Draft DRECP and EIR/EIS CHAPTER II.4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Upper Neogene Stratigraphy and Tectonics of Death Valley — a Review
Earth-Science Reviews 73 (2005) 245–270 www.elsevier.com/locate/earscirev Upper Neogene stratigraphy and tectonics of Death Valley — a review J.R. Knott a,*, A.M. Sarna-Wojcicki b, M.N. Machette c, R.E. Klinger d aDepartment of Geological Sciences, California State University Fullerton, Fullerton, CA 92834, United States bU. S. Geological Survey, MS 975, 345 Middlefield Road, Menlo Park, CA 94025, United States cU. S. Geological Survey, MS 966, Box 25046, Denver, CO 80225-0046, United States dTechnical Service Center, U. S. Bureau of Reclamation, P. O. Box 25007, D-8530, Denver, CO 80225-0007, United States Abstract New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from N3.58 Ma to b1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ~3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. -
Interest and the Panamint Shoshone (E.G., Voegelin 1938; Zigmond 1938; and Kelly 1934)
109 VyI. NOTES ON BOUNDARIES AND CULTURE OF THE PANAMINT SHOSHONE AND OWENS VALLEY PAIUTE * Gordon L. Grosscup Boundary of the Panamint The Panamint Shoshone, also referred to as the Panamint, Koso (Coso) and Shoshone of eastern California, lived in that portion of the Basin and Range Province which extends from the Sierra Nevadas on the west to the Amargosa Desert of eastern Nevada on the east, and from Owens Valley and Fish Lake Valley in the north to an ill- defined boundary in the south shared with Southern Paiute groups. These boundaries will be discussed below. Previous attempts to define the Panamint Shoshone boundary have been made by Kroeber (1925), Steward (1933, 1937, 1938, 1939 and 1941) and Driver (1937). Others, who have worked with some of the groups which border the Panamint Shoshone, have something to say about the common boundary between the group of their special interest and the Panamint Shoshone (e.g., Voegelin 1938; Zigmond 1938; and Kelly 1934). Kroeber (1925: 589-560) wrote: "The territory of the westernmost member of this group [the Shoshone], our Koso, who form as it were the head of a serpent that curves across the map for 1, 500 miles, is one of the largest of any Californian people. It was also perhaps the most thinly populated, and one of the least defined. If there were boundaries, they are not known. To the west the crest of the Sierra has been assumed as the limit of the Koso toward the Tubatulabal. On the north were the eastern Mono of Owens River. -
Hydrologic Basin Death Valley California
Hydrologic Basin Death Valley California GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B Hydrologic Basin Death Valley California By CHARLES B. HUNT, T. W. ROBINSON, WALTER A. BOWLES, and A. L. WASHBURN GENERAL GEOLOGY OF DEATH VALLEY, CALIFORNIA GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B A! description of the hydrology, geochemistry, and patternedground of the saltpan UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract BI Hydrology-Continued Hydrology, by Charles B. Hunt and T. W. Robinson_ - 3 Descriptions and discharges of springs and of Introduction- 3 marshes-Continued Fieldwork- 3 Discharge of springs in the Furnace Creek fault Climate- 5 zone B35 Rainfall 5 Evapotranspiration discharge from the valley floor Evaporation 7 above the saltpan 37 Temperature- 8 Divisions of the valley according to sources of Humidity- 10 ground water 37 Wind- 11 Possible sources of water at Cottonball Marsh- 37 Rock types in the Death Valley hydrologic basin --- 11 Possible source of water at springs along Fur- Hard-rock formations 12 nace Creek fault zone 38 Unconsolidated Quaternary deposits 13 Geochemistry of the saltpan by Charles B. Hunt 40 Gravel deposits 13 General features 40 Fine-grained alluvial and playa deposits - 15 Fieldwork and acknowledgments 41 Salt deposits and saliferous playa deposits- 15 Geologic -
Open-File/Color For
Questions about Lake Manly’s age, extent, and source Michael N. Machette, Ralph E. Klinger, and Jeffrey R. Knott ABSTRACT extent to form more than a shallow n this paper, we grapple with the timing of Lake Manly, an inconstant lake. A search for traces of any ancient lake that inundated Death Valley in the Pleistocene upper lines [shorelines] around the slopes Iepoch. The pluvial lake(s) of Death Valley are known col- leading into Death Valley has failed to lectively as Lake Manly (Hooke, 1999), just as the term Lake reveal evidence that any considerable lake Bonneville is used for the recurring deep-water Pleistocene lake has ever existed there.” (Gale, 1914, p. in northern Utah. As with other closed basins in the western 401, as cited in Hunt and Mabey, 1966, U.S., Death Valley may have been occupied by a shallow to p. A69.) deep lake during marine oxygen-isotope stages II (Tioga glacia- So, almost 20 years after Russell’s inference of tion), IV (Tenaya glaciation), and/or VI (Tahoe glaciation), as a lake in Death Valley, the pot was just start- well as other times earlier in the Quaternary. Geomorphic ing to simmer. C arguments and uranium-series disequilibrium dating of lacus- trine tufas suggest that most prominent high-level features of RECOGNITION AND NAMING OF Lake Manly, such as shorelines, strandlines, spits, bars, and tufa LAKE MANLY H deposits, are related to marine oxygen-isotope stage VI (OIS6, In 1924, Levi Noble—who would go on to 128-180 ka), whereas other geomorphic arguments and limited have a long and distinguished career in Death radiocarbon and luminescence age determinations suggest a Valley—discovered the first evidence for a younger lake phase (OIS 2 or 4). -
Death Valley Lower Carbonate Aquifer Monitoring Program- Wells Down Gradient of the Proposed Yucca Mountian Nuclear Waste Repository
iU4 MOL.20080509.0010 DEATH VALLEY LOWER CARBONATE AQUIFER MONITORING PROGRAM- WELLS DOWN GRADIENT OF THE PROPOSED YUCCA MOUNTIAN NUCLEAR WASTE REPOSITORY U.S. DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT DE-FC28-06RW12368 YEAR ONE PROJECT REPORT PREPARED BY INYO COUNTY YUCCA MOUNTAIN REPOSITORY ASSESSMENT OFFICE Inyo County completed Year One of U.S. Department of Energy Cooperative Agreement No. DE-FC28-06RW12368. This report presents the results of research conducted within this cooperative agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the cooperative agreement is included in interpretive illustrations and discussions of the results of our analysis. The central element's of this Cooperative Agreement program was the drilling of exploratory wells, analysis of geochemical data, geophysical surveys, and geological mapping of the Southern Funeral Mountain Range. The culmination of this research was two numerical ground water models of the Southern Funeral Mountain Range and Yucca Mountain region demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley. 1.0 Introduction The focus of the investigations by the Hydrodynamics Group for Inyo County is to assemble the best possible data on the Paleozoic Carbonate Aquifer, and then to use that data to assess the likelihood of contaminant transport from the planned Yucca Mountain high-level nuclear waste repository to the biosphere in Inyo County. -
Introduction
1 INTRODUCTION This monograph is an introductory descriptive grammar of Tlimpisa Shoshone, meant to provide both layman and specialist with a basic understanding of how the language works as a linguistic system. In this sense, it is intended to be a "nuts and bolts" grammar with lots of examples illustrating the most important grammatical elements and processes in the language. 1 Tlimpisa Shoshone is a dialect of the language most often called Panamint in the technical literature (e.g., Freeze and Iannucci 1979, Henshaw 1883, Kroeber 1939, Lamb 1958a and 1964, McLaughlin 1987, Miller 1984) . The language is also known as Panamint Shoshone (Fowler and Fowler 1971, Merriam 1904, Miller et al. 1971), Koso (= Coso) or Koso Shoshone (Kroeber 1925, Lamb 1958a), and simply Shoshone (Steward 1938). Panamint and two other closely related languages, Shoshone proper and Comanche, comprise the Central Numic branch of the Numic subfamily of the northern division of the uto-Aztecan family of American Indian languages (see Lamb 1964, Miller 1984, Kaufman and Campbell 1981). Speakers of uto-Aztecan languages occupied more territory in aboriginal America than any other group. More than 30 Uto-Aztecan languages were spoken over a vast area stretching from the Salmon River in central Idaho south through the Great Basin and peripheral areas into the Southwest and through northern and central Mexico. Colonies of Aztecan speakers were also scattered further south into Central America. At the time of 1 UTO-AZTECAN FAMILY Northern Division NUMlC Central Numic -
The California Desert CONSERVATION AREA PLAN 1980 As Amended
the California Desert CONSERVATION AREA PLAN 1980 as amended U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT U.S. Department of the Interior Bureau of Land Management Desert District Riverside, California the California Desert CONSERVATION AREA PLAN 1980 as Amended IN REPLY REFER TO United States Department of the Interior BUREAU OF LAND MANAGEMENT STATE OFFICE Federal Office Building 2800 Cottage Way Sacramento, California 95825 Dear Reader: Thank you.You and many other interested citizens like you have made this California Desert Conservation Area Plan. It was conceived of your interests and concerns, born into law through your elected representatives, molded by your direct personal involvement, matured and refined through public conflict, interaction, and compromise, and completed as a result of your review, comment and advice. It is a good plan. You have reason to be proud. Perhaps, as individuals, we may say, “This is not exactly the plan I would like,” but together we can say, “This is a plan we can agree on, it is fair, and it is possible.” This is the most important part of all, because this Plan is only a beginning. A plan is a piece of paper-what counts is what happens on the ground. The California Desert Plan encompasses a tremendous area and many different resources and uses. The decisions in the Plan are major and important, but they are only general guides to site—specific actions. The job ahead of us now involves three tasks: —Site-specific plans, such as grazing allotment management plans or vehicle route designation; —On-the-ground actions, such as granting mineral leases, developing water sources for wildlife, building fences for livestock pastures or for protecting petroglyphs; and —Keeping people informed of and involved in putting the Plan to work on the ground, and in changing the Plan to meet future needs. -
Wildrose Wash Endangered Desert Legacy
Wildrose Wash Endangered Desert Legacy Location: The Wildrose Wash area is located in the Mojave Desert, in Inyo County, about 25 miles north of the town of Trona. The area is located south of Death Valley National Park and east of the Argus Range Wilderness. It abuts or lies very near to the western edge of Surprise Canyon Wilderness. The southern portion of the area lies to the east of Trona Wildrose Road, while the northern portion lies to the north/northwest of Trona Wildrose Road. Management Agency: Bureau of Land Management, Ridgecrest Field Office Description: The Wildrose Wash area lies within the Panamint Valley, an expansive internally-drained closed basin that retains water and does not allow outflow to the ocean or other external bodies of water. Panamint Valley contains several ephemeral lakes that hold water after big rains. The beautiful, multicolored Argus Range can be seen to the west and the Panamint Range to the east. Wildlife and Plants: Species that make this area their home include the endangered Inyo California Towhee, and the protected desert bighorn sheep (photo above). Other species that make this area home include Townsend’s Big- eared bat, prairie falcon, Pallid bat, Panamint alligator lizard, Antioch multilid wasp, Pinyon rockcress, Panamint dudleya, Panamint Mountains lupine, Hoffmann’s buckwheat, Amargosa beardtongue, American badger, Death Valley round-leaved phacelia, Pinyon Mesa buckwheat, Mormon needle grass, Death Valley sandpaper-plant, and polished blazing-star. This area has ten distinct plant communities, including Mojave Riparian Forest and Mesquite Bosque. The rare Panamint Daisy can also be found in this area (photo above). -
Geology of the Panamint Butte Quadrangle, Inyo County, California
Geology of the Panamint Butte Quadrangle, Inyo County, California By WAYNE E; HALL GEOLOGICAL SURVEY BULLETIN 1299 Prepared in cooperation with the California Department of Conservation, Division of Mines and Geology KhCEIVED JUL161971 u.8.1 teuisfiUt, it UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 75-610447 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract_________________________________-_.-______-__--_-_--_--- 1 Introduction. ___________-______--_____--_----.--___--__-__--------- 2 Climate.and vegetation._________.__....__.._____-___________-__ 3 Water supply-________________________________________________ 3 Previous work__________________________.___._____._1________ 4 Acknowledgments- _______________._______..____-__-_---------_- 4 General geology.__________________________-__..____--_----_-_--__-- 5 Precambrian(?) rocks._____________.__________.._----___-___-_-_-__- 7 Paleozoic rocks._____.__.___--________-___-____-_-----_---_--.-.-_- 8 Cambrian System_____________________________________________ 8 Carrara Formation.__________________..-_____--____---__-_- 8 Bonanza King Formation___._.______..__._._.....____.____ 10 Nopah Formation._____...____-_-_.....____________-_-_-__- 11 Ordovician System___________________________________________ 13 Pogonip Group_____-__-______-____-_-..----------_--._-_-_- 13 Eureka Quartzite.______________-_____..___-_-_---_-----_--_ 16 Ely Springs Dolomite__---__-______________________________ 18 Silurian and Devonian Systems___________..__-_-__----_-__-___- 21 Hidden Valley Dolomite......._____________________________ 21 Devonian System_____________________________________________ 22 Lost Burro Formation.....__________________________________ 22 Mississippian System.___._____..____._.._..__.___..._._._..__. -
Death Valley National Monument
DEATH VALLEY NATIONAL MONUMENT D/ETT H VALLEY NATIONAL 2 OPEN ALL YEAR o ^^uJv^/nsurty 2! c! Contents 2 w Scenic Attractions 2 2! Suggested Trips in Death Valley 4 H History 7 Indians 8 Wildlife 9 Plants 12 Geology 18 How To Reach Death Valley 23 By Automobile 23 By Airplane, Bus, or Railroad 24 Administration 25 Naturalist Service 25 Free Public Campground 25 Accommodations 25 References 27 UNITED STATES DEPARTMENT OF THE INTERIOR- Harold L. Ickes, Secretary NATIONAL PARK SERVICE Arno B. Cammerer, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON EATH VALLEY National Monument was created by Presidential proclamation on 2February 11), 1933, and enlarged to its present dimensions on March 26, 1937. Embracing 2,981 square miles, or nearly 2 million acres of primitive, unspoiled desert country, it is the second largest area administered by the National Park Service in the United States proper. Famed as the scene of a tragic episode in the gold-rush drama of '49, Death Valley has long been known to scientist and layman alike as a region rich in scientific and human interest. Its distinctive types of scenery, its geological phenomena, its flora, and climate are not duplicated by any other area open to general travel. In all ways it is different and unique. The monument is situated in the rugged desert region lying east of the High Sierra in eastern California and southwestern Nevada. The valley itself is about 140 miles in length, with the forbidding Panamint Range forming the western wall, and the precipitous slopes of the Funeral Range bounding it on the east. -
Regional Stratigraphy of Oligocene and Lower Miocene Strata in the Yucca Mountain Region
* *0Ad REGIONAL STRATIGRAPHY OF OLIGOCENE AND LOWER MIOCENE STRATA IN THE YUCCA MOUNTAIN REGION Prepared for U.S. Nuclear Regulatory Commission Contract NRC-02-97-009 Prepared by Danielle A. Murray John A. Stamatakos Kenneth D. Ridgway Center for Nuclear Waste Regulatory Analyses San Antonio, Texas July 2002 CONTENTS Section Page FIGURES ............... ................ TABLES ................ ................ .vii ACKNOWLEDGMENTS .... ................ ..... ix EXECUTIVE SUMMARY .... ................ ..... xi 1 INTRODUCTION ...... ................ .... 1-1 1.1 Purpose........ ................ .... 1-1 1.2 Scope ......... ................ .... 1-2 2 GEOLOGIC SETTING .. 2-1 OLIGOCENE AND LOWER MIOCENE STRATIGRAPHY ..... 3-1 ...... 3 . 3.1 Outcrop Stratigraphy ............................ 3-1 ...... 3.1.1 Funeral Mountains ....................... ...... 3.1.2 Nevada Test Site ........................ 3-7 ...... 3.1.3 Oligocene and Lower Miocene Lithostratigraphy . ..... 3.2 Subsurface Stratigraphy ......................... 3-12 ..... 3.2.1 Nye County Well NC-EWDP-1 DX ........... 3-13 ..... 3.2.2 Nye County Well NC-EWDP-2DB ........... 3-15 ..... 3.2.3 Nye County Well NC-EWDP-3D ............ ..... 3.3 Correlation of Well Stratigraphy to Outcrop Exposures . ..... 3.3.1 Nye County Well NC-EWDP-2DB ........... ..... 3.3.2 Nye County Well NC-EWDP-1 DX ........... ..... 3.3.3 Nye County Well NC-EWDP-3D ............ ..... 4 CROSS SECTIONS ......................................... ........... 4.1 Regional Cross Section ................................ -
Tribally Approved American Indian Ethnographic Analysis of the Proposed Amargosa Valley Solar Energy Zone
Tribally Approved American Indian Ethnographic Analysis of the Proposed Amargosa Valley Solar Energy Zone Ethnography and Ethnographic Synthesis For Solar Programmatic Environmental Impact Statement and Solar Energy Study Areas in Portions of Arizona, California, Nevada, and Utah Participating Tribes Pahrump Paiute Tribe, Pahrump, Nevada Timbisha Shoshone Tribe, Death Valley, California By Richard W. Stoffle Kathleen A. Van Vlack Hannah Z. Johnson Phillip T. Dukes Stephanie C. De Sola Kristen L. Simmons Bureau of Applied Research in Anthropology School of Anthropology University of Arizona October 2011 Solar PEIS Ethnographic Assessment Page 1 AMARGOSA VALLEY The proposed Amargosa Valley solar energy zone (SEZ) is located about 14 miles south of Beatty, Nevada. The center of the purposed SEZ is located 16 miles northwest of the town of Amargosa Valley, Nevada. The proposed SEZ includes a large section of land west and south of Highway 95, with a portion located on the east side of the highway that incorporates part of Steve‘s Pass (see Figure 1). Figure 1 Google Earth Image of the Amargosa Valley SEZ American Indian Study Area (SEZ Outlined in Red) The Amargosa Valley SEZ American Indian study area extends beyond the proposed boundaries of the SEZ and includes the cultural resources in the surrounding landscape. The Amargosa Valley SEZ American Indian study area includes plant communities, geological features, water sources, and trail systems located in and around the proposed SEZ boundary. The trail systems pass through the SEZ American Indian study area and were used by people from neighboring or distance communities to reach nearby medicinal and ceremonial areas.