Amargosa Desert Hydrographic Basin 14-230
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecoregions of Nevada Ecoregion 5 Is a Mountainous, Deeply Dissected, and Westerly Tilting Fault Block
5 . S i e r r a N e v a d a Ecoregions of Nevada Ecoregion 5 is a mountainous, deeply dissected, and westerly tilting fault block. It is largely composed of granitic rocks that are lithologically distinct from the sedimentary rocks of the Klamath Mountains (78) and the volcanic rocks of the Cascades (4). A Ecoregions denote areas of general similarity in ecosystems and in the type, quality, Vegas, Reno, and Carson City areas. Most of the state is internally drained and lies Literature Cited: high fault scarp divides the Sierra Nevada (5) from the Northern Basin and Range (80) and Central Basin and Range (13) to the 2 2 . A r i z o n a / N e w M e x i c o P l a t e a u east. Near this eastern fault scarp, the Sierra Nevada (5) reaches its highest elevations. Here, moraines, cirques, and small lakes and quantity of environmental resources. They are designed to serve as a spatial within the Great Basin; rivers in the southeast are part of the Colorado River system Bailey, R.G., Avers, P.E., King, T., and McNab, W.H., eds., 1994, Ecoregions and subregions of the Ecoregion 22 is a high dissected plateau underlain by horizontal beds of limestone, sandstone, and shale, cut by canyons, and United States (map): Washington, D.C., USFS, scale 1:7,500,000. are especially common and are products of Pleistocene alpine glaciation. Large areas are above timberline, including Mt. Whitney framework for the research, assessment, management, and monitoring of ecosystems and those in the northeast drain to the Snake River. -
Upper Neogene Stratigraphy and Tectonics of Death Valley — a Review
Earth-Science Reviews 73 (2005) 245–270 www.elsevier.com/locate/earscirev Upper Neogene stratigraphy and tectonics of Death Valley — a review J.R. Knott a,*, A.M. Sarna-Wojcicki b, M.N. Machette c, R.E. Klinger d aDepartment of Geological Sciences, California State University Fullerton, Fullerton, CA 92834, United States bU. S. Geological Survey, MS 975, 345 Middlefield Road, Menlo Park, CA 94025, United States cU. S. Geological Survey, MS 966, Box 25046, Denver, CO 80225-0046, United States dTechnical Service Center, U. S. Bureau of Reclamation, P. O. Box 25007, D-8530, Denver, CO 80225-0007, United States Abstract New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from N3.58 Ma to b1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ~3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. -
Draft DRECP and EIR/EIS CHAPTER II.4
Draft DRECP and EIR/EIS CHAPTER II.4. ALTERNATIVE 1 II.4 ALTERNATIVE 1 Alternative 1 is one of five action alternatives considered and analyzed in the Desert Renewable Energy Conservation Plan (DRECP or Plan) and Environmental Impact Report/Environmental Impact Statement (EIR/EIS). The description of Alternative 1 is first provided at an interagency level (Section II.4.1), which describes all Plan elements of the alternative. After the interagency description, the individual elements of the alternative are described, including the Bureau of Land Management (BLM) Land Use Plan Amendment (LUPA) elements of the DRECP (Section II.4.2), the Natural Community Conservation Plan (NCCP) elements of the DRECP (Section II.4.3), and the General Conservation Plan (GCP) elements of the DRECP (Section II.4.4). II.4.1 Interagency Description of Alternative 1 The interagency description of Alternative 1 includes the following main sections: Overview of Alternative 1, Conservation Strategy, Monitoring and Adaptive Management Program, Description of the Covered Activities, and Plan Implementation. The description of Alternative 1 for the DRECP and EIR/EIS encompasses the overall conservation strategy and description of Covered Activities on federal and nonfederal lands (i.e., state, county, city, and privately owned lands) within the Plan Area. II.4.1.1 Overview of Alternative 1 The following provides a Plan-wide overview of Alternative 1. Alternative 1 integrates the renewable energy and resource conservation with other existing uses in the Plan Area and includes BLM LUPA elements, NCCP elements, and GCP elements. Under Alternative 1 for the DRECP, an interagency conservation strategy for the Plan Area would be established that includes a streamlined process for the permitting of renewable energy and transmission development on both federal and nonfederal lands and a BLM LUPA providing Conservation and Management Actions (CMAs) for resources throughout the Plan Area on BLM-administered lands. -
Ground-Magnetic Studies of the Amargosa Desert Region, California and Nevada
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY GROUND-MAGNETIC STUDIES OF THE AMARGOSA DESERT REGION, CALIFORNIA AND NEVADA Richard J. Blakely, John W. Hillhouse, and Robert L. Morin U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 Open-File Report 2005-1132 2005 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. GROUND-MAGNETIC STUDIES OF THE AMARGOSA DESERT REGION, CALIFORNIA AND NEVADA Richard J. Blakely, John W. Hillhouse, and Robert L. Morin ABSTRACT High-resolution aeromagnetic surveys of the Amargosa Desert region, California and Nevada, exhibit a diverse array of magnetic anomalies reflecting a wide range of mid- and upper-crustal lithologies. In most cases, these anomalies can be interpreted in terms of exposed rocks and sedimentary deposits. More difficult to explain are linear magnetic anomalies situated over lithologies that typically have very low magnetizations. Aeromagnetic anomalies are observed, for example, over thick sections of Quaternary alluvial deposits and spring deposits associated with past or modern ground-water discharge in Ash Meadows, Pahrump Valley, and Furnace Creek Wash. Such deposits are typically considered nonmagnetic. To help determine the source of these aeromagnetic anomalies, we conducted ground-magnetic studies at five areas: near Death Valley Junction, at Point of Rocks Spring, at Devils Hole, at Fairbanks Spring, and near Travertine Springs. Depth-to-source calculations show that the sources of these anomalies lie within the Tertiary and Quaternary sedimentary section. -
Weiss Et Al, 1995) This Paper Disputes the Interpretation of Castor Et Al
EVALUATION OF THE GEOLOGIC RELATIONS AND SEISMOTECTONIC STABILITY OF THE YUCCA MOUNTAIN AREA NEVADA NUCLEAR WASTE SITE INVESTIGATION (NNWSI) PROGRESS REPORT 30 SEPTEMBER 1995 CENTER FOR NEOTECTONIC STUDIES MACKAY SCHOOL OF MINES UNIVERSITY OF NEVADA, RENO DISTRIBUTION OF ?H!S DOCUMENT IS UKLMTED DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document CONTENTS SECTION I. General Task Steven G. Wesnousky SECTION II. Task 1: Quaternary Tectonics John W. Bell Craig M. dePolo SECTION III. Task 3: Mineral Deposits Volcanic Geology Steven I. Weiss Donald C. Noble Lawrence T. Larson SECTION IV. Task 4: Seismology James N. Brune Abdolrasool Anooshehpoor SECTION V. Task 5: Tectonics Richard A. Schweickert Mary M. Lahren SECTION VI. Task 8: Basinal Studies Patricia H. Cashman James H. Trexler, Jr. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. -
Plate 1 117° 116°
U.S. Department of the Interior Prepared in cooperation with the Scientific Investigations Report 2015–5175 U.S. Geological Survey U.S. Department of Energy Plate 1 117° 116° Monitor Range White River Valley Hot Creek Valley 5,577 (1,700) Warm Springs Railroad Valley 6 5,000 4,593 (1,400) Stone Cabin Valley Quinn Canyon Range Tonopah 5,577 (1,700) Ralston Valley NYE COUNTY 4,921 (1,500) LINCOLN COUNTY Big Smoky Valley 5,249 (1,600) 38° 38° 5,906 (1,800) 5,249 (1,600) Ralston Valley Coal Valley 5,249 (1,600) Kawich Range 4,265 (1,300) 4,921 (1,500) 5,249 (1,600) 6,234 (1,900) 5,577 (1,700) 4,921 (1,500) Railroad Valley South CACTUS FLAT 5,200 | 200 Cactus Range Penoyer Valley Goldfield 5,249 (1,600) 3,800 | 3,800 4,921 (1,500) Clayton Valley 3,609 (1,100) Rachel Sand Spring Valley 5,249 (1,600) 5,577 (1,700) Sarcobatus Flat North Kawich Valley 4,593 (1,400) 5,600 | 5,600 93 Pahranagat Valley 4,921 4,593 (1,400) 4,593 (1,400)5,249 3,937 (1,200)4,265 (1,300) Gold Flat Pahranagat Range 4,921 (1,500) Pahute Mesa–Oasis Valley 6,300 | 5,900 Belted Range Alamo 4,265 (1,300) 4,593 (1,400) 3,609 (1,100) Scottys Emigrant Valley Junction Black Pahute Mesa Nevada National Mountain Security Site 3,281 (1,000) NYE COUNTY Sarcobatus Flat ESMERALDA COUNTY ESMERALDA Rainier Mesa 3,937 (1,200) Yucca Flat Timber Death Valley North Mountain 4,000 | 4,000 Yucca Flat Sarcobatus Flat South Oasis Valley subbasin Grapevine 37° 37° Springs area 1,900 | 1,900 4,265 Grapevine Mountains Bullfrog Hills 2,297 (700) 100 | 100 3,937 (1,200) Ash Meadows 20,50020,500 | -
NUREG-1710 Vol 1 History of Water
NUREG-1710 Vol. 1 History of Water Development in the Amargosa Desert Area: A Literature Review i I I I I I I I U.S. Nuclear Regulatory Commission Advisory Committee on Nuclear Waste Washington, DC 20555-0001 AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS 7 NRC Reference Material Non-NRC Reference Material As of November 1999, you may electronically access Documents available from public and special technical NUREG-series publications and other NRC records at libraries include all open literature items, such as NRC's Public Electronic Reading Room at books, journal articles, and transactions, Federal http://www.nrc.pov/reading-rm.html. Register notices, Federal and State legislation, and Publicly released records include, to name a few, congressional reports. Such documents as theses, NUREG-series publications; Federal Register notices; dissertations, foreign reports and translations, and applicant, licensee, and vendor documents and non-NRC conference proceedings may be purchased correspondence; NRC correspondence and internal from their sponsoring organization. memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are NRC publications in the NUREG series, NRC maintained at- regulations, and Title 10, Energy, in the Code of The NRC Technical Library Federal Regulations may also be purchased from one Two White Flint North of these two sources. 11545 Rockville Pike 1. The Superintendent of Documents Rockville, MD 20852-2738 U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402-0001 These standards are available in the library for Intemet: bookstore.gpo.gov reference use by the public. -
Hydrologic Basin Death Valley California
Hydrologic Basin Death Valley California GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B Hydrologic Basin Death Valley California By CHARLES B. HUNT, T. W. ROBINSON, WALTER A. BOWLES, and A. L. WASHBURN GENERAL GEOLOGY OF DEATH VALLEY, CALIFORNIA GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B A! description of the hydrology, geochemistry, and patternedground of the saltpan UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract BI Hydrology-Continued Hydrology, by Charles B. Hunt and T. W. Robinson_ - 3 Descriptions and discharges of springs and of Introduction- 3 marshes-Continued Fieldwork- 3 Discharge of springs in the Furnace Creek fault Climate- 5 zone B35 Rainfall 5 Evapotranspiration discharge from the valley floor Evaporation 7 above the saltpan 37 Temperature- 8 Divisions of the valley according to sources of Humidity- 10 ground water 37 Wind- 11 Possible sources of water at Cottonball Marsh- 37 Rock types in the Death Valley hydrologic basin --- 11 Possible source of water at springs along Fur- Hard-rock formations 12 nace Creek fault zone 38 Unconsolidated Quaternary deposits 13 Geochemistry of the saltpan by Charles B. Hunt 40 Gravel deposits 13 General features 40 Fine-grained alluvial and playa deposits - 15 Fieldwork and acknowledgments 41 Salt deposits and saliferous playa deposits- 15 Geologic -
Global Patterns and Environmental Controls of Perchlorate and Nitrate Co-Occurrence in Arid and Semi-Arid Environments W
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2015 Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments W. Andrew Jackson Texas Tech University, [email protected] J. K. Böhlke U.S. Geological Survey, 431 National Center, Reston, VA Brian J. Andraski U.S. Geological Survey, 2730 N. Deer Run Rd, Carson City, NV Lynne Fahlquist U.S. Geological Survey, 1505 Ferguson Ln, Austin, TX Laura Bexfield U.S. Geological Survey, 5338 Montgomery Blvd. NE, Suite 400, Albuquerque, NM See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/nasapub Jackson, W. Andrew; Böhlke, J. K.; Andraski, Brian J.; Fahlquist, Lynne; Bexfield, Laura; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta; Betancourt, Julio; Stonestrom, David; Latorre, Claudio; Li, Yanhe; and Harvey, Gregory J., "Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments" (2015). NASA Publications. 210. http://digitalcommons.unl.edu/nasapub/210 This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors W. Andrew Jackson, J. -
Early Pliocene (Pre–Ice Age) El Niño–Like Global Climate: Which El Niño?
Early Pliocene (pre–Ice Age) El Niño–like global climate: Which El Niño? Peter Molnar* Department of Geological Sciences and Cooperative Institute for Research in Environmental Science (CIRES), University of Colo- rado, Boulder, Colorado 80309-0399, USA Mark A. Cane Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964-8000, USA ABSTRACT warmest region extending into the eastern- in part from theoretical predictions for how the most Pacifi c Ocean, not near the dateline as structure of the upper ocean and its circulation Paleoceanographic data from sites near occurs in most El Niño events. This inference have changed over late Cenozoic time (e.g., the equator in the eastern and western Pacifi c is consistent with equatorial Pacifi c proxy Cane and Molnar, 2001; Philander and Fedorov, Ocean show that sea-surface temperatures, data indicating that at most a small east-west 2003). Not surprisingly, controversies continue and apparently also the depth and tempera- gradient in sea-surface temperature seems to to surround hypothesized stimuli for switches ture distribution in the thermocline, have have existed along the equator in late Mio- both from permanent El Niño to the present-day changed markedly over the past ~4 m.y., from cene to early Pliocene time. Accordingly, such ENSO state and from ice-free Laurentide and those resembling an El Niño state before ice a difference in sea-surface temperatures may Fenno-Scandinavian regions to the alternation sheets formed in the Northern Hemisphere account for the large global differences in cli- between glacial and interglacial periods that has to the present-day marked contrast between mate that characterized the earth before ice occurred since ca. -
Death Valley Lower Carbonate Aquifer Monitoring Program- Wells Down Gradient of the Proposed Yucca Mountian Nuclear Waste Repository
iU4 MOL.20080509.0010 DEATH VALLEY LOWER CARBONATE AQUIFER MONITORING PROGRAM- WELLS DOWN GRADIENT OF THE PROPOSED YUCCA MOUNTIAN NUCLEAR WASTE REPOSITORY U.S. DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT DE-FC28-06RW12368 YEAR ONE PROJECT REPORT PREPARED BY INYO COUNTY YUCCA MOUNTAIN REPOSITORY ASSESSMENT OFFICE Inyo County completed Year One of U.S. Department of Energy Cooperative Agreement No. DE-FC28-06RW12368. This report presents the results of research conducted within this cooperative agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the cooperative agreement is included in interpretive illustrations and discussions of the results of our analysis. The central element's of this Cooperative Agreement program was the drilling of exploratory wells, analysis of geochemical data, geophysical surveys, and geological mapping of the Southern Funeral Mountain Range. The culmination of this research was two numerical ground water models of the Southern Funeral Mountain Range and Yucca Mountain region demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley. 1.0 Introduction The focus of the investigations by the Hydrodynamics Group for Inyo County is to assemble the best possible data on the Paleozoic Carbonate Aquifer, and then to use that data to assess the likelihood of contaminant transport from the planned Yucca Mountain high-level nuclear waste repository to the biosphere in Inyo County. -
Figure 3-72. Groundwater Usage in Nevada in 2000. (Source: DIRS 175964-Lopes and Evetts 2004, P
AFFECTED ENVIRONMENT – CALIENTE RAIL ALIGNMENT Figure 3-72. Groundwater usage in Nevada in 2000. (Source: DIRS 175964-Lopes and Evetts 2004, p. 7.) There are a number of published estimates of perennial yield for many of the hydrographic areas in Nevada, and those estimates often differ by large amounts. The perennial-yield values listed in Table 3-35 predominantly come from a single source, the Nevada Division of Water Planning (DIRS 103406-Nevada Division of Water Planning 1992, for Hydrographic Regions 10, 13, and 14); therefore, the table does not show a range of values for each hydrographic area. In the Yucca Mountain area, the Nevada Division of Water Planning identifies a combined perennial yield for hydrographic areas 225 through 230. DOE obtained perennial yields from Data Assessment & Water Rights/Resource Analysis of: Hydrographic Region #14 Death Valley Basin (DIRS 147766-Thiel 1999, pp. 6 to 12) to provide estimates for hydrographic areas the Caliente rail alignment would cross: 227A, 228, and 229. That 1999 document presents perennial-yield estimates from several sources. Table 3-35 lists the lowest (that is, the most conservative) values cited in that document, which is consistent with the approach DOE used in the Yucca Mountain FEIS (DIRS 155970-DOE 2002, p. 3-136). DOE/EIS-0369 3-173 AFFECTED ENVIRONMENT – CALIENTE RAIL ALIGNMENT Table 3-35 also summarizes existing annual committed groundwater resources for each hydrographic area along the Caliente rail alignment. However, all committed groundwater resources within a hydrographic area might not be in use at the same time. Table 3-35 also includes information on pending annual duties within each of these hydrographic areas.