A Three Dimensional Numerical Model of Predevelopment

Total Page:16

File Type:pdf, Size:1020Kb

A Three Dimensional Numerical Model of Predevelopment Prepared in cooperation with the OFFICE OF ENVIRONMENTAL RESTORATION AND: -- . - - WASTE MANAGEMENT,- -*U.S. DEPARTMENT-OF ENERGY, J -NATIONAL-NUCLEAR SECURITY ADMINISTRATION, - ' '' - -' NEVADA OPERATIONS OFFICE, under- -' Iteiagen6y Agreent DE-AI08-96NV11967 A'>^-Thf;ee'6-Dimensional ume rical`Model of Pre'developmentConedition's in the -V Resgionalf' Grotund-Waste§rFlote Nevada. and" Caiforit;)'il"- 1~~~~~~~~~~~~~n47~~~~~~~~~~~~~~~' -A,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-4 4~~~~~~~1, "I AN~~~~~~~~~~~~~-4,t)' I,-. "~~~~~~~ ~~ N - F H NEIR USDPRM - '4' ' ' -w - 'A%' t . - Th- - gt V;~~~~~~~~~~~~~~~,:Jp )t~~~~~~~~~~~~~,t in.-: U.S.DEPARTMENT FTHE INTERIOR ' U-,,,-._S GEG r Enclosure 1V; ; z* _e ,, n,., sure.rI A Three-Dimensional Numerical Model of Predevelopment Conditions in the Death Valley Regional Ground-Water Flow System, Nevada and California By Frank A. D'Agnese, Grady M. O'Brien, Claudia C. Faunt, Wayne R. Belcher, and Carma San Juan U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 02-4102 Prepared in cooperation with the OFFICE OF ENVIRONMENTAL RESTORATION AND WASTE MANAGEMENT, U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA OPERATIONS OFFICE, under Interagency Agreement DE-AI08-96NV1 1967 Denver, Colorado 2002 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: Chief, Yucca Mountain Project Branch U.S. Geological Survey U.S. Geological Survey Information Services Box 25046, Mail Stop 421 Box 25286 Denver Federal Center Denver Federal Center Denver, CO 80225-0046 Denver, CO 80225 CONTENTS Abstract ...................................................................................... I Introduction ....................................................................................... 2 Purpose and Scope ....................................................................................... 4 Site Description ........ .............................................................................. 5 Physiography .......... Climate ....................................................................................... 5 Soils and Vegetation ........................................................................................ 6 Geologic Setting .......... ............................................................................. 7 Proterozoic and Paleozoic Time ................... 8....................................................................8 Mesozoic Time . ..................................................................................... 8 Tertiary and Quaternary Time ....................................................................................... 8 Tertiary and Quaternary Tectonics ....................................................................................... 10 Hydrology ....................................................................................... 10 Land and Water Use ....................................................................................... 13 Ground-Water System ....................................................................................... 13 System Boundaries ....................................................................................... 13 Hydrogeologic Framework ...................................................................................... 14 Hydrogeologic Units ...................................................................................... 14 Hydrogeologic Structures ....................................................................................... 16 Source, Occurrence, and Movement of Ground Water ...................................................................................... 17 Northern Death Valley Subregion ....................................................................................... 18 Central Death Valley Subregion ....................................................................................... 21 Pahute Mesa-Oasis Valley Ground-Water Basin ..................................................................................... 23 Ash Meadows Ground-Water Basin .................................. .............. .................................... 23 Alkali Flat-Furnace Creek Ground-Water Basin ..................................................................................... 23 Southern Death Valley Subregion ....................................................................................... 24 Ground-Water System Budget Components ...................................................................................... 26 Estimates of Ground-Water Discharge .......................... ............................................................ 26 Estimates of Recharge ....................................................................................... 29 Numerical Model of Regional Ground-Water Flow .......................... ............................................................ 32 Numerical Modeling Difficulties, Simplifications, and Assumptions ......................................................................... 32 Numerical Model Selection ...................................................................................... 34 Nonlinear Regression Objective Function ...................................................................................... 34 Parameter Definition ...................................................................................... 35 Parameter Sensitivities ...................................................................................... 35 Model Construction .......... ............................................................................. 36 Grid Definition ........................................................................................ 36 External Boundary Conditions ...................................................................................... 36 Representation of the Hydrogeologic System ................................................... .................................... 39 Hydrogeologic Units ....................................................................................... 39 Hydrogeologic Structures ...................................................................................... 39 Evapotranspiration and Spring Flow ...................................... ................................................ 39 Recharge ....................................................................................... 40 Observation Data ...................................................................................... 42 Hydraulic-Head Observations ...................................................................................... 44 Ground-Water Discharge Observations .................................................... .................................. 48 Model Calibration ...................................................................................... 49 Conceptual Model Variations ...................................................................................... 49 Location and Type of Boundary Conditions ...................................................................................... 49 Definition of Discharge Areas ....................................................................................... 50 Definition of Recharge Areas .................... .................................................................. 50 CONTENTS III Variations in Interpretation of Hydrogeologic Framework .................................................................. 52 Confining Units ................................................................... 53 Carbonate Rocks .................................................................. 54 Volcanic Rocks ................................................................... 65 Basin-Fill Units .................................................................. 78 Vertical Anisotropy ................................................................... 82 Horizontal Flow Barriers .................................................................. 82 Observation Data Review and Reweighting .................................................................. 84 Model Evaluation .................................................................. 85 Evaluation of Simulated Hydraulic Head and Ground-Water Discharge .......................................................... 85 Evaluation of Model Fit ................................................................... 86 Spatial Distribution of Unweighted and Weighted Residuals ................................................................. 86 Distribution of Weighted Residuals Relative to Weighted Simulated Values .................. ....................... 90 Normality of Weighted Residuals and Model Linearity ............................................................. ..... 90 Evaluation of Estimated Parameter Values and Sensitivities ................................................................... 95 Evaluation of Simulated Water Budgets .................................................................. 103 Summary of Model Evaluation ................................................................... 103 Model Limitations and Potential Future Improvements
Recommended publications
  • California Vegetation Map in Support of the DRECP
    CALIFORNIA VEGETATION MAP IN SUPPORT OF THE DESERT RENEWABLE ENERGY CONSERVATION PLAN (2014-2016 ADDITIONS) John Menke, Edward Reyes, Anne Hepburn, Deborah Johnson, and Janet Reyes Aerial Information Systems, Inc. Prepared for the California Department of Fish and Wildlife Renewable Energy Program and the California Energy Commission Final Report May 2016 Prepared by: Primary Authors John Menke Edward Reyes Anne Hepburn Deborah Johnson Janet Reyes Report Graphics Ben Johnson Cover Page Photo Credits: Joshua Tree: John Fulton Blue Palo Verde: Ed Reyes Mojave Yucca: John Fulton Kingston Range, Pinyon: Arin Glass Aerial Information Systems, Inc. 112 First Street Redlands, CA 92373 (909) 793-9493 [email protected] in collaboration with California Department of Fish and Wildlife Vegetation Classification and Mapping Program 1807 13th Street, Suite 202 Sacramento, CA 95811 and California Native Plant Society 2707 K Street, Suite 1 Sacramento, CA 95816 i ACKNOWLEDGEMENTS Funding for this project was provided by: California Energy Commission US Bureau of Land Management California Wildlife Conservation Board California Department of Fish and Wildlife Personnel involved in developing the methodology and implementing this project included: Aerial Information Systems: Lisa Cotterman, Mark Fox, John Fulton, Arin Glass, Anne Hepburn, Ben Johnson, Debbie Johnson, John Menke, Lisa Morse, Mike Nelson, Ed Reyes, Janet Reyes, Patrick Yiu California Department of Fish and Wildlife: Diana Hickson, Todd Keeler‐Wolf, Anne Klein, Aicha Ougzin, Rosalie Yacoub California
    [Show full text]
  • Weiss Et Al, 1995) This Paper Disputes the Interpretation of Castor Et Al
    EVALUATION OF THE GEOLOGIC RELATIONS AND SEISMOTECTONIC STABILITY OF THE YUCCA MOUNTAIN AREA NEVADA NUCLEAR WASTE SITE INVESTIGATION (NNWSI) PROGRESS REPORT 30 SEPTEMBER 1995 CENTER FOR NEOTECTONIC STUDIES MACKAY SCHOOL OF MINES UNIVERSITY OF NEVADA, RENO DISTRIBUTION OF ?H!S DOCUMENT IS UKLMTED DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document CONTENTS SECTION I. General Task Steven G. Wesnousky SECTION II. Task 1: Quaternary Tectonics John W. Bell Craig M. dePolo SECTION III. Task 3: Mineral Deposits Volcanic Geology Steven I. Weiss Donald C. Noble Lawrence T. Larson SECTION IV. Task 4: Seismology James N. Brune Abdolrasool Anooshehpoor SECTION V. Task 5: Tectonics Richard A. Schweickert Mary M. Lahren SECTION VI. Task 8: Basinal Studies Patricia H. Cashman James H. Trexler, Jr. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • Plate 1 117° 116°
    U.S. Department of the Interior Prepared in cooperation with the Scientific Investigations Report 2015–5175 U.S. Geological Survey U.S. Department of Energy Plate 1 117° 116° Monitor Range White River Valley Hot Creek Valley 5,577 (1,700) Warm Springs Railroad Valley 6 5,000 4,593 (1,400) Stone Cabin Valley Quinn Canyon Range Tonopah 5,577 (1,700) Ralston Valley NYE COUNTY 4,921 (1,500) LINCOLN COUNTY Big Smoky Valley 5,249 (1,600) 38° 38° 5,906 (1,800) 5,249 (1,600) Ralston Valley Coal Valley 5,249 (1,600) Kawich Range 4,265 (1,300) 4,921 (1,500) 5,249 (1,600) 6,234 (1,900) 5,577 (1,700) 4,921 (1,500) Railroad Valley South CACTUS FLAT 5,200 | 200 Cactus Range Penoyer Valley Goldfield 5,249 (1,600) 3,800 | 3,800 4,921 (1,500) Clayton Valley 3,609 (1,100) Rachel Sand Spring Valley 5,249 (1,600) 5,577 (1,700) Sarcobatus Flat North Kawich Valley 4,593 (1,400) 5,600 | 5,600 93 Pahranagat Valley 4,921 4,593 (1,400) 4,593 (1,400)5,249 3,937 (1,200)4,265 (1,300) Gold Flat Pahranagat Range 4,921 (1,500) Pahute Mesa–Oasis Valley 6,300 | 5,900 Belted Range Alamo 4,265 (1,300) 4,593 (1,400) 3,609 (1,100) Scottys Emigrant Valley Junction Black Pahute Mesa Nevada National Mountain Security Site 3,281 (1,000) NYE COUNTY Sarcobatus Flat ESMERALDA COUNTY ESMERALDA Rainier Mesa 3,937 (1,200) Yucca Flat Timber Death Valley North Mountain 4,000 | 4,000 Yucca Flat Sarcobatus Flat South Oasis Valley subbasin Grapevine 37° 37° Springs area 1,900 | 1,900 4,265 Grapevine Mountains Bullfrog Hills 2,297 (700) 100 | 100 3,937 (1,200) Ash Meadows 20,50020,500 |
    [Show full text]
  • Distribution of Amargosa River Pupfish (Cyprinodon Nevadensis Amargosae) in Death Valley National Park, CA
    California Fish and Game 103(3): 91-95; 2017 Distribution of Amargosa River pupfish (Cyprinodon nevadensis amargosae) in Death Valley National Park, CA KRISTEN G. HUMPHREY, JAMIE B. LEAVITT, WESLEY J. GOLDSMITH, BRIAN R. KESNER, AND PAUL C. MARSH* Native Fish Lab at Marsh & Associates, LLC, 5016 South Ash Avenue, Suite 108, Tempe, AZ 85282, USA (KGH, JBL, WJG, BRK, PCM). *correspondent: [email protected] Key words: Amargosa River pupfish, Death Valley National Park, distribution, endangered species, monitoring, intermittent streams, range ________________________________________________________________________ Amargosa River pupfish (Cyprinodon nevadensis amargosae), is one of six rec- ognized subspecies of Amargosa pupfish (Miller 1948) and survives in waters embedded in a uniquely harsh environment, the arid and hot Mojave Desert (Jaeger 1957). All are endemic to the Amargosa River basin of southern California and Nevada (Moyle 2002). Differing from other spring-dwelling subspecies of Amargosa pupfish (Cyprinodon ne- vadensis), Amargosa River pupfish is riverine and the most widely distributed, the extent of which has been underrepresented prior to this study (Moyle et al. 2015). Originating on Pahute Mesa, Nye County, Nevada, the Amargosa River flows intermittently, often under- ground, south past the towns of Beatty, Shoshone, and Tecopa and through the Amargosa River Canyon before turning north into Death Valley National Park and terminating at Badwater Basin (Figure 1). Amargosa River pupfish is data deficient with a distribution range that is largely unknown. The species has been documented in Tecopa Bore near Tecopa, Inyo County, CA (Naiman 1976) and in the Amargosa River Canyon, Inyo and San Bernardino Counties, CA (Williams-Deacon et al.
    [Show full text]
  • DOCKETED 1516 Ninth Street 09-RENEW EO-1 Sacramento, CA 95814-5512 TN 75171 [email protected] FEB 23 2015
    PO Box 63 Shoshone, CA 92384 760.852.4339 www.amargosaconservancy.org February 23, 2015 California Energy Commission California Energy Commission Dockets Office, MS-4 Docket No. 09-RENEW EO-01 DOCKETED 1516 Ninth Street 09-RENEW EO-1 Sacramento, CA 95814-5512 TN 75171 [email protected] FEB 23 2015 Re: The DRECP and the Amargosa Watershed On behalf of the members and Board of Directors of the Amargosa Conservancy, please accept our comments herein on the Desert Renewable Energy Conservation Plan. Please refer to our second comment letter, dated February 23, 2015, for our comments on National Conservation Lands and Special Recreation Management Areas. Please also refer to the letter from Kevin Emmerich and Laura Cunningham, dated January 30, 2015, which the Amargosa Conservancy is signatory to. This letter details the need for a new program alternative in the DRECP which properly evaluates rooftop solar. To sum the key points of this letter: No groundwater pumping should be permissible in the Amargosa Watershed, including Charleston View, Silurian Valley, and Stewart Valley. Such activities would cause direct mortality of endangered species such as the Amargosa vole. USFWS take permits should be required for any groundwater pumping, and such permits should not be issued given the precarious conservation status of the vole. No mitigation can adequately compensate the ecosystem for the damage done by groundwater withdrawal. Retirement of water rights is not sufficient, and monitoring and triggering schemes are completely inadequate to protect the resources of the Amargosa Wild and Scenic River. Due to numerous biological, cultural, and social resource conflicts, Charleston View is not an appropriate place for utility-scale solar, should not be designated as a Development Focus Area (DFA).
    [Show full text]
  • Figure 3-72. Groundwater Usage in Nevada in 2000. (Source: DIRS 175964-Lopes and Evetts 2004, P
    AFFECTED ENVIRONMENT – CALIENTE RAIL ALIGNMENT Figure 3-72. Groundwater usage in Nevada in 2000. (Source: DIRS 175964-Lopes and Evetts 2004, p. 7.) There are a number of published estimates of perennial yield for many of the hydrographic areas in Nevada, and those estimates often differ by large amounts. The perennial-yield values listed in Table 3-35 predominantly come from a single source, the Nevada Division of Water Planning (DIRS 103406-Nevada Division of Water Planning 1992, for Hydrographic Regions 10, 13, and 14); therefore, the table does not show a range of values for each hydrographic area. In the Yucca Mountain area, the Nevada Division of Water Planning identifies a combined perennial yield for hydrographic areas 225 through 230. DOE obtained perennial yields from Data Assessment & Water Rights/Resource Analysis of: Hydrographic Region #14 Death Valley Basin (DIRS 147766-Thiel 1999, pp. 6 to 12) to provide estimates for hydrographic areas the Caliente rail alignment would cross: 227A, 228, and 229. That 1999 document presents perennial-yield estimates from several sources. Table 3-35 lists the lowest (that is, the most conservative) values cited in that document, which is consistent with the approach DOE used in the Yucca Mountain FEIS (DIRS 155970-DOE 2002, p. 3-136). DOE/EIS-0369 3-173 AFFECTED ENVIRONMENT – CALIENTE RAIL ALIGNMENT Table 3-35 also summarizes existing annual committed groundwater resources for each hydrographic area along the Caliente rail alignment. However, all committed groundwater resources within a hydrographic area might not be in use at the same time. Table 3-35 also includes information on pending annual duties within each of these hydrographic areas.
    [Show full text]
  • Late Quaternary Stratigraphy and Luminescence Geochronology of the Northeastern Mojave Desert
    ARTICLE IN PRESS Quaternary International 166 (2007) 61–78 Late Quaternary stratigraphy and luminescence geochronology of the northeastern Mojave Desert Shannon A. Mahana,Ã, David M. Millerb, Christopher M. Mengesc, James C. Younta aUnited States Geological Survey, Box 25046 MS 974, Denver, CO 80225, USA bUnited States Geological Survey, 345 Middlefield Road, MS 973, Menlo Park, CA 94025, USA cUnited States Geological Survey, 520 N. Park Ave., Tucson, AZ 85719-5035, USA Available online 8 January 2007 Abstract The chronology of the Holocene and late Pleistocene deposits of the northeastern Mojave Desert have been largely obtained using radiocarbon ages. Our study refines and extends this framework using optically stimulated luminescence (OSL) to date deposits from Valjean Valley, Silurian Lake Playa, Red Pass, and California Valley. Of particular interest are eolian fine silts incorporated in ground- water discharge (GWD) deposits bracketed at 185–140 and 20–50 ka. Alluvial fan deposits proved amenable for OSL by dating both eolian sand lenses and reworked eolian sand in a matrix of gravel that occurs within the fan stratigraphy. Lacustrine sand in spits and bars also yielded acceptable OSL ages. These OSL ages fill gaps in the geochronology of desert deposits, which can provide data relevant to understanding the responses of several depositional systems to regional changes in climate. This study identifies the most promising deposits for future luminescence dating and suggests that for several regions of the Mojave Desert, sediments from previously undated landforms can be more accurately placed within correct geologic map units. Published by Elsevier Ltd. 1. Introduction Previous chronologic studies in the northeastern Mojave Desert area include magneto-stratigraphic studies and Extracting paleoclimatic and paleoenvironmental infor- tephrochronology of the upper Pliocene to middle Quatern- mation from terrestrial deposits is an important area of ary Tecopa beds (Hillhouse, 1987; Sarna-Wojcicki et al., Quaternary geologic research.
    [Show full text]
  • 7–20–10 Vol. 75 No. 138 Tuesday July 20, 2010 Pages 41963–42278
    7–20–10 Tuesday Vol. 75 No. 138 July 20, 2010 Pages 41963–42278 VerDate Mar 15 2010 18:27 Jul 19, 2010 Jkt 220001 PO 00000 Frm 00001 Fmt 4710 Sfmt 4710 E:\FR\FM\20JYWS.LOC 20JYWS sroberts on DSKD5P82C1PROD with FRONTMATTER II Federal Register / Vol. 75, No. 138 / Tuesday, July 20, 2010 The FEDERAL REGISTER (ISSN 0097–6326) is published daily, SUBSCRIPTIONS AND COPIES Monday through Friday, except official holidays, by the Office of the Federal Register, National Archives and Records PUBLIC Administration, Washington, DC 20408, under the Federal Register Subscriptions: Act (44 U.S.C. Ch. 15) and the regulations of the Administrative Paper or fiche 202–512–1800 Committee of the Federal Register (1 CFR Ch. I). The Assistance with public subscriptions 202–512–1806 Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 is the exclusive distributor of the official General online information 202–512–1530; 1–888–293–6498 edition. Periodicals postage is paid at Washington, DC. Single copies/back copies: The FEDERAL REGISTER provides a uniform system for making Paper or fiche 202–512–1800 available to the public regulations and legal notices issued by Assistance with public single copies 1–866–512–1800 Federal agencies. These include Presidential proclamations and (Toll-Free) Executive Orders, Federal agency documents having general FEDERAL AGENCIES applicability and legal effect, documents required to be published by act of Congress, and other Federal agency documents of public Subscriptions: interest. Paper or fiche 202–741–6005 Documents are on file for public inspection in the Office of the Assistance with Federal agency subscriptions 202–741–6005 Federal Register the day before they are published, unless the issuing agency requests earlier filing.
    [Show full text]
  • Tribally Approved American Indian Ethnographic Analysis of the Proposed Amargosa Valley Solar Energy Zone
    Tribally Approved American Indian Ethnographic Analysis of the Proposed Amargosa Valley Solar Energy Zone Ethnography and Ethnographic Synthesis For Solar Programmatic Environmental Impact Statement and Solar Energy Study Areas in Portions of Arizona, California, Nevada, and Utah Participating Tribes Pahrump Paiute Tribe, Pahrump, Nevada Timbisha Shoshone Tribe, Death Valley, California By Richard W. Stoffle Kathleen A. Van Vlack Hannah Z. Johnson Phillip T. Dukes Stephanie C. De Sola Kristen L. Simmons Bureau of Applied Research in Anthropology School of Anthropology University of Arizona October 2011 Solar PEIS Ethnographic Assessment Page 1 AMARGOSA VALLEY The proposed Amargosa Valley solar energy zone (SEZ) is located about 14 miles south of Beatty, Nevada. The center of the purposed SEZ is located 16 miles northwest of the town of Amargosa Valley, Nevada. The proposed SEZ includes a large section of land west and south of Highway 95, with a portion located on the east side of the highway that incorporates part of Steve‘s Pass (see Figure 1). Figure 1 Google Earth Image of the Amargosa Valley SEZ American Indian Study Area (SEZ Outlined in Red) The Amargosa Valley SEZ American Indian study area extends beyond the proposed boundaries of the SEZ and includes the cultural resources in the surrounding landscape. The Amargosa Valley SEZ American Indian study area includes plant communities, geological features, water sources, and trail systems located in and around the proposed SEZ boundary. The trail systems pass through the SEZ American Indian study area and were used by people from neighboring or distance communities to reach nearby medicinal and ceremonial areas.
    [Show full text]
  • Underground Test Area (UGTA) Sub-Project Strategy: Radiological Environmental Monitoring Plan (RREMP)
    Nevada Test Site 828 underground nuclear tests were conducted on the Nevada Underground Test Area Test Site from 1951 to 1992. Some of the tests occurred near or below the water table, (UGTA) Sub-Project resulting in groundwater contamination. Pahute Mesa Earth Vision three-dimensional 5'4!3UB 0ROJECTSTAFFARERESPONSIBLEFOR computer model EVALUATINGTHEIMPACTOFHISTORICNUCLEARTESTS ONGROUNDWATERRESOURCESANDSTUDYINGTHE EXTENTOFCONTAMINANTMIGRATION 4HE5'4!!PPROACH q /RGANIZEDINTOFIVE#ORRECTIVE!CTION5NITS#!5S q !#!5ISAGROUPINGOF#ORRECTIVE!CTION3ITES#!3S BASEDONTHE LOCATIONSOFHISTORICUNDERGROUNDNUCLEARTESTSANDSIMILARGEOLOGY q %ACH#!5ISANALYZEDANDEVALUATED q 7ELLSAREDRILLEDTOCOLLECTFIELDDATASAMPLES q &IELDDATAISUSEDTOCREATETHREE DIMENSIONALCOMPUTERMODELS q -ODELSAREUSEDTOESTIMATEGROUNDWATERFLOWANDTRANSPORTPARAMETERS q -ODELSARETHEPREFERREDDECISIONTOOLSFORPREDICTINGCURRENTANDFUTURE location of contamination q -ONITORINGOFGROUNDWATERISUSEDTOEVALUATEMODELPREDICTIONSAND ENSURECOMPLIANCEWITHREGULATORYREQUIREMENTS Central Pahute Mesa CAU 9UCCA 5'4!WELL%2 DURINGMOBILIZATIONON9UCCA&LAT &LAT CAU $/%STAFFWORKSWITHOTHERORGANIZATIONSINACOLLABORATIVE Western Pahute APPROACHTOUNDERSTANDTHENATUREANDEXTENTOFGROUNDWATER Mesa CAU contamination: s,AWRENCE,IVERMORE.ATIONAL,ABORATORY s,OS!LAMOS.ATIONAL,ABORATORY &RENCHMAN 2AINIER &LAT s $ESERT2ESEARCH)NSTITUTE Mesa CAU 3HOSHONE s 5NITED3TATES'EOLOGICAL3URVEY Mountain CAU s 3TATEOF.EVADA s .ATIONAL3ECURITY4ECHNOLOGIES s .AVARRO )NTERA !LLACTIVITIESARECONDUCTEDINACCORDANCEWITHTHE&EDERAL &ACILITY!GREEMENTAND#ONSENT/RDER&&!#/
    [Show full text]
  • Identification of Aircraft Hazards
    QA: QA 000-30R-WHSO-00 100-000-005 March 2005 Identification of Aircraft Hazards Prepared for: U.S.Department of Energy Office of Civilian Radioactive Waste Management Office of Repository Development 1551 Hillshire Drive Las Vegas, Nevada 89134-6321 Prepared by: Bechtel SAC Company, LLC 1 180 Town Center Drive Las Vegas, Nevada 89144 Under Contract Number DE-AC28-01RW 12101 I DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. 000-30R-WHSO-00 100-000-005 11 March 2005 I Originators: K.L. Ashlei Preclosyjfe Safety Analysis Checkers: Guy Ragan,YU Checker, - Preclosure Safety Analysis WhDQ&U* 22 )uUQ 2005 W. Dockery, Quality En'gineering Representative Date Responsible Manager: 3/!!+6- Date ..
    [Show full text]
  • Amargosa Desert Hydrographic Basin 14-230
    STATE OF NEVADA DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES JASON KING, P.E. STATE ENGINEER AMARGOSA DESERT HYDROGRAPHIC BASIN 14-230 GROUNDWATER PUMPAGE INVENTORY WATER YEAR 2015 Field Investigated by: Tracy Geter Report Prepared by: Tracy Geter TABLE OF CONTENTS Page ABSTRACT ................................................................................................................................... 1 HYDROGRAPHIC BASIN SUMMARY ................................................................................... 2 PURPOSE AND SCOPE .............................................................................................................. 3 DESCRIPTION OF THE STUDY AREA .................................................................................. 3 GROUNDWATER LEVELS ....................................................................................................... 3 METHODS TO ESTIMATE PUMPAGE .................................................................................. 4 PUMPAGE BY MANNER OF USE ........................................................................................... 5 TABLES ......................................................................................................................................... 6 FIGURES ....................................................................................................................................... 7 APPENDIX A. AMARGOSA DESERT 2015 GROUNDWATER PUMPAGE BY APPLICATION NUMBER ...........................................................................................
    [Show full text]