Abstracts from Meeting

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts from Meeting TABLE OF CONTENTS Meeting at a glance Inside Covers Table of Contents 01 Laval University Campus Map 02 General Information 03 Meetings Building: Pavillon Alexandre-Vachon 04 SIP Officers 05 SIP Committees 06 PROGRAM 07 Sunday & Monday 09 POSTER SESSION I 10 Tuesday 13 Wednesday 15 POSTER SESSION II 18 Thursday 21 ABSTRACTS 27 Monday 29 POSTER SESSION I 36 Tuesday 53 Wednesday 64 POSTER SESSION II 80 Thursday 97 Authors Index 116 Pages for your Notes 120 1 1 Pavillon de l’Est 2 Pavillon de l’éducation physique et des sports (PEPS) 3 Pavillon de Médecine dentaire 4 Centre de foresterie des Laurentides 5 Pavillon Abitibi-Price 6 Pavillon Palasis-Prince 7 Maison Omer-Gingras 8 Pavillon des services 9 Pavillon Ferdinand-Vandry 10 Pavillon Charles-Eugène-Marchand 11 Pavillon Alexandre-Vachon University CampusMap Laval 12 Pavillon Adrien-Pouliot 13 Pavillon Charles-De Koninck 14 Pavillon Jean-Charles-Bonenfant 15 Pavillon des Sciences de l’éducation Virus Division 16 Pavillon Félix-Antoine-Savard Satellite 17 Pavillon Louis-Jacques-Casault 18 Pavillon Paul-Comtois 19 Maison Eugène-Roberge 20 Maison Marie-Sirois 21 Pavillon Agathe-Lacerte 22 Pavillon Ernest-Lemieux 23 Pavillons Alphonse-Desjardins et Maurice-Pollack 2 24 Pavillon H.-Biermans-L.-Moraud Conferences 25 Pavillon Alphonse-Marie-Parent 26 Pavillon J.-A.-De Sève Mixer 27 Pavillon La Laurentienne 28 Édifice La Fabrique 29 Édifice du Vieux-Séminaire-de-Québec 30 Pavillon de l’Envirotron 31 Pavillon d’optique-photonique (en construction) 32 Pavillon Gene H. Kruger 33 Édifice logeant Héma-Québec 34 Maison Michael-John-Brophy 35 Pavillon Gérard-Bisaillon (centrale d'énergie) Registration Services Aug 13 A Bibliothèque + B Caisse populaire Desjardins, guichet automatique C Sécurité-stationnement Opening D Arrêt métrobus (800-801) Ceremony E Activités sportives Registration Résidences Aug 12 21 Pavillon Agathe-Lacerte 22 Pavillon Ernest-Lemieux 23 Pavillons Alphonse-Desjardins et Maurice-Pollack 24 Pavillon H.-Biermans-L.-Moraud 25 Pavillon Alphonse-Marie-Parent General Information AUGUST 12th IF YOU ARE NOT GOING TO THE EXCURSION, BUT REGISTRATION - from 1:00 pm to 7:00 pm ONLY TO THE BBQ: WHERE: Pavillon Moreau, Main Entrance (see #24 on the Shuttles will pick you up at Laval University at 4:15 pm. MAP) MEETING POINT: Pavillon Alphonse-Marie-Parent (#25 on Laval University Residences Services the MAP) (Residences) Université Laval, Québec DEPARTURE TIME: 4:15 pm Phone number: (418) 656-5632 email: [email protected] After the BBQ, progressive departures will be scheduled. On the way back to Quebec City, buses will be making several MIXER - from 6:00 pm to 9:00 pm stops: Hotel Le Delta, Hotel Universel, Hotel Le Classique, WHERE: Pavillon Charles-de Koninck, L’ATRIUM (see #13 Wilfrid & Lindbergh. on the MAP) IF YOU ARE GOING BY CAR TO THE BBQ: AUGUST 13th From Laval University: REGISTRATION - from 7:30 am to 12:30pm Take Highway Robert Bourrassa (#740 North), and Highway WHERE: Pavillon Adrien-Pouliot, Room 1112 (see #12 on the 40 East (Autoroute de la Capitale), then Route 138 East, fol- MAP) lowing indications for Sainte-Anne-de-Beaupré and Mont- Sainte-Anne. In Beaupré, follow Route 360 to Mont-Sainte- The REGISTRATION DESK will move to the Pavillon Alex- Anne. andre-Vachon (see # 11 on the MAP) in the afternoon (where sessions will be held). From Downtown Québec: Take Highway Dufferin-Montmorency (#440 East) and Route AUGUST 14th 138 East, following indications for Sainte-Anne-de-Beaupré 5 KM RUN / WALK - NEW DEPARTURE TIME: 6:30 am and Mont-Sainte-Anne. In Beaupré, follow Route 360 to Mont- WHERE: Pavillon PEPS (see #2 on the MAP) Sainte-Anne. Numbers will be provided to you at the registration desk on August 12th. You will find a MAP of the area at this address: http://www.tourisme-hebergement-ski-mont-sainte-anne- You can get ready for your run at the PEPS, which is located at quebec.com/images/Carte01.jpg a 15 minutes walk from the starting line. If you want to leave your personal belongings there, PLEASE BRING YOUR OWN INTERNET ACCESS PADLOCK, as only a few padlocks will be available on site. Room 2820 will be open as a free “Internet Cafe”. Only one computer will be available but there will be extra ports to con- A snack will be provided right after the run and you will have nect your laptop. Please bring YOUR OWN CABLE. access to the PEPS for showering/changing. Click on this link to see the run route. POSTER PRESENTATION Your poster cannot exceed 3’ X 4’ (91 cm high by 1,2 meter EXCURSION - wide). MEETING TIME: 12:30 pm - DEPARTURE TIME: 12:45 pm MEETING POINT: Pavillon Alexandre-Vachon, Laval Univer- Poster Session 1: Posters (Bacteria, Microbial Control and sity Virus I) are to be set up on Monday morning and taken down A bus will pick you up in front of the building and a LUNCH by Tuesday afternoon by 5:00 pm. BOX will be provided on your way to the cruise. Poster Session 2: Posters (Fungi, Nematodes, Microsporidia and Viruses II) are to be set up early Wednesday afternoon, and 1) BOAT CRUISE on the M/V Louis Jolliet taken down Thursday before the Banquet. From 2:00 pm to 3:30 pm WHERE TO EAT 2) WATERFALLS Meals on Campus are available at the conference building After the cruise, we will make a stop at the Montmorency cafeteria, Pavillon Vachon (# 11 on the MAP) and in buildings Waterfalls nearby: From 4:00pm to 5:00pm Pavillon Charles-De Koninck (#13 on the MAP) Pavillon Alphonse-Desjardins (#23 on the MAP) **After visiting the Montmorency Waterfalls, buses will drive directly to the Mont Sainte-Anne for the BBQ Evening. Off Campus: Place Ste-Foy (10 minutes walk from the Pavillon Vachon) BBQ AT MONT SAINTE-ANNE WHERE: Chalet du Sommet (Mont Sainte-Anne) FOOD RESTRICTIONS From 5:00 pm until 12:00 am If you have any FOOD RESTRICTION, please go to the Regis- tration Desk, so we can make sure we satisfy your needs as best as possible. 3 Meetings Building: Pavillon Alexandre-Vachon 4 Society for Invertebrate Pathology President Past President Wendy Gelernter Just Vlak Pace Consulting Wageningen University, Laboratory of Virology 1267 Diamond St, San Diego, CA 92109 UNITED STATES OF Binnenhaven 11, Wageningen, 6709 PD THE NETHERLANDS AMERICA Phone: +31 31 748 3090 FAX: +31 31 748 4820 Phone: (858) 272-9897 FAX: (858) 483-6349 Email: [email protected] Email: [email protected] Trustees Vice President Hu Zhihong Mark Goettel Wuhan Institute of Virology, Chinese Academy of Sciences Lethbridge Res Ctr, Agriculture & Agri-Food Canada Xiao Hong Shan 44, Wuhan, Hubei, 430071 P. R. OF CHINA P.O. Box 3000, Lethbridge, AB T1J 4B1 CANADA Phone: +86 27 87197180 Phone: (403) 317-2264 FAX: (403) 382-3156 Email: [email protected] Email: [email protected] Bryony Bonning Treasurer Iowa State University, Dept. of Entomol James Becnel 418 Science II, Ames, IA 50011-3222 UNITED STATES OF Gainesville, FL 32608 UNITED STATES OF AMERICA AMERICA Phone: (352) 374-5961 FAX: (352) 374-5966 Phone: (515) 294-1989 FAX: (515) 294-5957 Email: [email protected]fl.edu Email: [email protected] Secretary S. Patricia Stock Jenny Cory Univ. of Arizona, Dept. Entomology Algoma University College Forbes 410. 1140 E. South Campus Dr., Tucson, AZ 85721-0036 1520 Queen Street East, Sault Ste. Marie, Ontario P6A 2G4 UNITED STATES OF AMERICA CANADA Phone: 520-626-3854 FAX: 520-621-1150 Phone: 705 949 2301 FAX: 705 949 6583 Email: [email protected] Email: [email protected] Jorgen Eilenberg University of Copenhagen, Dept. Ecol Thorvaldsensvej 40, Frederiksberg C, DK 1871 DENMARK Phone: +45 35 28 2692 FAX: +45 35 28 2670 Email: [email protected] Division of Bacteria Division of Nematodes Christina Nielsen-LeRoux (2005-2007), Chair, christina. Chair: David Shapiro-Ilan (2006-2008) [email protected] Chair-Elect: Albrecht Koppenhöfer (2006-2008) Neil Crickmore (2005-2007), Chair-Elect, [email protected] Secretary/Treasurer: Ho Yul Choo (2006-2008) Hyun-Woo Park (2005-2007), Secretary / Treasurer, hyun-woo. Member at Large: Lerry Lacey (2006-2008) [email protected] Member at Large: James Campbell (2005-2007) Ming Sun (2006-2008), Member at Large, [email protected]. edu.cn Division of Viruses Luke Masson (2005-2007), Member at Large, luke.masson@cnrc- Chair: nrc.gc.ca Johannes Jehle (Germany) (2006-2008) Division of Fungi Chair Elect: Fernando Vega (2006-2008), Chair, [email protected] Bryony Bonning (USA) (2006-2008) Rosalind James (2006-2008), Chair-Elect, [email protected] Helen Roy (2006-2008), Secretary / Treasurer, [email protected] Secretary/Treasurer: Kerstin Jung (2006-2008), Member at Large, [email protected] Zhihong Hu (China) 2006-2008) Ming Guang Feng (2005-2007), Member at Large, [email protected] Drauzio Rangel Student Representative, [email protected] Member at Large: Maduka Nakai (Japan) (2005-2007) Division of Microbial Control Rollie Clem (USA) (2006-2008) Michael Brownbridge, Chair Chair-elect: Paresh Shah Student representative: Secretary-treasurer: Zhengzhi Li. Jondavid de Jong (2005-2007) Member at Large: Richard Meadow SIP Committees Member at Large: Sean Moore Division of Microsporidia Chair: Regina Kleespies, [email protected] Chair-Elect: David Oi Secretary/Treasurer: Dörte Goertz Member-at-Large: Julia Sokolova 5 SIP COMMITTEES Awards and Student Contest Committee Members Elizabeth Davidson: [email protected] Andreas Linde, [email protected], Chairperson Neil Crickmore, [email protected]> Nguya Maniania, [email protected] Trevor Jackson, [email protected] Bryony Bonning, [email protected] Juan Luis Jurat-Fuentes, [email protected]
Recommended publications
  • APPENDIX H – Bibliography of ECOTOX Open Literature
    APPENDIX H – Bibliography of ECOTOX Open Literature Refresh from 2012 Accepted by ECOTOX and OPP Reference List 1. Abbott, J. D.; Bruton, B. D., and Patterson, C. L. Fungicidal Inhibition of Pollen Germination and Germ-Tube Elongation in Muskmelon. REPSOIL,ENV; 1991; 26, (5): 529-530. Notes: EcoReference No.: 63745 Chemical of Concern: BMY,CTN,CuOH,MZB 2. Abney, M. R.; Ruberson, J. R.; Herzog, G. A.; Kring, T. J.; Steinkraus, D. C., and Roberts, P. M. Rise and Fall of Cotton Aphid (Hemiptera: Aphididae) Populations in Southeastern Cotton Production Systems. GRO,POP. Department of Entomology, North Carolina State University, Raleigh, NC, USA. [email protected]//: SOIL,ENV; 2008; 101, (1): 23-35. Notes: EcoReference No.: 156197 Chemical of Concern: AZX,CTN,IMC 3. Al-Dosari, S. A.; Cranshaw, W. S., and Schweissing, F. C. Effects on Control of Onion Thrips from Co- Application of Onion Pesticides. POPENV; 1996; 21, (1): 49-54. Notes: EcoReference No.: 90255 Chemical of Concern: CTN,CYP,CuOH,LCYT,MLX,MMM,Maneb 4. Arts, G. H. P.; Belgers, J. D. M.; Hoekzema, C. H., and Thissen, J. T. N. M. Sensitivity of Submersed Freshwater Macrophytes and Endpoints in Laboratory Toxicity Tests. GROAQUA; 2008; 153, (1): 199-206. Notes: EcoReference No.: 108008 Chemical of Concern: ASM,CTN,FNZ,PCP 5. Aziz, T.; Habte, M., and Yuen, J. E. Inhibition of Mycorrhizal Symbiosis in Leucaena leucocephala by Chlorothalonil. BCM,GRO,POPSOIL,ENV; 1991; 131, (1): 47-52. Notes: EcoReference No.: 92163 Chemical of Concern: CTN 6. Babu, T. H. Effectiveness of Certain Chemicals and Fungicides on the Feeding Behaviour of House Sparrows.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • English-Persian
    English-Persian English-Persian A abrachia (= abrachiatism) ﺑﯽ دﺳﺘﯽ ﻣﺎدرزاد abrachiatism ﺑﯽ ﺳﺮو دﺳﺘﯽ ﻣﺎدر زاد abrachiocephalia ﺁ. (A (= adenine ﺑﯽ ﺳﺮ و دﺳﺖ ﻣﺎدر زاد abrachiocephalus ﺁ. (A (= adenovirus ﺑﯽ دﺳﺖ ﻣﺎدر زاد abrachius زﻧﺠﻴﺮﻩ ﺁ. A chain اﺑﺮﯾﻦ abrin دﯼ.ان.اﯼ ﻧﻮع ﺁ. A form DNA اﺑﺴﻴﺰﯾﮏ اﺳﻴﺪ abscisic acid ﺁ.ﯾﮏ، اﯼ.وان. A I (= first meiotic ﭘﻴﮑﺮ anaphase) absolute configuration ﺑﻨﺪﯼ/ﮐﻨﻔﻴﮕﻮراﺳﻴﻮن/ﺁراﯾ ﺁ.دو، اﯼ.ﺗﻮ. A II (= second meiotic ش ﻣﻄﻠﻖ (anaphase ﺟﺬب ﮐﻨﻨﺪﮔﯽ، absorbance ﺟﺎﯾﮕﺎﻩ اﯼ.،ﭘﯽ. A,P site درﺁﺷﺎﻣﻨﺪﮔﯽ، اﺁ (aa (amino acid درﮐﺸﻴﺪﮔﯽ، ﻗﺎﺑﻠﻴﺖ ﺟﺬب اﯼ.اﯼ.ﺟﯽ. AAG (= acid ﺟﺬب، ﺟﺬب ﺳﻄﺤﯽ، alpha-glucosidase) absorption درﺁﺷﺎﻣﯽ، درﮐﺸﯽ، درون اﯼ.اﯼ.ﺗﯽ. (AAT (= alpha-antitrypsin ﺟﺬﺑﯽ اﯼ.اﯼ.وﯼ. AAV (= adeno-associated ﺁﺑﺰﯾﻢ، اﺑﺰاﯾﻢ virus) abzyme ﺁ.ث.، اﯼ.ﺳﯽ. (AC (= adenyl cyclase اﯼ.ﺑﯽ. (ab (= antibody ﺧﺎر ﺳﺮﮎ acanthella ﭘﻴﺸﺒﻴﻨﯽ ژن اب اﯾﻨﻴﺘﻴﻮ ab initio gene prediction ﺧﺎر ﺳﺮان acanthocephala اﻧﺘﻘﺎل دهﻨﺪﻩ اﯼ.ﺑﯽ.ﺳﯽ. ABC transporter =) acanthocephalan ﺟﻮرﻩ/وارﯾﺘﻪ/رﻗﻢ/ﺳﻮﯾﻪ Abelson strain of murine (acanthocephalus (ﻣﺮﺑﻮط ﺑﻪ ﺟﻮﻧﺪﮔﺎن) ﺧﺎر ﺳﺮ acanthocephalus ﺁﺑﻠﺴﻮﻧﯽ ﺧﺎر ﺳﺮﭼﻪ acanthor ﮐﺞ راهﯽ aberration ﺑﯽ ﻗﻠﺒﯽ ﻣﺎدر زاد acardia ﺗﻮﻟﻴﺪ ﺧﻮد ﺑﺨﻮد، ﺗﻮﻟﻴﺪ ﻣﺜﻞ abiogenesis ﺑﯽ ﻗﻠﺐ ﻣﺎدر زاد acardiac ﺧﻮد ﺑﻪ ﺧﻮدﯼ، ﻧﺎزﯾﺴﺖ (acardiacus (=acardiac زاﯾﯽ (acardius (=acardiac ﻏﻴﺮ ﺁﻟﯽ، ﻏﻴﺮ زﻧﺪﻩ، ﻧﺎزﯾﻮا abiotic ﮐﻨﻪ زدﮔﯽ acariasis ﺗﻨﺶ ﻋﻮاﻣﻞ ﻓﻴﺰﯾﮑﯽ ﻣﺤﻴﻂ، abiotic stress ﮐﻨﻪ ﺳﺎﻧﺎن acarina ﺗﻨﺶ اﺑﻴﻮﺗﻴﮏ ﮐﻨﻪ ﺳﺎن acarine اﯼ.ﺑﯽ.ال abl (=Abelson strain of ﮐﻨﻪ زدﮔﯽ (murine) acarinosis (= acariasis ﮐﻨﻪ زدﮔﯽ ﭘﻮﺳﺖ acarodermatitis اﯼ.ﺑﯽ.ال. ABL (=Abelson strain of ﮐﻨﻪ ﺗﺮﺳﯽ murine) acarophobia ﺑﻠﻮغ ﺷﺘﺎﺑﺪار/ﺗﺴﺮﯾﻊ ﺷﺪﻩ accelerated maturation ﻓﺮﺳﺎب، ﺳﺎﯾﺶ، ذوب ﯾﺦ ablation ﮔﻠﻮﺑﻮﻟﻴﻦ ﺷﺘﺎﺑﺪهﻨﺪﻩ/ﺗﺴﺮﯾﻊ accelerator globulin اﯼ.ﺑﯽ.او.
    [Show full text]
  • How Bacillus Thuringiensishas
    Review TRENDS in Genetics Vol.17 No.4 April 2001 193 How Bacillus thuringiensis has evolved specific toxins to colonize the insect world Ruud A. de Maagd, Alejandra Bravo and Neil Crickmore Bacillus thuringiensis is a bacterium of great agronomic and scientific interest. between different strains has been observed both in a Together the subspecies of this bacterium colonize and kill a large variety of soil environment and within insects2. host insects and even nematodes, but each strain does so with a high degree of Individual Cry toxins have a defined spectrum of specificity. This is mainly determined by the arsenal of crystal proteins that the insecticidal activity, usually restricted to a few bacterium produces during sporulation. Here we describe the properties of species within one particular order of insects. To date, these toxin proteins and the current knowledge of the basis for their specificity. toxins for insect species in the orders Lepidoptera Assessment of phylogenetic relationships of the three domains of the active (butterflies and moths), Diptera (flies and toxin and experimental results indicate how sequence divergence in mosquitoes), Coleoptera (beetles and weevils) and combination with domain swapping by homologous recombination might Hymenoptera (wasps and bees) have been identified. have caused this extensive range of specificities. A small minority of crystal toxins shows activity against non-insect species such as nematodes3. A few Bacillus thuringiensis (Bt) is an endospore-forming toxins have an activity spectrum that spans two or bacterium characterized by the presence of a protein three insect orders – most notably Cry1Ba, which is crystal within the cytoplasm of the sporulating cell active against larvae of moths, flies and beetles4.
    [Show full text]
  • Role of Toxin Activation on Binding and Pore Formation Activity of the Bacillus Thuringiensis Cry3 Toxins in Membranes of Leptinotarsa Decemlineata (Say)
    Biochimica et Biophysica Acta 1660 (2004) 99–105 www.bba-direct.com Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say) C. Rausella,1, I. Garcı´a-Roblesb,1,J.Sa´ncheza, C. Mun˜oz-Garaya, A.C. Martı´nez-Ramı´rezb, M.D. Realb, A. Bravoa,* a Instituto de Biotecnologı´a, Universidad Nacional Auto´noma de Me´xico, Ap. Postal 510-3, Cuernavaca 62250, Morelos, Mexico b Facultad de Ciencias Biolo´gicas, Universidad de Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain Received 29 July 2003; received in revised form 5 November 2003; accepted 7 November 2003 Abstract Binding and pore formation constitute key steps in the mode of action of Bacillus thuringiensis y-endotoxins. In this work, we present a comparative analysis of toxin-binding capacities of proteolytically processed Cry3A, Cry3B and Cry3C toxins to brush border membranes (BBMV) of the Colorado potato beetle Leptinotarsa decemlineata (CPB), a major potato coleopteran-insect pest. Competition experiments showed that the three Cry3 proteolytically activated toxins share a common binding site. Also heterologous competition experiments showed that Cry3Aa and Cry3Ca toxins have an extra binding site that is not shared with Cry3Ba toxin. The pore formation activity of the three different Cry3 toxins is analysed. High pore-formation activities were observed in Cry3 toxins obtained by proteolytical activation with CPB BBMV in contrast to toxins activated with either trypsin or chymotrypsin proteases. The pore-formation activity correlated with the formation of soluble oligomeric structures. Our data support that, similarly to the Cry1A toxins, the Cry3 oligomer is formed after receptor binding and before membrane insertion, forming a pre-pore structure that is insertion-competent.
    [Show full text]
  • Bt Toxin Modification for Enhanced Efficacy
    Toxins 2014, 6, 3005-3027; doi:10.3390/toxins6103005 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Bt Toxin Modification for Enhanced Efficacy Benjamin R. Deist 1, Michael A. Rausch 1, Maria Teresa Fernandez-Luna 1, Michael J. Adang 2,3 and Bryony C. Bonning 1,* 1 Department of Entomology, Iowa State University, Ames, IA 50011, USA; E-Mails: [email protected] (B.R.D.); [email protected] (M.A.R.); [email protected] (M.T.F.-L.) 2 Departments of Entomology, University of Georgia, Athens, GA 30602, USA; E-Mail: [email protected] 3 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-515-294-1989; Fax: +1-515-294-2995. External Editor: Anne-Brit Kolstø Received: 2 May 2014; in revised form: 28 September 2014 / Accepted: 29 September 2014 / Published: 22 October 2014 Abstract: Insect-specific toxins derived from Bacillus thuringiensis (Bt) provide a valuable resource for pest suppression. Here we review the different strategies that have been employed to enhance toxicity against specific target species including those that have evolved resistance to Bt, or to modify the host range of Bt crystal (Cry) and cytolytic (Cyt) toxins. These strategies include toxin truncation, modification of protease cleavage sites, domain swapping, site-directed mutagenesis, peptide addition, and phage display screens for mutated toxins with enhanced activity. Toxin optimization provides a useful approach to extend the utility of these proteins for suppression of pests that exhibit low susceptibility to native Bt toxins, and to overcome field resistance.
    [Show full text]
  • Evolução Do Veneno Em Cnidários Baseada Em Dados De Genomas E Proteomas
    Adrian Jose Jaimes Becerra Evolução do veneno em cnidários baseada em dados de genomas e proteomas Venom evolution in cnidarians based on genomes and proteomes data São Paulo 2015 i Adrian Jose Jaimes Becerra Evolução do veneno em cnidários baseada em dados de genomas e proteomas Venom evolution in cnidarians based on genomes and proteomes data Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Mestre em Ciências, na Área de Zoologia. Orientador: Prof. Dr. Antonio C. Marques São Paulo 2015 ii Jaimes-Becerra, Adrian J. Evolução do veneno em cnidários baseada em dados de genomas e proteomas. 103 + VI páginas Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Zoologia. 1. Veneno; 2. Evolução; 3. Proteoma. 4. Genoma I. Universidade de São Paulo. Instituto de Biociências. Departamento de Zoologia. Comissão Julgadora Prof(a) Dr(a) Prof(a) Dr(a) Prof. Dr. Antonio Carlos Marques iii Agradecimentos Eu gostaria de agradecer ao meu orientador Antonio C. Marques, pela confiança desde o primeiro dia e pela ajuda tanto pessoal como profissional durantes os dois anos de mestrado. Obrigado por todo. Ao CAPES, pela bolsa de mestrado concedida. Ao FAPESP pelo apoio financeiro durante minha estadia em Londres. Ao Instituto de Biociências da Universidade de São Paulo, pela estrutura oferecida durante a execução desde estudo. Ao Dr. Paul F. Long pelas conversas, por toda sua ajuda, por acreditar no meu trabalho. Aos colegas e amigos de Laboratório de Evolução Marinha (LEM), Jimena Garcia, María Mendoza, Thaís Miranda, Amanda Cunha, Karla Paresque, Marina Fernández, Fernanda Miyamura e Lucília Miranda, pela amizade, dicas e ajuda em tudo e por me fazer sentir em casa, muito obrigado mesmo! Aos meus amigos fora do laboratório, John, Soly, Chucho, Camila, Faride, Cesar, Angela, Camilo, Isa, Nathalia, Susana e Steffania, pelo apoio e por me fazer sentir em casa.
    [Show full text]
  • The First Cry2ac-Type Protein Toxic to Helicoverpa Armigera: Cloning and Overexpression of Cry2ac7 Gene from SBS-BT1 Strain of Bacillus Thuringiensis
    toxins Article The First Cry2Ac-Type Protein Toxic to Helicoverpa armigera: Cloning and Overexpression of Cry2ac7 Gene from SBS-BT1 Strain of Bacillus thuringiensis Faiza Saleem 1,2 and Abdul Rauf Shakoori 1,* 1 School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; [email protected] 2 Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan * Correspondence: [email protected] or [email protected] Academic Editor: Anne-Brit Kolstø Received: 26 August 2017; Accepted: 27 October 2017; Published: 3 November 2017 Abstract: The Cry (crystal) proteins from Bacillus thuringiensis are known to have toxicity against a variety of insects and have been exploited to control insect pests through transgenic plants and biopesticides. B. thuringiensis SBS BT-1 carrying the cry2 genes was isolated from soil samples in Pakistan. The 2-kb full length cry2Ac gene was cloned, sequenced, and submitted to the EMBL DNA database (Accession No. AM292031). For expression analysis, Escherichia coli DH5α was transformed with the fragment sub-cloned in pET22b expression vector using NdeI and HindIII restriction sites, and later confirmed by restriction endonuclease analysis. To assess the toxicity of Cry2Ac7 protein against lepidopteran and dipteran insects, BL21 (codon plus) strain of E. coli was further transformed with the recombinant plasmid. The 65-kDa protein was expressed in the form of inclusion bodies up to 180 OD units per liter of the medium. Inclusions were washed with a buffer containing 1.5% Triton-X 100 and >90% pure Cry2Ac7 was obtained. The inclusion bodies were dissolved in 50 mM K2CO3 (pH 11.5), dialyzed, and freeze-dried.
    [Show full text]
  • Learning, Evolvability and Exploratory Behaviour: Extending the Evolutionary Reach of Learning
    Penultimate Draft Learning, evolvability and exploratory behaviour: extending the evolutionary reach of learning Rachael L. Brown Abstract Traditional accounts of the role of learning in evolution have concentrated upon its capacity as a source of fitness to individuals. In this paper I use a case study from invasive species biology—the role of conditioned taste aversion in mitigating the impact of cane toads on the native species of Northern Australia—to highlight a role for learning beyond this—as a source of evolvability to populations. This has two benefits. First, it highlights an otherwise under-appreciated role for learning in evolution that does not rely on social learning as an inheritance channel nor ‘‘special’’ evolutionary processes such as genetic accommodation (both of which many are skeptical about). Second, and more significantly, it makes clear important and interesting parallels between learning and exploratory behaviour in development. These parallels motivate the applicability of results from existing research to learning and learning evolution and to our understanding the evolution of evolvability more generally. Keywords Evolvability・Learning・Plasticity・Behaviour・Facilitated variation Introduction In essence my claims in this paper are relatively simple. We all accept that learning is frequently adaptive for individuals in changeable environments. It can allow organisms to continue to survive and reproduce despite any changes to the environment that occur during their lifetimes. What I highlight here is that this is not all that learning does. Learning can allow populations to respond appropriately to environmental change without the requirement for any genetic change. In doing this, learning allows populations to avoid the potential loss of genetic diversity that comes with directional selection, and thus it preserves the standing variation in populations.
    [Show full text]
  • A Preliminary Risk Assessment of Cane Toads in Kakadu National Park Scientist Report 164, Supervising Scientist, Darwin NT
    supervising scientist 164 report A preliminary risk assessment of cane toads in Kakadu National Park RA van Dam, DJ Walden & GW Begg supervising scientist national centre for tropical wetland research This report has been prepared by staff of the Environmental Research Institute of the Supervising Scientist (eriss) as part of our commitment to the National Centre for Tropical Wetland Research Rick A van Dam Environmental Research Institute of the Supervising Scientist, Locked Bag 2, Jabiru NT 0886, Australia (Present address: Sinclair Knight Merz, 100 Christie St, St Leonards NSW 2065, Australia) David J Walden Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia George W Begg Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia This report should be cited as follows: van Dam RA, Walden DJ & Begg GW 2002 A preliminary risk assessment of cane toads in Kakadu National Park Scientist Report 164, Supervising Scientist, Darwin NT The Supervising Scientist is part of Environment Australia, the environmental program of the Commonwealth Department of Environment and Heritage © Commonwealth of Australia 2002 Supervising Scientist Environment Australia GPO Box 461, Darwin NT 0801 Australia ISSN 1325-1554 ISBN 0 642 24370 0 This work is copyright Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Supervising Scientist Requests and inquiries concerning reproduction
    [Show full text]
  • Cooperation and Bacterial Pathogenicity: an Approach to Social Evolution C Alfonso Molina1,3* and Susana Vilchez2
    Molina and Vilchez Revista Chilena de Historia Natural 2014, 87:14 http://www.revchilhistnat.com/content/87/1/14 REVIEW Open Access Cooperation and bacterial pathogenicity: an approach to social evolution C Alfonso Molina1,3* and Susana Vilchez2 Abstract Kin selection could provide an explanation for social behavior in bacteria. The production of public goods such as extracellular molecules is metabolically costly for bacteria but could help them to exploit nutrients or invade a host. Some bacterial cells called social cheaters do not produce public goods; however, they take advantage of these extracellular molecules. In this review, the relationships between social behavior, cooperation, and evolution of bacterial pathogenicity are analyzed. This paper also examines the role of horizontal transfer of genes encoding for virulence factors and how the movement of mobile genetic elements would influence the pathogenicity and social relationships. Moreover, the link between ecological relationships and evolution in entomopathogenic bacteria, focusing on Bacillus thuringiensis is considered. Finally, the findings obtained with B. thuringiensis are extrapolated on Bacillus pumilus 15.1, an entomopathogenic strain whose pathogenicity is not understood yet. Keywords: Cooperation; Evolution; Pathogenicity; Public goods; Sociability Introduction (Brown 1999), adhesive polymers (Rainey and Rainey The social relationships of microorganisms are based on 2003), or siderophores (West and Buckling 2003), amongst a wide range of extracellular actions produced by indi- others. This social behavior is, from a metabolic point of vidual cells, which can affect the reproductive efficiency view, costly for the individual cells, although it is beneficial of other nearby cells. The production of molecules such for the group.
    [Show full text]
  • Membrane-Active Derivatives of the Frog Skin Peptide Esculentin-1 Against Relevant Human Pathogens
    DOTTORATO DI RICERCA IN BIOCHIMICA CICLO XXVI (A.A. 2010-2013) Membrane-active derivatives of the frog skin peptide Esculentin-1 against relevant human pathogens Docente guida Coordinatore Prof.ssa Maria Luisa MANGONI Prof. Francesco MALATESTA Prof.ssa Donatella BARRA Dottorando Vincenzo LUCA Dicembre 2013 DOTTORATO DI RICERCA IN BIOCHIMICA CICLO XXVI (A.A. 2010-2013) Membrane-active derivatives of the frog skin peptide Esculentin-1 against relevant human pathogens Dottorando Vincenzo LUCA Docente guida Coordinatore Prof.ssa Maria Luisa MANGONI Prof. Francesco MALATESTA Prof.ssa Donatella BARRA Dicembre 2013 To my brother INDEX INDEX List of papers relevant for this thesis 1 List of other papers 1 1. INTRODUCTION 3 1.1 Antimicrobial peptides and innate immunity 3 1.2 AMPs: structural features and mechanism of action 6 1.3 AMPs and resistance 13 1.4 Amphibian AMPs 16 1.5 The esculentin family 17 1.6 The 1-18 fragment of esculentin-1b, Esc(1-18) 19 1.7 The 1-21 fragment of esculentin-1a, Esc(1-21) 20 1.8 Candida albicans pathogen 21 1.9 Pseudomonas aeruginosa pathogen 23 1.10 Caenorhabditis elegans: a simple infection model 24 2. AIM OF THE STUDY 27 3. MATERIALS AND METHODS 28 3.1 Materials 28 3.2 Microorganisms and nematode strains 28 3.3 Circular dichroism (CD) analysis 29 3.4 Hemolytic activity 29 I INDEX 3.5 Determination of the minimal peptide concentration inhibiting the growth of free-living microorganisms 30 3.6 Anti-biofilm activity 31 3.7 Time-killing of free-living microorganisms (yeasts and bacteria) 33 3.8 Peptide’s effect on the viability of hyphae 34 3.9 Inhibition of hyphal development 35 3.10 Membrane permeabilization of C.
    [Show full text]