Bacillus Thuringiensis - Derived Insect Control Proteins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
APPENDIX H – Bibliography of ECOTOX Open Literature
APPENDIX H – Bibliography of ECOTOX Open Literature Refresh from 2012 Accepted by ECOTOX and OPP Reference List 1. Abbott, J. D.; Bruton, B. D., and Patterson, C. L. Fungicidal Inhibition of Pollen Germination and Germ-Tube Elongation in Muskmelon. REPSOIL,ENV; 1991; 26, (5): 529-530. Notes: EcoReference No.: 63745 Chemical of Concern: BMY,CTN,CuOH,MZB 2. Abney, M. R.; Ruberson, J. R.; Herzog, G. A.; Kring, T. J.; Steinkraus, D. C., and Roberts, P. M. Rise and Fall of Cotton Aphid (Hemiptera: Aphididae) Populations in Southeastern Cotton Production Systems. GRO,POP. Department of Entomology, North Carolina State University, Raleigh, NC, USA. [email protected]//: SOIL,ENV; 2008; 101, (1): 23-35. Notes: EcoReference No.: 156197 Chemical of Concern: AZX,CTN,IMC 3. Al-Dosari, S. A.; Cranshaw, W. S., and Schweissing, F. C. Effects on Control of Onion Thrips from Co- Application of Onion Pesticides. POPENV; 1996; 21, (1): 49-54. Notes: EcoReference No.: 90255 Chemical of Concern: CTN,CYP,CuOH,LCYT,MLX,MMM,Maneb 4. Arts, G. H. P.; Belgers, J. D. M.; Hoekzema, C. H., and Thissen, J. T. N. M. Sensitivity of Submersed Freshwater Macrophytes and Endpoints in Laboratory Toxicity Tests. GROAQUA; 2008; 153, (1): 199-206. Notes: EcoReference No.: 108008 Chemical of Concern: ASM,CTN,FNZ,PCP 5. Aziz, T.; Habte, M., and Yuen, J. E. Inhibition of Mycorrhizal Symbiosis in Leucaena leucocephala by Chlorothalonil. BCM,GRO,POPSOIL,ENV; 1991; 131, (1): 47-52. Notes: EcoReference No.: 92163 Chemical of Concern: CTN 6. Babu, T. H. Effectiveness of Certain Chemicals and Fungicides on the Feeding Behaviour of House Sparrows. -
The Structure/Function of New Insecticidal Proteins and Regulatory Challenges for Commercialization
This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/100278/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Moar, William, Berry, Colin and Narva, Kenneth 2017. The structure/function of new insecticidal proteins and regulatory challenges for commercialization. Journal of Invertebrate Pathology 142 , pp. 1-4. 10.1016/j.jip.2017.02.001 file Publishers page: https://doi.org/10.1016/j.jip.2017.02.001 <https://doi.org/10.1016/j.jip.2017.02.001> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. The structure/function of new insecticidal proteins and regulatory challenges for commercialization William Moar, Colin Berry and Kenneth Narva Genetically modified crops produced by biotechnology methods have provided grower benefits since 1995 including improved protection of crop yield, reduced input costs, and a reduced reliance on chemical pesticides (Klumper and Qaim, 2014). These benefits have driven annual increases in worldwide adoption of GM crops, with the largest number of hectares being grown in the Americas (ISAAA 2014). -
English-Persian
English-Persian English-Persian A abrachia (= abrachiatism) ﺑﯽ دﺳﺘﯽ ﻣﺎدرزاد abrachiatism ﺑﯽ ﺳﺮو دﺳﺘﯽ ﻣﺎدر زاد abrachiocephalia ﺁ. (A (= adenine ﺑﯽ ﺳﺮ و دﺳﺖ ﻣﺎدر زاد abrachiocephalus ﺁ. (A (= adenovirus ﺑﯽ دﺳﺖ ﻣﺎدر زاد abrachius زﻧﺠﻴﺮﻩ ﺁ. A chain اﺑﺮﯾﻦ abrin دﯼ.ان.اﯼ ﻧﻮع ﺁ. A form DNA اﺑﺴﻴﺰﯾﮏ اﺳﻴﺪ abscisic acid ﺁ.ﯾﮏ، اﯼ.وان. A I (= first meiotic ﭘﻴﮑﺮ anaphase) absolute configuration ﺑﻨﺪﯼ/ﮐﻨﻔﻴﮕﻮراﺳﻴﻮن/ﺁراﯾ ﺁ.دو، اﯼ.ﺗﻮ. A II (= second meiotic ش ﻣﻄﻠﻖ (anaphase ﺟﺬب ﮐﻨﻨﺪﮔﯽ، absorbance ﺟﺎﯾﮕﺎﻩ اﯼ.،ﭘﯽ. A,P site درﺁﺷﺎﻣﻨﺪﮔﯽ، اﺁ (aa (amino acid درﮐﺸﻴﺪﮔﯽ، ﻗﺎﺑﻠﻴﺖ ﺟﺬب اﯼ.اﯼ.ﺟﯽ. AAG (= acid ﺟﺬب، ﺟﺬب ﺳﻄﺤﯽ، alpha-glucosidase) absorption درﺁﺷﺎﻣﯽ، درﮐﺸﯽ، درون اﯼ.اﯼ.ﺗﯽ. (AAT (= alpha-antitrypsin ﺟﺬﺑﯽ اﯼ.اﯼ.وﯼ. AAV (= adeno-associated ﺁﺑﺰﯾﻢ، اﺑﺰاﯾﻢ virus) abzyme ﺁ.ث.، اﯼ.ﺳﯽ. (AC (= adenyl cyclase اﯼ.ﺑﯽ. (ab (= antibody ﺧﺎر ﺳﺮﮎ acanthella ﭘﻴﺸﺒﻴﻨﯽ ژن اب اﯾﻨﻴﺘﻴﻮ ab initio gene prediction ﺧﺎر ﺳﺮان acanthocephala اﻧﺘﻘﺎل دهﻨﺪﻩ اﯼ.ﺑﯽ.ﺳﯽ. ABC transporter =) acanthocephalan ﺟﻮرﻩ/وارﯾﺘﻪ/رﻗﻢ/ﺳﻮﯾﻪ Abelson strain of murine (acanthocephalus (ﻣﺮﺑﻮط ﺑﻪ ﺟﻮﻧﺪﮔﺎن) ﺧﺎر ﺳﺮ acanthocephalus ﺁﺑﻠﺴﻮﻧﯽ ﺧﺎر ﺳﺮﭼﻪ acanthor ﮐﺞ راهﯽ aberration ﺑﯽ ﻗﻠﺒﯽ ﻣﺎدر زاد acardia ﺗﻮﻟﻴﺪ ﺧﻮد ﺑﺨﻮد، ﺗﻮﻟﻴﺪ ﻣﺜﻞ abiogenesis ﺑﯽ ﻗﻠﺐ ﻣﺎدر زاد acardiac ﺧﻮد ﺑﻪ ﺧﻮدﯼ، ﻧﺎزﯾﺴﺖ (acardiacus (=acardiac زاﯾﯽ (acardius (=acardiac ﻏﻴﺮ ﺁﻟﯽ، ﻏﻴﺮ زﻧﺪﻩ، ﻧﺎزﯾﻮا abiotic ﮐﻨﻪ زدﮔﯽ acariasis ﺗﻨﺶ ﻋﻮاﻣﻞ ﻓﻴﺰﯾﮑﯽ ﻣﺤﻴﻂ، abiotic stress ﮐﻨﻪ ﺳﺎﻧﺎن acarina ﺗﻨﺶ اﺑﻴﻮﺗﻴﮏ ﮐﻨﻪ ﺳﺎن acarine اﯼ.ﺑﯽ.ال abl (=Abelson strain of ﮐﻨﻪ زدﮔﯽ (murine) acarinosis (= acariasis ﮐﻨﻪ زدﮔﯽ ﭘﻮﺳﺖ acarodermatitis اﯼ.ﺑﯽ.ال. ABL (=Abelson strain of ﮐﻨﻪ ﺗﺮﺳﯽ murine) acarophobia ﺑﻠﻮغ ﺷﺘﺎﺑﺪار/ﺗﺴﺮﯾﻊ ﺷﺪﻩ accelerated maturation ﻓﺮﺳﺎب، ﺳﺎﯾﺶ، ذوب ﯾﺦ ablation ﮔﻠﻮﺑﻮﻟﻴﻦ ﺷﺘﺎﺑﺪهﻨﺪﻩ/ﺗﺴﺮﯾﻊ accelerator globulin اﯼ.ﺑﯽ.او. -
How Bacillus Thuringiensishas
Review TRENDS in Genetics Vol.17 No.4 April 2001 193 How Bacillus thuringiensis has evolved specific toxins to colonize the insect world Ruud A. de Maagd, Alejandra Bravo and Neil Crickmore Bacillus thuringiensis is a bacterium of great agronomic and scientific interest. between different strains has been observed both in a Together the subspecies of this bacterium colonize and kill a large variety of soil environment and within insects2. host insects and even nematodes, but each strain does so with a high degree of Individual Cry toxins have a defined spectrum of specificity. This is mainly determined by the arsenal of crystal proteins that the insecticidal activity, usually restricted to a few bacterium produces during sporulation. Here we describe the properties of species within one particular order of insects. To date, these toxin proteins and the current knowledge of the basis for their specificity. toxins for insect species in the orders Lepidoptera Assessment of phylogenetic relationships of the three domains of the active (butterflies and moths), Diptera (flies and toxin and experimental results indicate how sequence divergence in mosquitoes), Coleoptera (beetles and weevils) and combination with domain swapping by homologous recombination might Hymenoptera (wasps and bees) have been identified. have caused this extensive range of specificities. A small minority of crystal toxins shows activity against non-insect species such as nematodes3. A few Bacillus thuringiensis (Bt) is an endospore-forming toxins have an activity spectrum that spans two or bacterium characterized by the presence of a protein three insect orders – most notably Cry1Ba, which is crystal within the cytoplasm of the sporulating cell active against larvae of moths, flies and beetles4. -
Role of Toxin Activation on Binding and Pore Formation Activity of the Bacillus Thuringiensis Cry3 Toxins in Membranes of Leptinotarsa Decemlineata (Say)
Biochimica et Biophysica Acta 1660 (2004) 99–105 www.bba-direct.com Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say) C. Rausella,1, I. Garcı´a-Roblesb,1,J.Sa´ncheza, C. Mun˜oz-Garaya, A.C. Martı´nez-Ramı´rezb, M.D. Realb, A. Bravoa,* a Instituto de Biotecnologı´a, Universidad Nacional Auto´noma de Me´xico, Ap. Postal 510-3, Cuernavaca 62250, Morelos, Mexico b Facultad de Ciencias Biolo´gicas, Universidad de Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain Received 29 July 2003; received in revised form 5 November 2003; accepted 7 November 2003 Abstract Binding and pore formation constitute key steps in the mode of action of Bacillus thuringiensis y-endotoxins. In this work, we present a comparative analysis of toxin-binding capacities of proteolytically processed Cry3A, Cry3B and Cry3C toxins to brush border membranes (BBMV) of the Colorado potato beetle Leptinotarsa decemlineata (CPB), a major potato coleopteran-insect pest. Competition experiments showed that the three Cry3 proteolytically activated toxins share a common binding site. Also heterologous competition experiments showed that Cry3Aa and Cry3Ca toxins have an extra binding site that is not shared with Cry3Ba toxin. The pore formation activity of the three different Cry3 toxins is analysed. High pore-formation activities were observed in Cry3 toxins obtained by proteolytical activation with CPB BBMV in contrast to toxins activated with either trypsin or chymotrypsin proteases. The pore-formation activity correlated with the formation of soluble oligomeric structures. Our data support that, similarly to the Cry1A toxins, the Cry3 oligomer is formed after receptor binding and before membrane insertion, forming a pre-pore structure that is insertion-competent. -
US Department of Agriculture
Environmental Assessment for Dow/Pioneer Rootworm Resistant Corn APHIS’ Analysis and Response to Comments Received on Petition 03-353-01p and the EA. A total of two comments were submitted during the designated 60-day comment period by a private individual and a national trade association. The comment submitted by the trade association supported deregulation of the Cry34/35 Ab1 corn rootworm resistant corn (CRW). This comment stressed the importance of a different mechanism of control compared to the only CRW resistant corn product on the market while providing a new option for managing insect resistance. The commenter also mentioned that this product would provide a wider range of plant protection. The comment in opposition to deregulation of this product was submitted by a private citizen. This commenter expressed a general disapproval of genetically modified plants and suggested that this product should always be regulated. APHIS disagrees with this comment. The author fails to provide any information to support her assertion that this petition should be denied. The commenter also suggested that APHIS extend the comment period, but failed to provide a reason for the extension. Further, this commenter discussed pesticidal issues related to EPA’s role in the regulation of plant incorporated protectants. APHIS defers to EPA on issues related to EPA’s authority. - 2 - Environmental Assessment for Dow/Pioneer Rootworm Resistant Corn USDA/APHIS Decision on Dow AgroSciences and Pioneer Hi-Bred International Petition 03-353-01P Seeking a Determination of Nonregulated Status for Bt cry34/35Ab1 Insect Resistant Corn Line DAS-59122-7 Environmental Assessment TABLE OF CONTENTS I. -
Bt Toxin Modification for Enhanced Efficacy
Toxins 2014, 6, 3005-3027; doi:10.3390/toxins6103005 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Bt Toxin Modification for Enhanced Efficacy Benjamin R. Deist 1, Michael A. Rausch 1, Maria Teresa Fernandez-Luna 1, Michael J. Adang 2,3 and Bryony C. Bonning 1,* 1 Department of Entomology, Iowa State University, Ames, IA 50011, USA; E-Mails: [email protected] (B.R.D.); [email protected] (M.A.R.); [email protected] (M.T.F.-L.) 2 Departments of Entomology, University of Georgia, Athens, GA 30602, USA; E-Mail: [email protected] 3 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-515-294-1989; Fax: +1-515-294-2995. External Editor: Anne-Brit Kolstø Received: 2 May 2014; in revised form: 28 September 2014 / Accepted: 29 September 2014 / Published: 22 October 2014 Abstract: Insect-specific toxins derived from Bacillus thuringiensis (Bt) provide a valuable resource for pest suppression. Here we review the different strategies that have been employed to enhance toxicity against specific target species including those that have evolved resistance to Bt, or to modify the host range of Bt crystal (Cry) and cytolytic (Cyt) toxins. These strategies include toxin truncation, modification of protease cleavage sites, domain swapping, site-directed mutagenesis, peptide addition, and phage display screens for mutated toxins with enhanced activity. Toxin optimization provides a useful approach to extend the utility of these proteins for suppression of pests that exhibit low susceptibility to native Bt toxins, and to overcome field resistance. -
Evolução Do Veneno Em Cnidários Baseada Em Dados De Genomas E Proteomas
Adrian Jose Jaimes Becerra Evolução do veneno em cnidários baseada em dados de genomas e proteomas Venom evolution in cnidarians based on genomes and proteomes data São Paulo 2015 i Adrian Jose Jaimes Becerra Evolução do veneno em cnidários baseada em dados de genomas e proteomas Venom evolution in cnidarians based on genomes and proteomes data Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Mestre em Ciências, na Área de Zoologia. Orientador: Prof. Dr. Antonio C. Marques São Paulo 2015 ii Jaimes-Becerra, Adrian J. Evolução do veneno em cnidários baseada em dados de genomas e proteomas. 103 + VI páginas Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Zoologia. 1. Veneno; 2. Evolução; 3. Proteoma. 4. Genoma I. Universidade de São Paulo. Instituto de Biociências. Departamento de Zoologia. Comissão Julgadora Prof(a) Dr(a) Prof(a) Dr(a) Prof. Dr. Antonio Carlos Marques iii Agradecimentos Eu gostaria de agradecer ao meu orientador Antonio C. Marques, pela confiança desde o primeiro dia e pela ajuda tanto pessoal como profissional durantes os dois anos de mestrado. Obrigado por todo. Ao CAPES, pela bolsa de mestrado concedida. Ao FAPESP pelo apoio financeiro durante minha estadia em Londres. Ao Instituto de Biociências da Universidade de São Paulo, pela estrutura oferecida durante a execução desde estudo. Ao Dr. Paul F. Long pelas conversas, por toda sua ajuda, por acreditar no meu trabalho. Aos colegas e amigos de Laboratório de Evolução Marinha (LEM), Jimena Garcia, María Mendoza, Thaís Miranda, Amanda Cunha, Karla Paresque, Marina Fernández, Fernanda Miyamura e Lucília Miranda, pela amizade, dicas e ajuda em tudo e por me fazer sentir em casa, muito obrigado mesmo! Aos meus amigos fora do laboratório, John, Soly, Chucho, Camila, Faride, Cesar, Angela, Camilo, Isa, Nathalia, Susana e Steffania, pelo apoio e por me fazer sentir em casa. -
The First Cry2ac-Type Protein Toxic to Helicoverpa Armigera: Cloning and Overexpression of Cry2ac7 Gene from SBS-BT1 Strain of Bacillus Thuringiensis
toxins Article The First Cry2Ac-Type Protein Toxic to Helicoverpa armigera: Cloning and Overexpression of Cry2ac7 Gene from SBS-BT1 Strain of Bacillus thuringiensis Faiza Saleem 1,2 and Abdul Rauf Shakoori 1,* 1 School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; [email protected] 2 Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan * Correspondence: [email protected] or [email protected] Academic Editor: Anne-Brit Kolstø Received: 26 August 2017; Accepted: 27 October 2017; Published: 3 November 2017 Abstract: The Cry (crystal) proteins from Bacillus thuringiensis are known to have toxicity against a variety of insects and have been exploited to control insect pests through transgenic plants and biopesticides. B. thuringiensis SBS BT-1 carrying the cry2 genes was isolated from soil samples in Pakistan. The 2-kb full length cry2Ac gene was cloned, sequenced, and submitted to the EMBL DNA database (Accession No. AM292031). For expression analysis, Escherichia coli DH5α was transformed with the fragment sub-cloned in pET22b expression vector using NdeI and HindIII restriction sites, and later confirmed by restriction endonuclease analysis. To assess the toxicity of Cry2Ac7 protein against lepidopteran and dipteran insects, BL21 (codon plus) strain of E. coli was further transformed with the recombinant plasmid. The 65-kDa protein was expressed in the form of inclusion bodies up to 180 OD units per liter of the medium. Inclusions were washed with a buffer containing 1.5% Triton-X 100 and >90% pure Cry2Ac7 was obtained. The inclusion bodies were dissolved in 50 mM K2CO3 (pH 11.5), dialyzed, and freeze-dried. -
Bacillus Thuringiensis As a Specific, Safe, and Effective Tool for Insect Pest Control
J. Microbiol. Biotechnol. (2007), 17(4), 547–559 Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control ROH, JONG YUL, JAE YOUNG CHOI, MING SHUN LI, BYUNG RAE JIN1, AND YEON HO JE* Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea 1College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea Received: November 21, 2006 Accepted: January 2, 2007 Bacillus thuringiensis (Bt) was first described by Berliner The insecticidal bacterium Bt is a Gram-positive [10] when he isolated a Bacillus species from the Mediterranean bacterium that produces proteinaceous inclusions during flour moth, Anagasta kuehniella, and named it after the sporulation [53]. These inclusions can be distinguished as province Thuringia in Germany where the infected moth distinctively shaped crystals by phase-contrast microscopy. was found. Although this was the first description under The inclusions are composed of proteins known as crystal the name B. thuringiensis, it was not the first isolation. In proteins, Cry proteins, or δ-endotoxins, which are highly 1901, a Japanese biologist, Ishiwata Shigetane, discovered toxic to a wide variety of important agricultural and a previously undescribed bacterium as the causative health-related insect pests as well as other invertebrates. agent of a disease afflicting silkworms. Bt was originally Because of their high specificity and their safety for the considered a risk for silkworm rearing but it has become environment, crystal proteins are a valuable alternative the heart of microbial insect control. The earliest commercial to chemical pesticides for control of insect pests in production began in France in 1938, under the name agriculture and forestry and in the home. -
Cooperation and Bacterial Pathogenicity: an Approach to Social Evolution C Alfonso Molina1,3* and Susana Vilchez2
Molina and Vilchez Revista Chilena de Historia Natural 2014, 87:14 http://www.revchilhistnat.com/content/87/1/14 REVIEW Open Access Cooperation and bacterial pathogenicity: an approach to social evolution C Alfonso Molina1,3* and Susana Vilchez2 Abstract Kin selection could provide an explanation for social behavior in bacteria. The production of public goods such as extracellular molecules is metabolically costly for bacteria but could help them to exploit nutrients or invade a host. Some bacterial cells called social cheaters do not produce public goods; however, they take advantage of these extracellular molecules. In this review, the relationships between social behavior, cooperation, and evolution of bacterial pathogenicity are analyzed. This paper also examines the role of horizontal transfer of genes encoding for virulence factors and how the movement of mobile genetic elements would influence the pathogenicity and social relationships. Moreover, the link between ecological relationships and evolution in entomopathogenic bacteria, focusing on Bacillus thuringiensis is considered. Finally, the findings obtained with B. thuringiensis are extrapolated on Bacillus pumilus 15.1, an entomopathogenic strain whose pathogenicity is not understood yet. Keywords: Cooperation; Evolution; Pathogenicity; Public goods; Sociability Introduction (Brown 1999), adhesive polymers (Rainey and Rainey The social relationships of microorganisms are based on 2003), or siderophores (West and Buckling 2003), amongst a wide range of extracellular actions produced by indi- others. This social behavior is, from a metabolic point of vidual cells, which can affect the reproductive efficiency view, costly for the individual cells, although it is beneficial of other nearby cells. The production of molecules such for the group. -
The Pesticidal Cry6aa Toxin from Bacillus Thuringiensis Is Structurally
Dementiev et al. BMC Biology (2016) 14:71 DOI 10.1186/s12915-016-0295-9 RESEARCH ARTICLE Open Access The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE- family alpha pore-forming toxins Alexey Dementiev1, Jason Board2, Anand Sitaram3, Timothy Hey4,7, Matthew S. Kelker4,10, Xiaoping Xu4, Yan Hu3, Cristian Vidal-Quist2,8, Vimbai Chikwana4, Samantha Griffin4, David McCaskill4, Nick X. Wang4, Shao-Ching Hung5, Michael K. Chan6, Marianne M. Lee6, Jessica Hughes2,9, Alice Wegener2, Raffi V. Aroian3, Kenneth E. Narva4 and Colin Berry2* Abstract Background: The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage. To increase our understanding of their mode of action and to facilitate further development of these proteins we have determined the structure of Cry6Aa in protoxin and trypsin-activated forms and demonstrated a pore-forming mechanism of action. Results: The two forms of the toxin were resolved to 2.7 Å and 2.0 Å respectively and showed very similar structures. Cry6Aa shows structural homology to a known class of pore-forming toxins including hemolysin E from Escherichia coli and two Bacillus cereus proteins: the hemolytic toxin HblB and the NheA component of the non- hemolytic toxin (pfam05791).