprecedented high papers were updated to include the new COBE data. -
8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics
8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics Lectures by: Alan Guth Notes by: Andrew P. Turner May 26, 2017 1 Lecture 1 (Feb. 8, 2017) 1.1 Why general relativity? Why should we be interested in general relativity? (a) General relativity is the uniquely greatest triumph of analytic reasoning in all of science. Simultaneity is not well-defined in special relativity, and so Newton's laws of gravity become Ill-defined. Using only special relativity and the fact that Newton's theory of gravity works terrestrially, Einstein was able to produce what we now know as general relativity. (b) Understanding gravity has now become an important part of most considerations in funda- mental physics. Historically, it was easy to leave gravity out phenomenologically, because it is a factor of 1038 weaker than the other forces. If one tries to build a quantum field theory from general relativity, it fails to be renormalizable, unlike the quantum field theories for the other fundamental forces. Nowadays, gravity has become an integral part of attempts to extend the standard model. Gravity is also important in the field of cosmology, which became more prominent after the discovery of the cosmic microwave background, progress on calculations of big bang nucleosynthesis, and the introduction of inflationary cosmology. 1.2 Review of Special Relativity The basic assumption of special relativity is as follows: All laws of physics, including the statement that light travels at speed c, hold in any inertial coordinate system. Fur- thermore, any coordinate system that is moving at fixed velocity with respect to an inertial coordinate system is also inertial. -
Cosmic Background Explorer (COBE) and Beyond
From the Big Bang to the Nobel Prize: Cosmic Background Explorer (COBE) and Beyond Goddard Space Flight Center Lecture John Mather Nov. 21, 2006 Astronomical Search For Origins First Galaxies Big Bang Life Galaxies Evolve Planets Stars Looking Back in Time Measuring Distance This technique enables measurement of enormous distances Astronomer's Toolbox #2: Doppler Shift - Light Atoms emit light at discrete wavelengths that can be seen with a spectroscope This “line spectrum” identifies the atom and its velocity Galaxies attract each other, so the expansion should be slowing down -- Right?? To tell, we need to compare the velocity we measure on nearby galaxies to ones at very high redshift. In other words, we need to extend Hubble’s velocity vs distance plot to much greater distances. Nobel Prize Press Release The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2006 jointly to John C. Mather, NASA Goddard Space Flight Center, Greenbelt, MD, USA, and George F. Smoot, University of California, Berkeley, CA, USA "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation". The Power of Thought Georges Lemaitre & Albert Einstein George Gamow Robert Herman & Ralph Alpher Rashid Sunyaev Jim Peebles Power of Hardware - CMB Spectrum Paul Richards Mike Werner David Woody Frank Low Herb Gush Rai Weiss Brief COBE History • 1965, CMB announced - Penzias & Wilson; Dicke, Peebles, Roll, & Wilkinson • 1974, NASA AO for Explorers: ~ 150 proposals, including: – JPL anisotropy proposal (Gulkis, Janssen…) – Berkeley anisotropy proposal (Alvarez, Smoot…) – Goddard/MIT/Princeton COBE proposal (Hauser, Mather, Muehlner, Silverberg, Thaddeus, Weiss, Wilkinson) COBE History (2) • 1976, Mission Definition Science Team selected by HQ (Nancy Boggess, Program Scientist); PI’s chosen • ~ 1979, decision to build COBE in-house at GSFC • 1982, approval to construct for flight • 1986, Challenger explosion, start COBE redesign for Delta launch • 1989, Nov. -
Professor Peter Goldreich Member of the Board of Adjudicators Chairman of the Selection Committee for the Prize in Astronomy
The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have recently achieved distinguished and significant advances, who have made outstanding contributions in academic and scientific research or applications, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference is to be given to individuals whose significant work was recently achieved and who are currently active in their respective fields. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, was a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. During the 1950s he founded the film company Shaw Brothers (HK) Limited in Hong Kong. He was one of the founding members of Television Broadcasts Limited launched in Hong Kong in 1967. Mr Shaw also founded two charities, The Shaw Foundation Hong Kong and The Sir Run Run Shaw Charitable Trust, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive I warmly congratulate the six Shaw Laureates of 2014. Established in 2002 under the auspices of Mr Run Run Shaw, the Shaw Prize is a highly prestigious recognition of the role that scientists play in shaping the development of a modern world. Since the first award in 2004, 54 leading international scientists have been honoured for their ground-breaking discoveries which have expanded the frontiers of human knowledge and made significant contributions to humankind. -
Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public. -
The Fine-Tuning of the Universe for Intelligent Life
CSIRO PUBLISHING Publications of the Astronomical Society of Australia, 2012, 29, 529–564 Review http://dx.doi.org/10.1071/AS12015 The Fine-Tuning of the Universe for Intelligent Life L. A. Barnes Institute for Astronomy, ETH Zurich, Switzerland, and Sydney Institute for Astronomy, School of Physics, University of Sydney, Australia. Email: [email protected] Abstract: The fine-tuning of the universe for intelligent life has received a great deal of attention in recent years, both in the philosophical and scientific literature. The claim is that in the space of possible physical laws, parameters and initial conditions, the set that permits the evolution of intelligent life is very small. I present here a review of the scientific literature, outlining cases of fine-tuning in the classic works of Carter, Carr and Rees, and Barrow and Tipler, as well as more recent work. To sharpen the discussion, the role of the antagonist will be played by Victor Stenger’s recent book The Fallacy of Fine-Tuning: Why the Universe is Not Designed for Us. Stenger claims that all known fine-tuning cases can be explained without the need for a multiverse. Many of Stenger’s claims will be found to be highly problematic. We will touch on such issues as the logical necessity of the laws of nature; objectivity, invariance and symmetry; theoretical physics and possible universes; entropy in cosmology; cosmic inflation and initial conditions; galaxy formation; the cosmological constant; stars and their formation; the properties of elementary particles and their effect on chemistry and the macroscopic world; the origin of mass; grand unified theories; and the dimensionality of space and time. -
The Center for Theoretical Physics: the First 50 Years
CTP50 The Center for Theoretical Physics: The First 50 Years Saturday, March 24, 2018 50 SPEAKERS Andrew Childs, Co-Director of the Joint Center for Quantum Information and Computer CTPScience and Professor of Computer Science, University of Maryland Will Detmold, Associate Professor of Physics, Center for Theoretical Physics Henriette Elvang, Professor of Physics, University of Michigan, Ann Arbor Alan Guth, Victor Weisskopf Professor of Physics, Center for Theoretical Physics Daniel Harlow, Assistant Professor of Physics, Center for Theoretical Physics Aram Harrow, Associate Professor of Physics, Center for Theoretical Physics David Kaiser, Germeshausen Professor of the History of Science and Professor of Physics Chung-Pei Ma, J. C. Webb Professor of Astronomy and Physics, University of California, Berkeley Lisa Randall, Frank B. Baird, Jr. Professor of Science, Harvard University Sanjay Reddy, Professor of Physics, Institute for Nuclear Theory, University of Washington Tracy Slatyer, Jerrold Zacharias CD Assistant Professor of Physics, Center for Theoretical Physics Dam Son, University Professor, University of Chicago Jesse Thaler, Associate Professor, Center for Theoretical Physics David Tong, Professor of Theoretical Physics, University of Cambridge, England and Trinity College Fellow Frank Wilczek, Herman Feshbach Professor of Physics, Center for Theoretical Physics and 2004 Nobel Laureate The Center for Theoretical Physics: The First 50 Years 3 50 SCHEDULE 9:00 Introductions and Welcomes: Michael Sipser, Dean of Science; CTP Peter -
The Big Bang
15- THE BIG ORIGINS BANGANAND NARAYANAN The Big Bang theory “Who really knows, who can declare? The scientific study of the origin and currently occupies When it started or where from? evolution of the universe is called the center stage in From when and where this creation has arisen cosmology. From the early years of the modern cosmology. 20th century, the observational aspects Perhaps it formed itself, perhaps it did not.” And yet, half a of scientific cosmology began to gather century ago, it was – Rig Veda (10:129), 9th century BCE. wide attention. This was because of only one among a a small series of startling discoveries few divergent world made by scientists like Edwin Hubble views, with competing hese words were written over 2000 years that changed the way we understood claims to the truth. ago. And yet, if they sound contemporary, it the physical universe. This article highlights Tis because they echo a trait that is distinctly a few trail-blazing human; the highly evolved ability of our species to Hubble had an advantage which few events in the journey look at the world around us and wonder how it all astronomers in the early 20th century of the Big Bang model came to be. How often have you asked these very had – access to the Mount Wilson from the fringes to same questions? Observatory in California. This the centerfold of particular observatory housed the astrophysics, a We assume that all things have a beginning. Could this be true for this vastly complex universe as well? largest telescopes of that time and journey that is yielded high quality data. -
" All That Matter... in One Big Bang...," & Other Cosmological Singularities
“All that matter ... in one Big Bang ...,” & other cosmological singularities∗ Emilio Elizalde 1,2,3,† 1 Spanish National Higher Council for Scientific Research, ICE/CSIC and IEEC Campus UAB, C/ Can Magrans s/n, 08193 Bellaterra (Barcelona) Spain 2 International Laboratory for Theoretical Cosmology, TUSUR University, 634050 Tomsk, Russia 3 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602, Japan e-mail: [email protected] February 23, 2018 Abstract The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singular- ity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, R2, f(R), and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given. -
20Th Century Cosmology
2200tthh century cosmology 1920s – 1990s (from Friedmann to Freedman) theoretical technology available, but no data 20 th century: birth of observational cosmology Hubble’s law ~1930 Development of astrophysics 1940s – 1950s Discovery of the CMB 1965 Inflation 1981 CMB anisotropies: COBE ~1990 PHY306 1 2200tthh century cosmology 1920s – 1990s (from Friedmann to Freedman) theoretical technology available, but no data 20 th century: birth of observational cosmology Hubble’s law ~1930 Development of astrophysics 1940s – 1950s – understanding of stellar structure and evolution – beginnings of quantitative predictions in cosmology ● birth of the Big Bang and Steady State models – beginnings of non-optical astronomy ● radio astronomy (1940s), satellites (1957 on) PHY306 2 1 State of Play, 1940 Hydrogen fusion finally understood pp chain, Bethe and Crichton, 1938 CNO cycle, Bethe, 1939 Hubble constant still ~500 km/s/Mpc Hubble time ~2 Gyr, recognised as problem Most cosmological papers basically playing with the maths not enough data to produce useful constraints different theories owe more to differences in philosophy than anything else PHY306 3 Cosmological models Theories of the 1930s Theories of the 1940s general relativistic Hot Big Bang cosmologies George Gamow, Ralph Friedmann, Lemaître, Alpher, Robert Herman Robertson – driven by nuclear physics “kinematic cosmology” – main prediction not Milne tested for ~20 years! not – special but Steady State general relativity – finite “bubble” of Fred Hoyle, Herman galaxies