Adaptive History of the Chimpanzee Subspecies in the Genomic Era

Total Page:16

File Type:pdf, Size:1020Kb

Adaptive History of the Chimpanzee Subspecies in the Genomic Era Adaptive History of the Chimpanzee Subspecies in the Genomic Era Jessica Nye TESI DOCTORAL UPF 2018 Directors de la Tesi Jaume Bertranpetit i Hafid Laayouni CIÈNCIES EXPERIMENTALS I DE LA SALUT ii Acknowledgements I would like to thank my advisors Dr. Jaume Bertranpetit and Dr. Hafid Laayouni for guiding me during my doctoral research. I would like to thank my family and friends for supporting me during my many years of education. To my fellow lab mates, I am grateful for the theoretical discussions we had over the last four years. This work was supported by FI Agaur grant FI-DGR 2015. iii iv Abstract Chimpanzees are our closest living genetic cousins. The species consists of four subspecies, each with a unique demographic history. In order to better understand their species, a detailed map of signatures of selection will highlight important genetic differences between the four subspecies. Here, we interrogate the genome using 15 tests of selection. We simulate neutral and selective scenarios taking their unique demographic history into account in the model. We combine all these elements using a machine learning approach to highlight regions of interest in each subspecies. We specifically investigate the regions of the genome that have been selected after introgression with bonobo. We investigate the haplotype changes that have occurred since the divergence with humans in a few specially selected genes. From this, we find that the evolutionary history of each of the four subspecies is unique. That subtle differences in their demographic history and environment have greatly shaped their genetic diversity. In general, we observe signatures in selection in phenotypes involving immunity, muscle function, reproduction, and DNA repair. This dissertation highlights the important genes and regions that have resulted in the divergence between subspecies of chimpanzee. v vi Resum Els ximpanzés són els nostres cosins genètics més propers. L'espècie consta de quatre subespècies, cadascuna amb una història demogràfica única. Per comprendre millor la diversitat dels ximpanzés hem elaborat un mapa detallat d’empremtes de selecció presents en el genoma que ressaltarà importants diferències evolutives entre les quatre subespècies. En aquest treball, interroguem el genoma amb 15 tests de selecció diferents i simulem escenaris neutres i selectius tenint en compte la història demogràfica única de cada subespècie. A través d’un procés de machine learning, hem combinat els resultats de tots aquests tests utilitzant un enfocament d'aprenentatge automàtic per reconèixer regions d'interès en cada subespècie, que són les que mostren clarament els rastres de la selecció positiva. Hem investigat específicament les regions del genoma que han estat seleccionades després de la introgressió amb el bonobo, donat que la selecció després de la introgressió és una àrea nova molt interessant. Pel conjunt del genoma, hem investigat els canvis que s'han produït des de la divergència amb els humans en gens especialment sotmesos a selecció positiva, obtenint un panorama de general adaptatiu en cada subespècie. A partir d'aquí, trobem que la història evolutiva de cadascuna de les quatre subespècies és única. Les subtils diferències entre subespècies en la seva història demogràfica i el seu entorn han donat forma a la seva diversitat genètica adaptativa. En general, observem empremtes de selecció en gens que informen fenotips que inclouen immunitat, funció muscular, reproducció i reparació d'ADN. Aquesta tesi destaca els gens i regions importants que han donat lloc a la divergència adaptativa entre subespècies de ximpanzé. vii viii Preface Humans have had an interest in the great apes for many decades. However, despite decades long observational studies, their genetic diversity is only just beginning to be understood. Due to the lack of a fossil record and difficult logistics of sample collection, few genome-wide multi-species studies exist in the great apes. Furthermore, the computational power needed to adequately compare such large datasets have only become readily available in recent decades. Simulations of a neutral expectation are needed so that observations can be more precisely calculated. While it has been possible to simulate simple scenarios, only recently possible to reasonably simulate an accurate demographic history, or to implement theoretical selective scenarios in which to compare to real data. The increase in computational power has also led to the development of machine learning approaches. A machine learning approach allows for the combination of any number of characteristics in order to draw a single conclusion. This doctoral dissertation takes advantage of a newly available genetic data consisting of genome-wide sequences of chimpanzees and bonobos. It takes advantage of available computational power to simulate differing scenarios of evolutionary history of the chimpanzee. It combines these two aspects using a machine learning approach in order to mine the genome. Without these recent advances in both genetic data collection and computational tools, this type of study would be impossible. ix x List of Publications Nye J, Laayouni H, Kuhlwilm M, Mondal M, Marques-Bonet T, Bertranpetit J. Selection in the Introgressed Regions of the Chimpanzee Genome. Genome Biology and Evolution. 2018. 10(4):1132-1138 Nye J, Mondal M, Bertranpetit J, Laayouni H. A Fully Integrated Scan of Selection in the Chimpanzee Genome. Journal of Evolutionary Biology. Submitted. Villegas P, Nye J, Bertranpetit J, Laayouni H. Screening for positive selection signals on the X chromosome in human populations. Genome Biology and Evolution. Submitted. xi xii Table of Contents Acknowledgements iii Abstract iv Resum vii Preface ix List of Publications xi 1. Introduction 1 1.1 A Brief History of Population Genetics 3 1.2 Tests of Selection 6 a. Site Frequency Spectrum-based tests 6 b. Linkage Disequilibrium-based tests 8 c. Population Differentiation-based tests 9 1.3 Demography 10 a. Population History 10 b. Simulating Demography 12 1.4 Machine Learning 13 1.5 Chimpanzees 15 2. Fully Integrated Scan of Selection in the 25 Chimpanzee Genome 2.1 Introduction 27 2.2 New Approaches 28 2.3 Materials and Methods 29 a. Genome Sequences 29 b. Demographic Model 30 c. Simulations 30 d. Statistical Tests 31 e. Random Forest Algorithm 32 f. Genes Under Selection 33 2.4 Results 33 a. Regions identified using a Random 33 Forest approach b. Genes commonly under selection 36 in more than two subspecies xiii c. Genes commonly under selection 38 in two subspecies d. Genes uniquely under selection 40 in a specific subspecies 2.5 Discussion 44 2.6 Tables 47 2.7 Supplementary Information 50 a. Phasing 50 b. Demography 50 c. Random Forest algorithm 57 2.8 Supplementary Figures 59 2.9 Supplementary Tables 106 3. Selection in the Introgressed Regions 153 of the Chimpanzee Genome 3.1 Introduction 155 3.2 Materials and Methods 156 a. Genome sequence with signatures 156 of introgression b. Selection tests 156 c. Comparison with whole genome 157 d. Tissue enrichment 157 3.3 Results 159 a. Comparing introgressed regions to 159 the whole genome b. Selection scan of introgressed regions 161 c. Adaptive selection 164 d. Adaptive introgression 169 e. Long term balancing selection 170 3.4 Discussion 171 3.5 Tables 175 4. Discussion 203 4.1 Discussion 205 a. General Dissertation Review 205 b. Impacts of Demography 206 c. Targets of Selection 208 xiv d. Further Considerations 210 4.2 Community Resource 211 5. References 215 xv xvi 1. Introduction 1 2 1.1 A Brief History of Population Genetics When Charles Darwin published his theory of Evolution by Natural Selection in 1859, he posited that if a variable trait were heritable and some version of the trait donates an advantage, then the beneficial copy will increase in frequency over time. When it was published, no one was aware of the source of a trait’s variability. After the rediscovery of Mendel’s 1866 work on heritability in pea plants, research into discrete heritable units began at the turn of the 20th century. The field of genetics and genomics has advanced greatly in the past hundred years, to the point where we understand much of the coding variation in a genome. Variation in a genome is understood to be from three major sources. Single nucleotide polymorphisms (SNPs) are the changes to the genetic code due to mutations. Next, small insertions and deletions or microsatellites may donate small neighborhood changes. Lastly, larger sources of variability can come from chromosomal inversions and copy number variation which can have larger impacts on entire regions of a chromosome. There have been many studies into untangling the biological impact of all these types of variation within coding regions; however, a large gap in our knowledge of genetics is into the impact of variation in noncoding regions. In modern population genetics, more variables have been added to Darwin’s theory. The Hardy-Weinberg equation was published separately in 1908, and demonstrates that allele frequencies will remain at a constant equilibrium over time in the absence of evolutionary forces. While this equation still is much used to this day, it contains several unrealistic assumptions, such as random mating or infinite population size. 3 The next major iteration in population genetic theory came when Fisher in 1930 and Wright in 1931 published models that included finite population sizes, allowing the evolutionary force of drift to be defined. According to what is now known as the Wright-Fisher model, the size of the population is directly proportional to the chance that an allele will become fixed or disappear from the population, purely due to sampling. Later, in 1955 and 1956, Kimura added the two-allele case to the Wright-Fisher model and posited, in 1983, that almost all variation in the genome is neutral; producing what is now known as the Neutral Theory of Evolution.
Recommended publications
  • Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
    EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus ..................................................................................................
    [Show full text]
  • Missense Variant in LOXHD1 Is Associated with Canine Nonsyndromic Hearing Loss
    Missense Variant in LOXHD1 is Associated With Canine Nonsyndromic Hearing Loss Marjo K Hytönen University of Helsinki: Helsingin Yliopisto Julia E Niskanen University of Helsinki: Helsingin Yliopisto Meharji Arumilli University of Helsinki: Helsingin Yliopisto Casey A Knox Wisdom Health Jonas Donner Genoscoper Laboratories Hannes Lohi ( hannes.lohi@helsinki. ) Helsingin Yliopisto Laaketieteellinen tiedekunta https://orcid.org/0000-0003-1087-5532 Research Article Keywords: dog, hearing, hearing loss, deafness, Rottweiler, stereocilia, PLAT Posted Date: March 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-288479/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract Hearing loss is a common sensory decit both in humans and dogs. In canines the genetic basis is largely unknown, as genetic variants have only been identied for a syndromic form of hearing impairment. We observed a congenital or early-onset sensorineural hearing loss in a Rottweiler litter. Assuming an autosomal recessive inheritance, we used a combined approach of homozygosity mapping and genome sequencing to dissect the genetic background of the disorder. We identied a fully segregating missense variant in LOXHD1, a gene that is known to be essential for cochlear hair cell function and associated with nonsyndromic hearing loss in humans and mice. The canine LOXHD1 variant was specic to the Rottweiler breed in our study cohorts of pure-bred dogs. However, it also was present in mixed-breed dogs, of which the majority showed Rottweiler ancestry. Low allele frequencies in these populations, 2.6 % and 0.04 %, respectively, indicate a rare variant.
    [Show full text]
  • Table SI. Genes Upregulated ≥ 2-Fold by MIH 2.4Bl Treatment Affymetrix ID
    Table SI. Genes upregulated 2-fold by MIH 2.4Bl treatment Fold UniGene ID Description Affymetrix ID Entrez Gene Change 1558048_x_at 28.84 Hs.551290 231597_x_at 17.02 Hs.720692 238825_at 10.19 93953 Hs.135167 acidic repeat containing (ACRC) 203821_at 9.82 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 1559509_at 9.41 Hs.656636 202957_at 9.06 3059 Hs.14601 hematopoietic cell-specific Lyn substrate 1 (HCLS1) 202388_at 8.11 5997 Hs.78944 regulator of G-protein signaling 2 (RGS2) 213649_at 7.9 6432 Hs.309090 serine and arginine rich splicing factor 7 (SRSF7) 228262_at 7.83 256714 Hs.127951 MAP7 domain containing 2 (MAP7D2) 38037_at 7.75 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 224549_x_at 7.6 202672_s_at 7.53 467 Hs.460 activating transcription factor 3 (ATF3) 243581_at 6.94 Hs.659284 239203_at 6.9 286006 Hs.396189 leucine rich single-pass membrane protein 1 (LSMEM1) 210800_at 6.7 1678 translocase of inner mitochondrial membrane 8 homolog A (yeast) (TIMM8A) 238956_at 6.48 1943 Hs.741510 ephrin A2 (EFNA2) 242918_at 6.22 4678 Hs.319334 nuclear autoantigenic sperm protein (NASP) 224254_x_at 6.06 243509_at 6 236832_at 5.89 221442 Hs.374076 adenylate cyclase 10, soluble pseudogene 1 (ADCY10P1) 234562_x_at 5.89 Hs.675414 214093_s_at 5.88 8880 Hs.567380; far upstream element binding protein 1 (FUBP1) Hs.707742 223774_at 5.59 677825 Hs.632377 small nucleolar RNA, H/ACA box 44 (SNORA44) 234723_x_at 5.48 Hs.677287 226419_s_at 5.41 6426 Hs.710026; serine and arginine rich splicing factor 1 (SRSF1) Hs.744140 228967_at 5.37
    [Show full text]
  • ELF2 Antibody - N-Terminal Region Rabbit Polyclonal Antibody Catalog # AI10026
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 ELF2 antibody - N-terminal region Rabbit Polyclonal Antibody Catalog # AI10026 Specification ELF2 antibody - N-terminal region - Product Information Application WB Primary Accession Q15723 Other Accession Q15723-3, NP_006865, NM_006874 Reactivity Human, Mouse, Rat, Rabbit, Dog, Guinea Pig, Horse, Bovine Predicted Human, Mouse, ELF2 antibody - N-terminal region (AI10026) Rat, Rabbit, in Hum. Fetal Heart cells using Western Blot Chicken, Dog, Host: Rabbit Guinea Pig, Horse, Bovine Target Name: ELF2 Host Rabbit Sample Tissue: Human Fetal Heart Clonality Polyclonal Antibody Dilution: 1.0μg/ml Calculated MW 57 kDa KDa ELF2 antibody - N-terminal region - Additional Information Gene ID 1998 Alias Symbol EU32, NERF, NERF-2, NERF-1A, NERF-1B, NERF-1a,b Other Names ETS-related transcription factor Elf-2, ELF2 antibody - N-terminal region (AI10026) E74-like factor 2, New ETS-related factor, in Hum. Fetal Lung cells using Western Blot ELF2 {ECO:0000312|EMBL:AAF671951} Host: Rabbit Target Name: ELF2 Target/Specificity Sample Tissue: Human Fetal Lung The ELF2 gene encodes a protein that Antibody Dilution: 1.0μg/ml physically interacts with AML1 and mediates opposing effects on AML1-mediated transcription of the B cell-specific blk gene. Format Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Reconstitution & Storage Add 50 ul of distilled water. Final anti-ELF2 antibody concentration is 1 mg/ml in PBS buffer with 2% sucrose.
    [Show full text]
  • Looking for Missing Proteins in the Proteome Of
    Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, Christophe Bruley, Charlotte Macron, Anne Gonzalez de Peredo, Yohann Coute, Karima Chaoui, et al. To cite this version: Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, et al.. Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. Journal of Proteome Research, American Chemical Society, 2016, 15 (11), pp.3998-4019. 10.1021/acs.jproteome.6b00400. hal-02191502 HAL Id: hal-02191502 https://hal.archives-ouvertes.fr/hal-02191502 Submitted on 19 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Proteome Research 1 2 3 Looking for missing proteins in the proteome of human spermatozoa: an 4 update 5 6 Yves Vandenbrouck1,2,3,#,§, Lydie Lane4,5,#, Christine Carapito6, Paula Duek5, Karine Rondel7, 7 Christophe Bruley1,2,3, Charlotte Macron6, Anne Gonzalez de Peredo8, Yohann Couté1,2,3, 8 Karima Chaoui8, Emmanuelle Com7, Alain Gateau5, AnneMarie Hesse1,2,3, Marlene 9 Marcellin8, Loren Méar7, Emmanuelle MoutonBarbosa8, Thibault Robin9, Odile Burlet- 10 Schiltz8, Sarah Cianferani6, Myriam Ferro1,2,3, Thomas Fréour10,11, Cecilia Lindskog12,Jérôme 11 1,2,3 7,§ 12 Garin , Charles Pineau .
    [Show full text]
  • Discrepancies Between Human DNA, Mrna and Protein Reference
    Database, 2016, 1–15 doi: 10.1093/database/baw124 Original article Original article Discrepancies between human DNA, mRNA and protein reference sequences and their relation to single nucleotide variants in the human population Matsuyuki Shirota1,2,3 and Kengo Kinoshita2,3,4,* 1Graduate School of Medicine, Tohoku University, Sendai, Miyagi 9808575, Japan, 2Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 9808575, Japan, 3Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 9808579, Japan, 4Institute for Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 9808575, Japan *Corresponding author: Tel: þ81227957179; Fax: þ81227957179; Email: [email protected] Citation details: Shirota,M. and Kinoshita,K. Discrepancies between human DNA, mRNA and protein reference se- quences and their relation to single nucleotide variants in the human population. Database (2016) Vol. 2016: article ID baw124; doi:10.1093/database/baw124. Received 5 May 2016; Revised 6 July 2016; Accepted 4 August 2016 Abstract The protein coding sequences of the human reference genome GRCh38, RefSeq mRNA and UniProt protein databases are sometimes inconsistent with each other, due to poly- morphisms in the human population, but the overall landscape of the discordant se- quences has not been clarified. In this study, we comprehensively listed the discordant bases and regions between the GRCh38, RefSeq and UniProt reference sequences, based on the genomic coordinates of GRCh38. We observed that the RefSeq sequences are more likely to represent the major alleles than GRCh38 and UniProt, by assigning the al- ternative allele frequencies of the discordant bases. Since some reference sequences have minor alleles, functional and structural annotations may be performed based on rare alleles in the human population, thereby biasing these analyses.
    [Show full text]
  • Original Article a Database and Functional Annotation of NF-Κb Target Genes
    Int J Clin Exp Med 2016;9(5):7986-7995 www.ijcem.com /ISSN:1940-5901/IJCEM0019172 Original Article A database and functional annotation of NF-κB target genes Yang Yang, Jian Wu, Jinke Wang The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People’s Republic of China Received November 4, 2015; Accepted February 10, 2016; Epub May 15, 2016; Published May 30, 2016 Abstract: Backgrounds: The previous studies show that the transcription factor NF-κB always be induced by many inducers, and can regulate the expressions of many genes. The aim of the present study is to explore the database and functional annotation of NF-κB target genes. Methods: In this study, we manually collected the most complete listing of all NF-κB target genes identified to date, including the NF-κB microRNA target genes and built the database of NF-κB target genes with the detailed information of each target gene and annotated it by DAVID tools. Results: The NF-κB target genes database was established (http://tfdb.seu.edu.cn/nfkb/). The collected data confirmed that NF-κB maintains multitudinous biological functions and possesses the considerable complexity and diversity in regulation the expression of corresponding target genes set. The data showed that the NF-κB was a central regula- tor of the stress response, immune response and cellular metabolic processes. NF-κB involved in bone disease, immunological disease and cardiovascular disease, various cancers and nervous disease. NF-κB can modulate the expression activity of other transcriptional factors. Inhibition of IKK and IκBα phosphorylation, the decrease of nuclear translocation of p65 and the reduction of intracellular glutathione level determined the up-regulation or down-regulation of expression of NF-κB target genes.
    [Show full text]
  • WO 2017/214553 Al 14 December 2017 (14.12.2017) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/214553 Al 14 December 2017 (14.12.2017) W !P O PCT (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, C12N 15/11 (2006.01) C12N 15/113 (2010.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, PCT/US20 17/036829 KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 09 June 2017 (09.06.2017) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/347,737 09 June 2016 (09.06.2016) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, 62/408,639 14 October 2016 (14.10.2016) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/433,770 13 December 2016 (13.12.2016) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (71) Applicant: THE GENERAL HOSPITAL CORPO¬ MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, RATION [US/US]; 55 Fruit Street, Boston, Massachusetts TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 021 14 (US).
    [Show full text]
  • Cellular and Molecular Aspects of the Response of the Testis to Nutrition In
    Cellular and molecular aspects of the response of the testis to nutrition in sexually mature sheep Yongjuan Guan 21004548 This thesis is presented for the degree of Doctor of Philosophy of The University of Western Australia School of Animal Biology Institute of Agriculture March 2015 Declaration Declaration The work presented in this thesis is original work of the author, and none of the material in this thesis has been submitted either in full, or part, for a degree at this university or any other universities or institutions before. The experimental designs and manuscript preparation were carried out by myself after discussion with my supervisors Prof Graeme Martin, A/Prof Irek Malecki and Dr Penny Hawken. Yongjuan Guan March 2015 1 Contents Contents Summary ....................................................................................................................................... 4 Acknowledgements ....................................................................................................................... 8 Publications ................................................................................................................................. 10 Chapter 1: General Introduction ................................................................................................. 12 Chapter 2: Literature Review ...................................................................................................... 16 2.1 Male reproduction ............................................................................................................
    [Show full text]
  • Genome-Wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length
    ARTICLE Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length Chen Li,1,3,85 Svetlana Stoma,2,3,85 Luca A. Lotta,1,85 Sophie Warner,2,85 Eva Albrecht,4 Alessandra Allione,5,6 Pascal P. Arp,7 Linda Broer,7 Jessica L. Buxton,8,9 Alexessander Da Silva Couto Alves,10,11 Joris Deelen,12,13 Iryna O. Fedko,14 Scott D. Gordon,15 Tao Jiang,16 Robert Karlsson,17 Nicola Kerrison,1 Taylor K. Loe,18 Massimo Mangino,19,20 Yuri Milaneschi,21 Benjamin Miraglio,22 Natalia Pervjakova,23 Alessia Russo,5,6 Ida Surakka,22,24 Ashley van der Spek,25 Josine E. Verhoeven,21 Najaf Amin,25 Marian Beekman,13 Alexandra I. Blakemore,26,27 Federico Canzian,28 Stephen E. Hamby,2,3 Jouke-Jan Hottenga,14 Peter D. Jones,2 Pekka Jousilahti,29 Reedik Ma¨gi,23 Sarah E. Medland,15 Grant W. Montgomery,30 Dale R. Nyholt,15,31 Markus Perola,29,32 Kirsi H. Pietila¨inen,33,34 Veikko Salomaa,29 Elina Sillanpa¨a¨,22,35 H. Eka Suchiman,13 Diana van Heemst,36 Gonneke Willemsen,14 Antonio Agudo,37 Heiner Boeing,38 Dorret I. Boomsma,14 Maria-Dolores Chirlaque,39,40 Guy Fagherazzi,41,42 Pietro Ferrari,43 Paul Franks,44,45 Christian Gieger,4,46,47 Johan Gunnar Eriksson,48,49,50 Marc Gunter,43 Sara Ha¨gg,17 Iiris Hovatta,51,52 Liher Imaz,53,54 Jaakko Kaprio,22,55 Rudolf Kaaks,56 Timothy Key,57 (Author list continued on next page) Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging.
    [Show full text]
  • Novel Gene Discovery in Primary Ciliary Dyskinesia
    Novel Gene Discovery in Primary Ciliary Dyskinesia Mahmoud Raafat Fassad Genetics and Genomic Medicine Programme Great Ormond Street Institute of Child Health University College London A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy University College London 1 Declaration I, Mahmoud Raafat Fassad, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Primary Ciliary Dyskinesia (PCD) is one of the ‘ciliopathies’, genetic disorders affecting either cilia structure or function. PCD is a rare recessive disease caused by defective motile cilia. Affected individuals manifest with neonatal respiratory distress, chronic wet cough, upper respiratory tract problems, progressive lung disease resulting in bronchiectasis, laterality problems including heart defects and adult infertility. Early diagnosis and management are essential for better respiratory disease prognosis. PCD is a highly genetically heterogeneous disorder with causal mutations identified in 36 genes that account for the disease in about 70% of PCD cases, suggesting that additional genes remain to be discovered. Targeted next generation sequencing was used for genetic screening of a cohort of patients with confirmed or suggestive PCD diagnosis. The use of multi-gene panel sequencing yielded a high diagnostic output (> 70%) with mutations identified in known PCD genes. Over half of these mutations were novel alleles, expanding the mutation spectrum in PCD genes. The inclusion of patients from various ethnic backgrounds revealed a striking impact of ethnicity on the composition of disease alleles uncovering a significant genetic stratification of PCD in different populations.
    [Show full text]
  • Characterisation of Gene and Pathway Expression in Stabilised Blood from Children with Coeliac Disease
    Coeliac disease BMJ Open Gastroenterol: first published as 10.1136/bmjgast-2020-000536 on 15 December 2020. Downloaded from Characterisation of gene and pathway expression in stabilised blood from children with coeliac disease Hanna Gustafsson Bragde ,1,2 Ulf Jansson,3 Mats Fredrikson,2 Ewa Grodzinsky,2 Jan Söderman1,2 To cite: Bragde HG, ABSTRACT Summary box Jansson U, Fredrikson M, Introduction A coeliac disease (CD) diagnosis is et al. Characterisation of likely in children with levels of tissue transglutaminase What is already known about this subject? gene and pathway expression autoantibodies (anti- TG2) >10 times the upper reference in stabilised blood from Paediatric coeliac disease (CD) diagnosis still re- value, whereas children with lower anti- TG2 levels need ► children with coeliac quires sampling and evaluation of small intestinal an intestinal biopsy to confirm or rule out CD.A blood disease. BMJ Open Gastro biopsies in many cases. sample is easier to obtain than an intestinal biopsy 2020;7:e000536. doi:10.1136/ Gene expression in small intestinal biopsies differs sample, and stabilised blood is suitable for routine ► bmjgast-2020-000536 between patients with active CD and patients with Universitets Bibliotek. Protected by copyright. diagnostics because transcript levels are preserved at non- CD. ► Additional material is sampling. Therefore, we investigated gene expression Blood is generally a more accessible sampling ma- published online only. To view in stabilised whole blood to explore the possibility of ► terial compared with small intestinal biopsies. please visit the journal online gene expression- based diagnostics for the diagnosis and (http:// dx. doi. org/ 10. 1136/ Stabilised blood is suitable for routine gene follow- up of CD.
    [Show full text]