Physical Cosmology," Organized by a Committee Chaired by David N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cosmic Background Explorer (COBE) and Beyond
From the Big Bang to the Nobel Prize: Cosmic Background Explorer (COBE) and Beyond Goddard Space Flight Center Lecture John Mather Nov. 21, 2006 Astronomical Search For Origins First Galaxies Big Bang Life Galaxies Evolve Planets Stars Looking Back in Time Measuring Distance This technique enables measurement of enormous distances Astronomer's Toolbox #2: Doppler Shift - Light Atoms emit light at discrete wavelengths that can be seen with a spectroscope This “line spectrum” identifies the atom and its velocity Galaxies attract each other, so the expansion should be slowing down -- Right?? To tell, we need to compare the velocity we measure on nearby galaxies to ones at very high redshift. In other words, we need to extend Hubble’s velocity vs distance plot to much greater distances. Nobel Prize Press Release The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2006 jointly to John C. Mather, NASA Goddard Space Flight Center, Greenbelt, MD, USA, and George F. Smoot, University of California, Berkeley, CA, USA "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation". The Power of Thought Georges Lemaitre & Albert Einstein George Gamow Robert Herman & Ralph Alpher Rashid Sunyaev Jim Peebles Power of Hardware - CMB Spectrum Paul Richards Mike Werner David Woody Frank Low Herb Gush Rai Weiss Brief COBE History • 1965, CMB announced - Penzias & Wilson; Dicke, Peebles, Roll, & Wilkinson • 1974, NASA AO for Explorers: ~ 150 proposals, including: – JPL anisotropy proposal (Gulkis, Janssen…) – Berkeley anisotropy proposal (Alvarez, Smoot…) – Goddard/MIT/Princeton COBE proposal (Hauser, Mather, Muehlner, Silverberg, Thaddeus, Weiss, Wilkinson) COBE History (2) • 1976, Mission Definition Science Team selected by HQ (Nancy Boggess, Program Scientist); PI’s chosen • ~ 1979, decision to build COBE in-house at GSFC • 1982, approval to construct for flight • 1986, Challenger explosion, start COBE redesign for Delta launch • 1989, Nov. -
Astronomy 275 Lecture Notes, Spring 2015 C@Edward L. Wright, 2015
Astronomy 275 Lecture Notes, Spring 2015 c Edward L. Wright, 2015 Cosmology has long been a fairly speculative field of study, short on data and long on theory. This has inspired some interesting aphorisms: Cosmologist are often in error but never in doubt - Landau. • There are only two and a half facts in cosmology: • 1. The sky is dark at night. 2. The galaxies are receding from each other as expected in a uniform expansion. 3. The contents of the Universe have probably changed as the Universe grows older. Peter Scheuer in 1963 as reported by Malcolm Longair (1993, QJRAS, 34, 157). But since 1992 a large number of facts have been collected and cosmology is becoming an empirical field solidly based on observations. 1. Cosmological Observations 1.1. Recession velocities Modern cosmology has been driven by observations made in the 20th century. While there were many speculations about the nature of the Universe, little progress was made until data were obtained on distant objects. The first of these observations was the discovery of the expansion of the Universe. In the paper “THE LARGE RADIAL VELOCITY OF NGC 7619” by Milton L. Humason (1929) we read that “About a year ago Mr. Hubble suggested that a selected list of fainter and more distant extra-galactic nebulae, especially those occurring in groups, be observed to determine, if possible, whether the absorption lines in these objects show large displacements toward longer wave-lengths, as might be expected on de Sitter’s theory of curved space-time. During the past year two spectrograms of NGC 7619 were obtained with Cassegrain spectrograph VI attached to the 100-inch telescope. -
Physical Cosmology Physics 6010, Fall 2017 Lam Hui
Physical Cosmology Physics 6010, Fall 2017 Lam Hui My coordinates. Pupin 902. Phone: 854-7241. Email: [email protected]. URL: http://www.astro.columbia.edu/∼lhui. Teaching assistant. Xinyu Li. Email: [email protected] Office hours. Wednesday 2:30 { 3:30 pm, or by appointment. Class Meeting Time/Place. Wednesday, Friday 1 - 2:30 pm (Rabi Room), Mon- day 1 - 2 pm for the first 4 weeks (TBC). Prerequisites. No permission is required if you are an Astronomy or Physics graduate student { however, it will be assumed you have a background in sta- tistical mechanics, quantum mechanics and electromagnetism at the undergrad- uate level. Knowledge of general relativity is not required. If you are an undergraduate student, you must obtain explicit permission from me. Requirements. Problem sets. The last problem set will serve as a take-home final. Topics covered. Basics of hot big bang standard model. Newtonian cosmology. Geometry and general relativity. Thermal history of the universe. Primordial nucleosynthesis. Recombination. Microwave background. Dark matter and dark energy. Spatial statistics. Inflation and structure formation. Perturba- tion theory. Large scale structure. Non-linear clustering. Galaxy formation. Intergalactic medium. Gravitational lensing. Texts. The main text is Modern Cosmology, by Scott Dodelson, Academic Press, available at Book Culture on W. 112th Street. The website is http://www.bookculture.com. Other recommended references include: • Cosmology, S. Weinberg, Oxford University Press. • http://pancake.uchicago.edu/∼carroll/notes/grtiny.ps or http://pancake.uchicago.edu/∼carroll/notes/grtinypdf.pdf is a nice quick introduction to general relativity by Sean Carroll. • A First Course in General Relativity, B. -
Astronomy (ASTR) 1
Astronomy (ASTR) 1 ASTR 5073. Cosmology. 3 Hours. Astronomy (ASTR) An introduction to modern physical cosmology covering the origin, evolution, and structure of the Universe, based on the Theory of Relativity. (Typically offered: Courses Spring Odd Years) ASTR 2001L. Survey of the Universe Laboratory (ACTS Equivalency = PHSC ASTR 5083. Data Analysis and Computing in Astronomy. 3 Hours. 1204 Lab). 1 Hour. Study of the statistical analysis of large data sets that are prevalent in the Daytime and nighttime observing with telescopes and indoor exercises on selected physical sciences with an emphasis on astronomical data and problems. Includes topics. Pre- or Corequisite: ASTR 2003. (Typically offered: Fall, Spring and Summer) computational lab 1 hour per week. Corequisite: Lab component. (Typically offered: Fall Even Years) ASTR 2001M. Honors Survey of the Universe Laboratory. 1 Hour. An introduction to the content and fundamental properties of the cosmos. Topics ASTR 5523. Theory of Relativity. 3 Hours. include planets and other objects of the solar system, the sun, normal stars and Conceptual and mathematical structure of the special and general theories of interstellar medium, birth and death of stars, neutron stars, and black holes. Pre- or relativity with selected applications. Critical analysis of Newtonian mechanics; Corequisite: ASTR 2003 or ASTR 2003H. (Typically offered: Fall) relativistic mechanics and electrodynamics; tensor analysis; continuous media; and This course is equivalent to ASTR 2001L. gravitational theory. (Typically offered: Fall Even Years) ASTR 2003. Survey of the Universe (ACTS Equivalency = PHSC 1204 Lecture). 3 Hours. An introduction to the content and fundamental properties of the cosmos. Topics include planets and other objects of the solar system, the Sun, normal stars and interstellar medium, birth and death of stars, neutron stars, pulsars, black holes, the Galaxy, clusters of galaxies, and cosmology. -
Sandra Faber Receives $500,000 Gruber Cosmology Prize
Media Contact: A. Sarah Hreha +1 (203) 432-6231 [email protected] Online Newsroom: www.gruber.yale.edu/news-media SANDRA FABER RECEIVES $500,000 GRUBER COSMOLOGY PRIZE FOR CAREER ACHIEVEMENTS Sandra Faber May 17, 2017, New Haven, CT – The 2017 Gruber Foundation Cosmology Prize recognizes Sandra M. Faber for a body of work that has helped establish many of the foundational principles underlying the modern understanding of the universe on the largest scales. The citation praises Faber for “her groundbreaking studies of the structure, dynamics, and evolution of galaxies.” That work has led to the widespread acceptance of the need to study dark matter, to an appreciation of the inextricable relationship between the presence of dark matter and the formation of galaxies, and to the recognition that black holes reside at the heart of most large galaxies. She has also made significant contributions to the innovations in telescope technology that have revolutionized modern astronomy. Through these myriad achievements, the Gruber citation adds, Faber has “aided and inspired the work of astronomers and cosmologists worldwide.” Faber will receive the $500,000 award as well as a gold medal at a ceremony this fall. Less than a hundred years ago, astronomers were still debating whether our Milky Way Galaxy was the entirety of the universe or if other galaxies existed beyond our own. Today astronomers estimate the number of galaxies within the visible universe at somewhere between 200 billion and 2 trillion. For more than four decades Faber—now Professor Emerita at the University of California, Santa Cruz, and Astronomer Emerita of the University of California Observatories—has served as a pivotal figure in leading and guiding the exploration of this unimaginably vast virgin scientific territory. -
International Astrostatistics Association
<IAA> International Astrostatistics Association IAA Newsletter – December 2014 Articles on Astrostatistics December 2014 issue Significance magazine 88 pages: 28 on astrostatistics Significance Magazine is a British published magazine-journal for those who are in the statistics and research community. The magazine, which is typically about fifty pages in length, is published five to six times a year and comes with the membership dues of the American Statistical Association (ASA) and Royal Statistical Society (RSS). The International Statistical Institute (ISI) also makes the magazine available to its membership. Given that the ASA and RSS have a combined membership in excess of 30,000, the magazine is read, at least in part, by a relatively large number of people. The December issue, published on 2 December, is 88 pages, with a special 28 page section on astrostatistics included. The section consists of eleven articles.You may access the articles through the URL: http://onlinelibrary.wiley.com/doi/10.1111/sign.2014.11.issue-5/issuetoc 1 The cover portrays the subject of the initial article on meteor impacts. Each article comes with one or more nicely developed pictures. Tables and Graphics are also displayed. ARTICLES (pp 48-76) Life, the Universe, and Everything, Joseph M Hilbe (Arizona State Univ) 48 Will this century see a devastating meteor strike? Joseph M. Hilbe (Arizona State Univ) & Jamie Riggs (Northwestern Univ) 50 Impact records, Carlo Zapponi (Microsoft-UK) 54 The origin of structure, Benjamin Waldelt (Lagrange Institute, Paris) 56 Making sense of massive unknowns, Rafael de Souza (Eötvös Loránd Univ., Hungary) & Emille Ishida (Max Planck Institute, Garching, Ger) 59 Revealing the invisible, Jessi Cisewski (Carnegie Mellon Univ) 61 How many galaxies in the universe?, Vladimir Surdin (Moscow State Univ, Russia) 64 How do you weight a cluster of galaxies?, Madhura Killedar (Ludwig Maximilians Univ. -
Anniversary of the Einstein Equations
TH CELEBRATING THE 100 ANNIVERSARY OF THE MG14 RO ME 12-18 JULY 2015 EINSTEIN EQUATIONS FONO RECUENT DREVETLOEPMEENTNS IN TTHEHORET ICMAL ANAD EXRPERCIMEENTALL G EGNERRAL ROELATSIVSITYM, ASTRAOPHYNSICS,N AND REMLATIVEISTEIC FTIELID TNHEORG IES LOCAL ORGANIZING COMMITTEE INTERNATIONAL COORDINATING COMMITTEE Amati L., Angelantonj C., Barbiellini G., Bassan B., Battistelli E., Belinski V., Belli P., • ALBANIA : Hafizi M. • ESTONIA : Einasto J., Saar E. • FINLAND : Volovik G. • POLAND : Demianski M., Lewandowski J., Nurowski P., Benedetti R., Bernabei R., Bianchi M. (chair), Bianco C., Bini D., Buchert T., Burgio F., • ARGENTINA : Ghezzi, C.R., Mirabel F., Romero G.E. • FRANCE : Brillet A., Buchert T., Chardonnet P., Coullet P., Sokolowski L. Capozziello S., Chakrabarti S., Chardonnet P., Dall’Agata G., De Angelis A., De Bernardis P., • ARMENIA : Aharonian F., Harutyunian H., Sahakyan N. de Freitas Pacheco J.A., Deruelle N., Iliopoulos J., Mignard F. • PORTUGAL : Costa M., Moniz P., Pizarro de Sande e Lemos J., Della Valle M., Di Virgilio A., Fiorini E., Frasca S., Fré P., Frontera F., Giavalisco M., • AUSTRALIA : Ju L., Lun A., Manchester D., Melatos A., • GEORGIA : Lavrelashvili G. Silva L.O. • ROMANIA : Visinescu M. Giommi P., Gionti G., Ingrosso G., Jantzen R., Jetzer P., Lee H.W., Lerda A., Liberati S., Quinn P., Scott S.M., Steele J.D. • GERMANY : Biermann P., Blumlein J., Di Piazza A., Fritzsch • RUSSIA : Aksenov A., Arkhangelskaja I., Bisnovatyi Kogan Longo R., Mandolesi N., Marmo G., Masi S., Menotti P., Morselli A., Pelster A., • AUSTRIA : Aichelburg P.C., Schindler S. H., Genzel R., Gilmozzi R., Hehl F., Keitel C., Kiefer C., G., Blinnikov S., Chechetikin V.M., Cherepaschuk A.M., Piacentini F., Pian E., Quevedo H., Riccioni F., Rosati R., Scarpetta E.V., • BELARUS : Kilin S., Minkevich A.V. -
Finding the Radiation from the Big Bang
Finding The Radiation from the Big Bang P. J. E. Peebles and R. B. Partridge January 9, 2007 4. Preface 6. Chapter 1. Introduction 13. Chapter 2. A guide to cosmology 14. The expanding universe 19. The thermal cosmic microwave background radiation 21. What is the universe made of? 26. Chapter 3. Origins of the Cosmology of 1960 27. Nucleosynthesis in a hot big bang 32. Nucleosynthesis in alternative cosmologies 36. Thermal radiation from a bouncing universe 37. Detecting the cosmic microwave background radiation 44. Cosmology in 1960 52. Chapter 4. Cosmology in the 1960s 53. David Hogg: Early Low-Noise and Related Studies at Bell Lab- oratories, Holmdel, N.J. 57. Nick Woolf: Conversations with Dicke 59. George Field: Cyanogen and the CMBR 62. Pat Thaddeus 63. Don Osterbrock: The Helium Content of the Universe 70. Igor Novikov: Cosmology in the Soviet Union in the 1960s 78. Andrei Doroshkevich: Cosmology in the Sixties 1 80. Rashid Sunyaev 81. Arno Penzias: Encountering Cosmology 95. Bob Wilson: Two Astronomical Discoveries 114. Bernard F. Burke: Radio astronomy from first contacts to the CMBR 122. Kenneth C. Turner: Spreading the Word — or How the News Went From Princeton to Holmdel 123. Jim Peebles: How I Learned Physical Cosmology 136. David T. Wilkinson: Measuring the Cosmic Microwave Back- ground Radiation 144. Peter Roll: Recollections of the Second Measurement of the CMBR at Princeton University in 1965 153. Bob Wagoner: An Initial Impact of the CMBR on Nucleosyn- thesis in Big and Little Bangs 157. Martin Rees: Advances in Cosmology and Relativistic Astro- physics 163. -
The Big-Bang Theory: Construction, Evolution and Status
L’Univers,S´eminairePoincar´eXX(2015)1–69 S´eminaire Poincar´e The Big-Bang Theory: Construction, Evolution and Status Jean-Philippe Uzan Institut d’Astrophysique de Paris UMR 7095 du CNRS, 98 bis, bd Arago 75014 Paris. Abstract. Over the past century, rooted in the theory of general relativity, cos- mology has developed a very successful physical model of the universe: the big-bang model. Its construction followed di↵erent stages to incorporate nuclear processes, the understanding of the matter present in the universe, a description of the early universe and of the large scale structure. This model has been con- fronted to a variety of observations that allow one to reconstruct its expansion history, its thermal history and the structuration of matter. Hence, what we re- fer to as the big-bang model today is radically di↵erent from what one may have had in mind a century ago. This construction changed our vision of the universe, both on observable scales and for the universe as a whole. It o↵ers in particular physical models for the origins of the atomic nuclei, of matter and of the large scale structure. This text summarizes the main steps of the construction of the model, linking its main predictions to the observations that back them up. It also discusses its weaknesses, the open questions and problems, among which the need for a dark sector including dark matter and dark energy. 1 Introduction 1.1 From General Relativity to cosmology A cosmological model is a mathematical representation of our universe that is based on the laws of nature that have been validated locally in our Solar system and on their extrapolations (see Refs. -
Brinson Mather 2011.Pptx
From the Big Bang to the Nobel Prize and on to James Webb Space Telescope and the Discovery of Alien Life John C. Mather Senior Project Scientist, James Webb Space Telescope, NASA’s Goddard Space Flight Center Nov. 1, 2011 Nov. 1, 2011 Mather Brinson 2011 1 (as of 1985) 2 Nov. 1, 2011 Mather Brinson 2011 Can you imagine? Your chin is made of exploded stars! Nov. 1, 2011 Mather Brinson 2011 3 Looking Back in Time Nov. 1, 2011 Mather Brinson 2011 4 Measuring Distance This technique enables measurement of enormous distances Nov. 1, 2011 Mather Brinson 2011 5 Astronomer's Toolbox #2: Doppler Shift - Light Atoms emit light at discrete wavelengths that can be seen with a spectroscope This “line spectrum” identifies the atom and its velocity Nov. 1, 2011 Mather Brinson 2011 6 Hubble’s Law – 1929 Data Discovered by Lemaître, 1927! Speed proportional to distance Age = distance/speed Speed --> Nov. 1, 2011 Mather Brinson 2011 Distance --> 7 The Power of Thought Alexander Friedman Georges Lemaître & Albert Einstein George Gamow Robert Herman & Ralph Alpher Rashid Sunyaev Jim Peebles Nov. 1, 2011 Mather Brinson 2011 8 Nov. 1, 2011 Mather Brinson 2011 9 Big Bang - Cosmic Explosion 13.7 billion years ago IMPOSSIBLE TO DRAW A PICTURE! Nov. 1, 2011 Mather Brinson 2011 10 How did a smooth Big Bang make complicated things like us? • Gravity is long range attractive force – Matter distribution is unstable • Remove heat, and system heats up more • Makes condensed objects (stars, galaxies, etc.) • Gravitational energy flows support complexity • Stars release heat from nuclear reactions – Heat & light received by Earth support complexity, from weather to photosynthesis Nov. -
19. Big-Bang Cosmology 1 19
19. Big-Bang cosmology 1 19. BIG-BANG COSMOLOGY Revised September 2009 by K.A. Olive (University of Minnesota) and J.A. Peacock (University of Edinburgh). 19.1. Introduction to Standard Big-Bang Model The observed expansion of the Universe [1,2,3] is a natural (almost inevitable) result of any homogeneous and isotropic cosmological model based on general relativity. However, by itself, the Hubble expansion does not provide sufficient evidence for what we generally refer to as the Big-Bang model of cosmology. While general relativity is in principle capable of describing the cosmology of any given distribution of matter, it is extremely fortunate that our Universe appears to be homogeneous and isotropic on large scales. Together, homogeneity and isotropy allow us to extend the Copernican Principle to the Cosmological Principle, stating that all spatial positions in the Universe are essentially equivalent. The formulation of the Big-Bang model began in the 1940s with the work of George Gamow and his collaborators, Alpher and Herman. In order to account for the possibility that the abundances of the elements had a cosmological origin, they proposed that the early Universe which was once very hot and dense (enough so as to allow for the nucleosynthetic processing of hydrogen), and has expanded and cooled to its present state [4,5]. In 1948, Alpher and Herman predicted that a direct consequence of this model is the presence of a relic background radiation with a temperature of order a few K [6,7]. Of course this radiation was observed 16 years later as the microwave background radiation [8]. -
Astronomy 405: Introduction to Cosmology Section A01, Spring 2018
Astronomy 405: Introduction to cosmology Section A01, Spring 2018 Jon Willis, Elliot 211, Tel. 721-7740, email: [email protected] Website for lecture notes and assignments: http://www.astro.uvic.ca/~jwillis/Jon %20Willis%20Teaching.html Lectures: Location Elliot 161, Monday and Thursday 10.00 – 11.20am. Office hours: Tuesday 2.00pm – 3.00pm. Course text: Introduction to cosmology by Barbara Ryden. See over for additional reading. Course outline: Topic Description Textbook 1 A mathematical model of the universe Chapters 3 to 6 inclusive 2 Measuring the universe Chapter 7 3 The cosmic microwave background Chapter 9 4 Big Bang Nucleosynthesis Chapter 10 5 Dark Matter in the universe Chapter 8 6 Large-scale structure Chapter 12 7 Lambda Chapters 4 and 6 Course assessment: Assignments: 15% Mid-term exams: 15+15% Final exam: 55% Approximately eight assignments will be issued through the semester. Assignments will typically be due one week after the issue date. Late assignments will be accepted up to 24 hours after the due date (with a 25% grade penalty) at which point solutions will be posted on the web and no more assignments will be accepted. The first mid-term exam will take place in class at 1pm on Thursday February 8th. The second mid-term will be scheduled later. Use of calculators: On all examinations the only acceptable calculator is the Sharp EL-510R. This calculator can be bought in the Bookstore for about $10. DO NOT bring any other calculator to examinations Astronomy 405: Introduction to cosmology Section A01, Spring 2018 Additional reading: not compulsory, just useful.