UC Riverside UC Riverside Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
California Vegetation Map in Support of the DRECP
CALIFORNIA VEGETATION MAP IN SUPPORT OF THE DESERT RENEWABLE ENERGY CONSERVATION PLAN (2014-2016 ADDITIONS) John Menke, Edward Reyes, Anne Hepburn, Deborah Johnson, and Janet Reyes Aerial Information Systems, Inc. Prepared for the California Department of Fish and Wildlife Renewable Energy Program and the California Energy Commission Final Report May 2016 Prepared by: Primary Authors John Menke Edward Reyes Anne Hepburn Deborah Johnson Janet Reyes Report Graphics Ben Johnson Cover Page Photo Credits: Joshua Tree: John Fulton Blue Palo Verde: Ed Reyes Mojave Yucca: John Fulton Kingston Range, Pinyon: Arin Glass Aerial Information Systems, Inc. 112 First Street Redlands, CA 92373 (909) 793-9493 [email protected] in collaboration with California Department of Fish and Wildlife Vegetation Classification and Mapping Program 1807 13th Street, Suite 202 Sacramento, CA 95811 and California Native Plant Society 2707 K Street, Suite 1 Sacramento, CA 95816 i ACKNOWLEDGEMENTS Funding for this project was provided by: California Energy Commission US Bureau of Land Management California Wildlife Conservation Board California Department of Fish and Wildlife Personnel involved in developing the methodology and implementing this project included: Aerial Information Systems: Lisa Cotterman, Mark Fox, John Fulton, Arin Glass, Anne Hepburn, Ben Johnson, Debbie Johnson, John Menke, Lisa Morse, Mike Nelson, Ed Reyes, Janet Reyes, Patrick Yiu California Department of Fish and Wildlife: Diana Hickson, Todd Keeler‐Wolf, Anne Klein, Aicha Ougzin, Rosalie Yacoub California -
Petrology and Sedimentation of the Upper Precambrian Sioux Quartzite
PETROLOGY AND SEDIMENTATION OF THE UPPER PRECAMBRIAN SIOUX QUARTZITE MINNESOTA, SOUTH DAKOTA AND IOWA A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY RICHARD ELMO WEBER IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE MARCH 1,1981 Frontispiece--PALISADES OF SIOUX QUARTZITE SPLIT ROCK CREEK NEAR GAJ.(RETSON, SOUTH DAKOTA i ABSTRACT The Upper Precambrian Sioux Quartzite is exposed at several locations along an east-west trend 17 5 miles long and 30 miles wide between Mitchell, South Dakota and New Ulm, Minnesota. It rests unconformably on Lower Precambrian rocks and is overlain by Cretaceous strata and Pleistocene drift. A coarse basal con- glomerate is exposed near New Ulm a short distance from the underlying granite. but contains no granitic cl:1,3ts . Quartzite is gently folded. It is intruded by diabase at Corson, South Dakota. The formation consists of over 1600 meters of o:-thoquartzite sandstone with minor interbedded quartzose conglomerate and stone. Conglomeratic units are present in the lower two-thirds 0£ the section .:!nd minor th.in mudstone.s occur in the up;:ier third. The compositionally and texturally supermature orthoquartzite is composed almost exclusively of well rounded, well sorted 1 mcno- crystalline quartz. Detrital chert and iron formation grains are present in some samples. Polycrystalline quartz is abundant cnly near New Ulm, Minnesota, wher-e it was derived from the underlying granite. In all other parts of the Sioux it makes up only 2 small percent of the total detrital grains. No feldspar is present in any of th2 109 thin sections examined. -
NPCA Comments on Proposed Silurian
Stanford MillsLegalClinic Environmental Law Clinic Crown Quadrangle LawSchool 559 Nathan Abbott Way Stanford, CA 94305-8610 Tel 650 725-8571 Fax 650 723-4426 www.law.stanford.edu September 9, 2014 Via Electronic Mail and Federal Express James G. Kenna, State Director Bureau of Land Management California State Office 2800 Cottage Way, Suite W-1623 Sacramento, CA 95825 (916) 978-4400 [email protected] Katrina Symons Field Manager Bureau of Land Management Barstow Field Office 2601 Barstow Road Barstow, CA 92311 (760) 252-6004 [email protected] Dear State Director Kenna and Field Manager Symons: Enclosed please find comments by the National Parks Conservation Association (“NPCA”) on the solar and wind projects proposed by Iberdrola Renewables, Inc., in Silurian Valley, California. We understand that the U.S. Bureau of Land Management (“BLM”) is currently considering whether to grant the Silurian Valley Solar Project a variance under the October 2012 Record of Decision for Solar Energy Development in Six Southwestern States. We also understand that BLM is currently evaluating the Silurian Valley Wind Project under the National Environmental Policy Act. As the enclosed comments make clear, NPCA has serious concerns about the proposed projects’ compliance with applicable laws and policies, and about their potentially significant adverse effects on the Silurian Valley and surrounding region. We thank you for your consideration of these comments. NPCA looks forward to participating further in the administrative processes associated with the proposed projects. Respectfully submitted, Elizabeth Hook, Certified Law Student Community Law ❖ Criminal Defense ❖ Environmental Law ❖ Immigrants’ Rights ❖ International Human Rights and Conflict Resolution ❖ Juelsgaard Intellectual Property and Innovation ❖ Organizations and Transactions ❖ Religious Liberty ❖Supreme Court Litigation ❖ Youth and Education Law Project Mr. -
Garlock Fault: an Intracontinental Transform Structure, Southern California
GREGORY A. DAVIS Department of Geological Sciences, University of Southern California, Los Angeles, California 90007 B. C. BURCHFIEL Department of Geology, Rice University, Houston, Texas 77001 Garlock Fault: An Intracontinental Transform Structure, Southern California ABSTRACT Sierra Nevada. Westward shifting of the north- ern block of the Garlock has probably contrib- The northeast- to east-striking Garlock fault uted to the westward bending or deflection of of southern California is a major strike-slip the San Andreas fault where the two faults fault with a left-lateral displacement of at least meet. 48 to 64 km. It is also an important physio- Many earlier workers have considered that graphic boundary since it separates along its the left-lateral Garlock fault is conjugate to length the Tehachapi-Sierra Nevada and Basin the right-lateral San Andreas fault in a regional and Range provinces of pronounced topogra- strain pattern of north-south shortening and phy to the north from the Mojave Desert east-west extension, the latter expressed in part block of more subdued topography to the as an eastward displacement of the Mojave south. Previous authors have considered the block away from the junction of the San 260-km-long fault to be terminated at its Andreas and Garlock faults. In contrast, we western and eastern ends by the northwest- regard the origin of the Garlock fault as being striking San Andreas and Death Valley fault directly related to the extensional origin of the zones, respectively. Basin and Range province in areas north of the We interpret the Garlock fault as an intra- Garlock. -
DOCKETED 1516 Ninth Street 09-RENEW EO-1 Sacramento, CA 95814-5512 TN 75171 [email protected] FEB 23 2015
PO Box 63 Shoshone, CA 92384 760.852.4339 www.amargosaconservancy.org February 23, 2015 California Energy Commission California Energy Commission Dockets Office, MS-4 Docket No. 09-RENEW EO-01 DOCKETED 1516 Ninth Street 09-RENEW EO-1 Sacramento, CA 95814-5512 TN 75171 [email protected] FEB 23 2015 Re: The DRECP and the Amargosa Watershed On behalf of the members and Board of Directors of the Amargosa Conservancy, please accept our comments herein on the Desert Renewable Energy Conservation Plan. Please refer to our second comment letter, dated February 23, 2015, for our comments on National Conservation Lands and Special Recreation Management Areas. Please also refer to the letter from Kevin Emmerich and Laura Cunningham, dated January 30, 2015, which the Amargosa Conservancy is signatory to. This letter details the need for a new program alternative in the DRECP which properly evaluates rooftop solar. To sum the key points of this letter: No groundwater pumping should be permissible in the Amargosa Watershed, including Charleston View, Silurian Valley, and Stewart Valley. Such activities would cause direct mortality of endangered species such as the Amargosa vole. USFWS take permits should be required for any groundwater pumping, and such permits should not be issued given the precarious conservation status of the vole. No mitigation can adequately compensate the ecosystem for the damage done by groundwater withdrawal. Retirement of water rights is not sufficient, and monitoring and triggering schemes are completely inadequate to protect the resources of the Amargosa Wild and Scenic River. Due to numerous biological, cultural, and social resource conflicts, Charleston View is not an appropriate place for utility-scale solar, should not be designated as a Development Focus Area (DFA). -
Late Quaternary Stratigraphy and Luminescence Geochronology of the Northeastern Mojave Desert
ARTICLE IN PRESS Quaternary International 166 (2007) 61–78 Late Quaternary stratigraphy and luminescence geochronology of the northeastern Mojave Desert Shannon A. Mahana,Ã, David M. Millerb, Christopher M. Mengesc, James C. Younta aUnited States Geological Survey, Box 25046 MS 974, Denver, CO 80225, USA bUnited States Geological Survey, 345 Middlefield Road, MS 973, Menlo Park, CA 94025, USA cUnited States Geological Survey, 520 N. Park Ave., Tucson, AZ 85719-5035, USA Available online 8 January 2007 Abstract The chronology of the Holocene and late Pleistocene deposits of the northeastern Mojave Desert have been largely obtained using radiocarbon ages. Our study refines and extends this framework using optically stimulated luminescence (OSL) to date deposits from Valjean Valley, Silurian Lake Playa, Red Pass, and California Valley. Of particular interest are eolian fine silts incorporated in ground- water discharge (GWD) deposits bracketed at 185–140 and 20–50 ka. Alluvial fan deposits proved amenable for OSL by dating both eolian sand lenses and reworked eolian sand in a matrix of gravel that occurs within the fan stratigraphy. Lacustrine sand in spits and bars also yielded acceptable OSL ages. These OSL ages fill gaps in the geochronology of desert deposits, which can provide data relevant to understanding the responses of several depositional systems to regional changes in climate. This study identifies the most promising deposits for future luminescence dating and suggests that for several regions of the Mojave Desert, sediments from previously undated landforms can be more accurately placed within correct geologic map units. Published by Elsevier Ltd. 1. Introduction Previous chronologic studies in the northeastern Mojave Desert area include magneto-stratigraphic studies and Extracting paleoclimatic and paleoenvironmental infor- tephrochronology of the upper Pliocene to middle Quatern- mation from terrestrial deposits is an important area of ary Tecopa beds (Hillhouse, 1987; Sarna-Wojcicki et al., Quaternary geologic research. -
Is There Any Evidence of Mega-Lake Manly in the Eastern Mojave Desert During Oxygen Isotope Stage 5E/6?
Quaternary Research 57, 177–179 (2002) doi:10.1006/qres.2001.2299, available online at http://www.idealibrary.com on REPLY Is There Any Evidence of Mega-Lake Manly in the Eastern Mojave Desert during Oxygen Isotope Stage 5e/6? I am pleased to have the opportunity to defend and clarify the implication that Ku’s dates are more reliable than those of my hypothesis regarding the extent of the Blackwelder stand of Hooke and Lively (see Hooke and Dorn, 1992) is debatable, Lake Manly during marine oxygen isotope stage 6 (OS6). Let given that both use the -counting technique and thus may suffer me start by addressing a couple of general points. from problems with U migration. First, with reference to the pejorative prefix “mega” in Enzel Salt Spring Hills shoreline. Enzel et al. maintain that this et al.’s comment, let me put the size of the lake under discussion shoreline is cut into colluvium and, at its southeastern end, into in perspective. If water were to fill Death Valley to the 90-m alluvial fan deposits. I agree with the former. On the other hand, level today, the surface area would be 1600 km2 (Meek, 1997), air photos, a map in Anderson and Wells (1997), and my own whereas the area Hale proposed, based on overflow at Ash Hill observations do not support the interpretation that it is cut into an pass, would have been 8000 km2 (Hale, 1985). The surface alluvial fan at its southeastern end. Even if further study shows area of the OS6 lake proposed in my paper is 2800 km2, less that it is, however, Enzel et al.’s statements about the age of than half the size of Hale’s lake and less than twice the size a the fan unit are misleading (1) because they are based on dates 90-m lake would have were it to occupy the valley today. -
Biological Goals and Objectives
Appendix C Biological Goals and Objectives Draft DRECP and EIR/EIS APPENDIX C. BIOLOGICAL GOALS AND OBJECTIVES C BIOLOGICAL GOALS AND OBJECTIVES C.1 Process for Developing the Biological Goals and Objectives This section outlines the process for drafting the Biological Goals and Objectives (BGOs) and describes how they inform the conservation strategy for the Desert Renewable Energy Conservation Plan (DRECP or Plan). The conceptual model shown in Exhibit C-1 illustrates the structure of the BGOs used during the planning process. This conceptual model articulates how Plan-wide BGOs and other information (e.g., stressors) contribute to the development of Conservation and Management Actions (CMAs) associated with Covered Activities, which are monitored for effectiveness and adapted as necessary to meet the DRECP Step-Down Biological Objectives. Terms used in Exhibit C-1 are defined in Section C.1.1. Exhibit C-1 Conceptual Model for BGOs Development Appendix C C-1 August 2014 Draft DRECP and EIR/EIS APPENDIX C. BIOLOGICAL GOALS AND OBJECTIVES The BGOs follow the three-tiered approach based on the concepts of scale: landscape, natural community, and species. The following broad biological goals established in the DRECP Planning Agreement guided the development of the BGOs: Provide for the long-term conservation and management of Covered Species within the Plan Area. Preserve, restore, and enhance natural communities and ecosystems that support Covered Species within the Plan Area. The following provides the approach to developing the BGOs. Section C.2 provides the landscape, natural community, and Covered Species BGOs. Specific mapping information used to develop the BGOs is provided in Section C.3. -
Dedicated to the Future of the Amargosa Watershed PO Box 63 Shoshone, CA 92384 760.852.4339
PO Box 63 Shoshone, CA 92384 760.852.4339 www.amargosaconservancy.org February 23, 2015 California Energy Commission Dockets Office, MS-4 Docket No. 09-RENEW EO-01 1516 Ninth Street Sacramento, CA 95814-5512 [email protected] Re: National Conservation Lands and Special Recreation Management Areas in the Amargosa Watershed in the Draft DRECP Please accept these comments regarding potential additions to National Conservation Lands and Special Recreation Management Areas in the DRECP. The Amargosa Watershed is a series of interconnected basins which all drain into the Amargosa River. The Amargosa River is one of only two perennial rivers in the Mojave Desert, and one of the only free flowing desert rivers in the US southwest. 26 miles of the river are protected as a congressionally designated Wild & Scenic River. The 150 mile bi-state river and its spring and stream tributaries support a truly unique and rich riparian and aquatic natural community. The Amargosa Basin contains one of the two largest assemblages of listed, endemic and rare species in North America—desert fish, rare plants, mammals, and birds—that are wholly dependent on perennial sources of water. Perennial surface water is located in isolated small oases, streams, springs, and in very limited stretches of the Amargosa River. Except during occasional intense rainstorms, the perennial flow in the Wild and Scenic section of the Amargosa River is completely supplied by groundwater. Several significant springs emerge along the river corridor between Shoshone and the Amargosa River Canyon south of Tecopa that contribute to the flow of the Amargosa River. -
West Mojave Route Management Plan, Historic Properties Treatment Plan, Attachment 5: Historic Trails Context Study FINAL VERSION May 2019
West Mojave Route Management Plan, Historic Properties Treatment Plan, Attachment 5: Historic Trails Context Study FINAL VERSION May 2019 Prepared for: United States Department of the Interior Bureau of Land Management California Desert District Office 22835 Calle San Juan de Los Lagos Moreno Valley, California 92553 Prepared by: Diane L. Winslow, M.A., RPA, Shannon Davis, M.A., RPH, Sherri Andrews, M.A., RPA, Marilyn Novell, M.S., and Lindsey E. Daub, M.A., RPA 2480 N. Decatur Blvd., Suite 125 Las Vegas, NV 89108 (702) 534-0375 ASM Project Number 29070 West Mojave Route Management Plan, Historic Properties Treatment Plan, Attachment 5: Historic Trails Context Study Prepared for: United States Department of the Interior Bureau of Land Management California Desert District Office 22835 Calle San Juan de Los Lagos Moreno Valley, California 92553 Prepared by: Diane L. Winslow, M.A., RPA, Shannon Davis, M.A., RPH, Sherri Andrews, M.A., RPA, Marilyn Novell, M.S., and Lindsey E. Daub, M.A., RPA ASM Affiliates, Inc. 2480 North Decatur Boulevard, Suite 125 Las Vegas, Nevada 89108 May 2019 PN 29070 Table of Contents TABLE OF CONTENTS Chapter Page MANAGEMENT SUMMARY ................................................................................. v 1. INTRODUCTION ............................................................................................. 1 2. LITERATURE REGARDING TRAILS, ROADS, AND HIGHWAYS ............... 7 3. DEFINING TRAILS, ROADS, AND HIGHWAYS ........................................... 9 4. PREHISTORIC, PROTO-HISTORIC, AND -
Understanding the Late Mesoproterozoic Earth System From
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2018 Understanding the Late Mesoproterozoic Earth System from the Oldest Strata in Grand Canyon: C-Isotope Stratigraphy and Facies Analysis of the 1254 Ma Bass Formation, Grand Canyon Supergroup, AZ., USA Erin C. Lathrop Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Lathrop, Erin C., "Understanding the Late Mesoproterozoic Earth System from the Oldest Strata in Grand Canyon: C-Isotope Stratigraphy and Facies Analysis of the 1254 Ma Bass Formation, Grand Canyon Supergroup, AZ., USA" (2018). All Graduate Theses and Dissertations. 7046. https://digitalcommons.usu.edu/etd/7046 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. UNDERSTANDING THE LATE MESOPROTEROZOIC EARTH SYSTEM FROM THE OLDEST STRATA IN GRAND CANYON: C-ISOTOPE STRATIGRAPHY AND FACIES ANALYSIS OF THE 1254 MA BASS FORMATION, GRAND CANYON SUPERGROUP, AZ., USA by Erin C. Lathrop A thesis submitted in partial fulfillment of the requirements for the of MASTER OF SCIENCE in Geology Approved: ______________________ ____________________ Carol M. Dehler, Ph.D. Joel L. Pederson, Ph.D. Major Professor Committee Member ______________________ ____________________ Jerome M. Timmons, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2018 ii Copyright © Erin C. -
Guidebook for Fieutrips In• Eastern Connecticut Arul the Hartford &Si,N
Guidebook for FieUtrips in• Eastern Connecticut arul the Hartford &si,n HOLYOKE HAMPDEN EASTERN HI HIANDS DIKE/SILL ME :AMORPHIC BASEMENT ROCKS STATE GEOLOGICAL AND NATURAL HISTORY SURVEY OF CoNNECTICUT THE NATURAL REsouRCES CENTER DEPARTMENT OF ENVIRONMENTAL PROTECTION MARCH 19, 20, 21, AND 22, 1995 Guidebook Number 7 NoJITHFAST SECTION, GEOLOGIO\L SOCIEIY OF AMERICA 30rn .ANNuAL MEETING CROMWEIL, CoNNECTICUT MARCH 19, 20, 21AND22, 1995 Guidebook far Piek/trips in &tern Connecticut and the Hartford Basin Editor Nancy W. McHone State Geological and Natural History Survey of Connecticut Guidebook Number 7 1995 State Geological and Narural History Survey of Connectirut The Natural Resources Center Department of Environmental Protection Governor of Connecticut HONORABLE JOHN ROWLAND Commissioner of the Deparment of Environmental Protection SIDNEY J. HOLBROOK State Geologist Director, Natural Resources Center RICHARD HYDE For information on ordering this guidebook and other publications of the Connecticut Geological and Natural History Survey, consult the List of Publications available from the survey, Department of Environmental Protection, 79 Flm Street, Hartford, CT 06106-5127 Telephone (203) 424-3555 Editors Preface I It has been twenty-four years since the last Northeast Section of the Geological Society of America meeting in Connecticut. Since that time our understanding of the geological history of northeastern USA and southeastern Canada has greatly increased. The fieldtrips described in this guide incorporate, and add to, our understanding of that history. Trip A examines metamorphic rocks, using mineral cooling ages to constrain the boundaries of terranes and the timing of i terrane assembly. The sedimentary and basalt units of the Hartford Basin are the subjects of trips B and D.