A Wonderful Network Unraveled

Total Page:16

File Type:pdf, Size:1020Kb

A Wonderful Network Unraveled Klußmann-Fricke et al. Frontiers in Zoology 2014, 11:28 http://www.frontiersinzoology.com/content/11/1/28 RESEARCH Open Access A wonderful network unraveled - Detailed description of capillaries in the prosomal ganglion of scorpions Bastian J Klußmann-Fricke*, Sebastian W Pomrehn and Christian S Wirkner Abstract Introduction: Though it has long been known that the prosomal ganglion of scorpions is supplied by a dense system of arteries, the pattern of this network has never been described and analyzed in detail. Using MicroCT in combination with computer aided 3D-reconstruction we provide the first detailed description of the pattern of arteries in the prosomal ganglion of Brotheas granulatus (Scorpiones, Chactidae) and other scorpion species. Results: The entire prosomal ganglion in scorpions is supplied by a network of arteries that branch off the major arteries of the anterior aorta system. The most prominent of these are the nine transganglionic arteries which run through the nerve mass along the midline of the body and branch terminally, i.e. below the neuropils, into smaller arteries. These arteries reticulate into a dense network between the surrounding somata and the centrally located neuropil structures of the ganglion. Conclusions: We demonstrate the presence in the prosomal ganglion of scorpions of a capillary system made up of afferent arteries which deliver hemolymph into the ganglion and efferent arteries which transport the hemolymph out of the ganglion. Adopting the structural definition used for vertebrate circulatory systems, this capillary network can also be termed a bipolar rete mirabile (located as it is between afferent and efferent arteries) analogous to those found in vertebrates and some echinoderms. Within the rete mirabile of the scorpion prosomal ganglion, some regions (i.e. neuropils) are better supplied than others. The structural information provided here can now be used in functional neuronal studies to determine the physiological and computational significance of the various neuropils in the complex scorpion nervous system. Introduction distinguishable in arachnids [2], where the supraeso- The central nervous system (CNS) is one of the most phageal ganglion sits broadly on the anterior part of the important organ systems in animals, so ensuring that it subesophageal ganglion. Only in lateral view can the is supplied with nutrients and oxygen is a crucial matter. rather thin esophagus be taken as a fictive border between In arthropods, the central nervous system consists of a the two major ganglionic masses. 'syncerebrum' and a number of free segmental ganglia The prosomal ganglion is supplied by the hemolymph which are situated ventrally in the body and therefore vascular system (HVS), which in scorpions consists of a known as the ventral nerve cord [1]. In arachnids, the dorsal tubular heart located in the midline of the meso- syncerebrum is fused with a taxon-specific number of soma (Figure 1; H) and surrounded by a sac-like pericar- ventral nerve cord ganglia to form the condensed proso- dium [2,4-6]. Hearts are equipped with seven pairs of ostia mal ganglion (Pg; [2]). A prosomal ganglion combines a and six or eight pairs of cardiac arteries which supply the dorsal supra- and a ventral subesophageal ganglia. Clas- organs of the mesosoma. Hearts are connected posteriorly sically, supra- and subesophageal ganglia are connected to the posterior aorta, which runs dorsally through the by circumesophageal connectives [3], but these are not metasoma into the telson (Figure 1; Po), and anteriorly to the anterior aorta, which runs into the prosoma to the * Correspondence: [email protected] level of the supraesophageal ganglion and goes on to Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, Universitätsplatz 2, 18055 Rostock, Germany © 2014 Klußmann-Fricke et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Klußmann-Fricke et al. Frontiers in Zoology 2014, 11:28 Page 2 of 15 http://www.frontiersinzoology.com/content/11/1/28 Results Gross morphology of the prosomal ganglion and the vascular system which supplies it In the following, morphology of the prosomal ganglion and the vascular system which supplies it is described Po for Brotheas granulatus. Comparative morphological aspects within scorpions are described in a separate chapter below. The terminology used in the following H description of the prosomal ganglion follows the works IV Vv of Babu [14] and Horn and Achaval [3]. As stated above, the prosomal ganglion comprises a supra- and a subeso- III phageal ganglion. Its nervous tissue consists of densely II packed peripheral somata (Figure 2, space between neuri- I lemma – Nl and neuropil) and centrally located neuropil Ao Pp structures (e.g. Figure 2; NpI) made up of the axons and synapses of the neurons. The supraesophageal ganglion consists of the posterior arcuate body (see below), with Ch the remaining protocerebrum receiving the optic nerves and the deutocerebrum, i.e. the cheliceral neuromere Figure 1 Schematic drawing of major vascular system of Scorpiones (modified from [6] with permission from Wiley and (Figure 2A, B; Ptc + Dtc). The arcuate body (sensu Loesel Son). Abbreviations: Ao, anterior aorta; Ch, cheliceral arteries; H, et al. [15]) (Figures 2A, C and 3B; Ac) is an unpaired heart; I-IV, leg arteries; Po, posterior aorta; Pp, pedipalpal artery; double-layered midline neuropil which is located at the Vv, ventral vessel. posterior border of the protocerebrum. The subesophageal ganglion is formed by the neuromeres of the pedipalps (i.e. the tritocerebrum) (Figure 2; Ppn), the neuromeres supply, via a complex branching pattern, the various organ of the four pairs of limbs (Figure 2; NpI-IV), and four systems and appendages (Figure 1; Ao). incorporated ganglia of the ventral nerve cord (Figure 2; It has long been known that the prosomal ganglion in Pnp). The latter are known as the posterior neuropils scorpions is supplied by a number of vessels [4,7-9], and (sensu Babu, [14]) and include the pectinate neuropils (see even that these vessels form a dense network [2,6]. How- [16] for details). In the anteroventral midline of the sube- ever, the structure and pattern of the network has never sophageal ganglion laterally to the first five transganglionic been studied in detail. At first glance, the fine arteries in arteries (see below), the paired central ganglion (sensu question could be interpreted as capillaries, which in Babu, [14]) can be found. The whole prosomal ganglion is vertebrates are defined as networks of small-diameter surrounded by the multilayered neurilemma (Figures 2A, vessels (5 – 10 μm) that connect arteries and veins. Ca- B, and 7A; Nl). pillaries are characterized by the presence of exclusively From its origin at the heart, the anterior aorta endothelial layers and connective tissue, and are where (Figure 1; Ao) runs in an anteroventral direction to the exchange of oxygen and nutrients takes place [10]. the posterodorsal part of the supraesophageal gan- As veins are not present in arthropods [11], the older lit- glion (Figure 3A-C; Ao) where the cheliceral arteries erature on arthropods (or more precisely on crustaceans) branch off and run around the supraesophageal ganglion defines capillaries either as small-caliber vessels continu- laterally (Figure 3B, C; Ch). Anterior to the supraesopha- ous with the efferent arteries and without visible intima geal ganglion these arteries bend upwards and run into [12], or as vessel networks that link afferent and efferent the chelicerae (Figure 3C). Shortly after this bend, a su- vessels [13]. pracerebral artery (Figure 3B; Sc) emanates either from This paper provides the first detailed description of the the left or the right cheliceral artery (see [2] for details morphology of the cerebral vasculature in scorpions. It on variation). also identifies parts of the prosomal ganglion that are After the cheliceral arteries have branched off dorsally better supplied than others and discusses possible reasons to the thin esophagus, the anterior aorta bifurcates into for this pattern. We discuss the terminology commonly two lateral trunks from which subsequently the arteries used to describe capillaries and retia mirabilia and the of the pedipalps and the four pairs of walking legs branch possible adoption of these terms to arthropod circulatory off (Figure 3C; Pp, I-IV). On top of the subesophageal systems in general. Furthermore, we hypothesize on how ganglion, the lateral trunks curve backwards, reunite, and the pattern of arteries described might be established give rise to the ventral vessel (Figure 3C; Vv). This artery during ontogeny. runs atop the ventral nerve cord in a posterior direction Klußmann-Fricke et al. Frontiers in Zoology 2014, 11:28 Page 3 of 15 http://www.frontiersinzoology.com/content/11/1/28 Nl Ac Ptc Nl Dtc Pnp Ppn NpIV NpI NpII A 500µm Ppn NpII NpIII 400µm B NpI Ac Cn Ptc Cn Pa Pnp Tga Pc Ppn Dtc Ppn Ca NpI C 300µm D 300µm Figure 2 Gross morphology of the prosomal ganglion in B. granulatus.A: Surface renderings of the neurilemma (Nl; transparent) and the neuropil of the prosomal ganglion showing the general organization of the ganglion; note that space between neurilemma and neuropils is filled with somata (not shown); in lateral view. B: Surface renderings of the neurilemma (Nl) and the neuropil of the prosomal ganglion showing pedipalpal (Pnp) and leg neuropils (NpI-IV); in ventral view. C: Surface renderings of the neurilemma and the neuropil of the prosomal ganglion showing neuropils of the proto- (Ptc), deuto- (Dtc), and tritocerebrum (i.e.
Recommended publications
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Nervous Tissue
    Nervous Tissue • Controls and integrates all body activities within limits that maintain life • Three basic functions – sensing changes with sensory receptors • fullness of stomach or sun on your face – interpreting and remembering those changes – reacting to those changes with effectors • muscular contractions • glandular secretions Major Structures of the Nervous System • Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors Organization of the Nervous System • CNS is brain and spinal cord • PNS is everything else Nervous System Divisions • Central nervous system (CNS) – consists of the brain and spinal cord • Peripheral nervous system (PNS) – consists of cranial and spinal nerves that contain both sensory and motor fibers – connects CNS to muscles, glands & all sensory receptors Subdivisions of the PNS • Somatic (voluntary) nervous system (SNS) – neurons from cutaneous and special sensory receptors to the CNS – motor neurons to skeletal muscle tissue • Autonomic (involuntary) nervous systems – sensory neurons from visceral organs to CNS – motor neurons to smooth & cardiac muscle and glands • sympathetic division (speeds up heart rate) • parasympathetic division (slow down heart rate) • Enteric nervous system (ENS) – involuntary sensory & motor neurons control GI tract – neurons function independently of ANS & CNS Neurons • Functional unit of nervous system • Have capacity to produce action potentials – electrical excitability • Cell body – single nucleus with prominent nucleolus – Nissl
    [Show full text]
  • The Nervous System
    The Nervous System • A network of billions of nerve cells linked together in a highly organized fashion to form the rapid control center of the body. • Functions include: – Integrating center for homeostasis, movement, and almost all other body functions. – The mysterious source of those traits that we think of as setting humans apart from animals Basic Functions of the Nervous System 1. Sensation • Monitors changes/events occurring in and outside the body. Such changes are known as stimuli and the cells that monitor them are receptors. 2. Integration • The parallel processing and interpretation of sensory information to determine the appropriate response 3. Reaction • Motor output. – The activation of muscles or glands (typically via the release of neurotransmitters (NTs)) Organization of the Nervous System • 2 big initial divisions: 1. Central Nervous System • The brain + the spinal cord – The center of integration and control 2. Peripheral Nervous System • The nervous system outside of the brain and spinal cord • Consists of: – 31 Spinal nerves » Carry info to and from the spinal cord – 12 Cranial nerves » Carry info to and from the brain Peripheral Nervous System • Responsible for communication btwn the CNS and the rest of the body. • Can be divided into: – Sensory Division • Afferent division – Conducts impulses from receptors to the CNS – Informs the CNS of the state of the body interior and exterior – Sensory nerve fibers can be somatic (from skin, skeletal muscles or joints) or visceral (from organs w/i the ventral body cavity) – Motor Division • Efferent division – Conducts impulses from CNS to effectors (muscles/glands) – Motor nerve fibers Motor Efferent Division • Can be divided further: – Somatic nervous system • VOLUNTARY (generally) • Somatic nerve fibers that conduct impulses from the CNS to skeletal muscles – Autonomic nervous system • INVOLUNTARY (generally) • Conducts impulses from the CNS to smooth muscle, cardiac muscle, and glands.
    [Show full text]
  • Nervous Tissue
    Nervous Tissue • Controls and integrates all body activities within limits that maintain life • Three basic functions – sensing changes with sensory receptors • fullness of stomach or sun on your face – interpreting and remembering those changes – reacting to those changes with effectors • muscular contractions • glandular secretions 12-1 Major Structures of the Nervous System • Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors 12-2 Organization of the Nervous System • CNS is brain and spinal cord • PNS is everything else 12-3 Nervous System Divisions • Central nervous system (CNS) – consists of the brain and spinal cord • Peripheral nervous system (PNS) – consists of cranial and spinal nerves that contain both sensory and motor fibers – connects CNS to muscles, glands & all sensory receptors 12-4 Subdivisions of the PNS • Somatic (voluntary) nervous system (SNS) – neurons from cutaneous and special sensory receptors to the CNS – motor neurons to skeletal muscle tissue • Autonomic (involuntary) nervous systems – sensory neurons from visceral organs to CNS – motor neurons to smooth & cardiac muscle and glands • sympathetic division (speeds up heart rate) • parasympathetic division (slow down heart rate) • Enteric nervous system (ENS) – involuntary sensory & motor neurons control GI tract – neurons function independently of ANS & CNS 12-5 Neurons • Functional unit of nervous system • Have capacity to produce action potentials – electrical excitability • Cell body • Cell processes = dendrites
    [Show full text]
  • The Secretion of Oxygen Into the Swim-Bladder of Fish III
    CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central The Secretion of Oxygen into the Swim-Bladder of Fish III. The role of carbon dioxide JONATHAN B. WITTENBERG, MARY J. SCHWEND, and BEATRICE A. WITTENBERG From the Department of Physiology, Albert Einstein College of Medicine, Yeshiva University, New York, and the Marine Biological Laboratory, Woods Hole, Massachusetts ABSTRACT The secretion of carbon dioxide accompanying the secretion of oxygen into the swim-bladder of the bluefish is examined in order to distinguish among several theories which have been proposed to describe the operation of the rete mirabile, a vascular countercurrent exchange organ. Carbon dioxide may comprise 27 per cent of the gas secreted, corresponding to a partial pres- sure of 275 mm Hg. This is greater than the partial pressure that would be generated by acidifying arterial blood (about 55 mm Hg). The rate of secretion is very much greater than the probable rate of metabolic formation of carbon dioxide in the gas-secreting complex. It is approximately equivalent to the probable rate of glycolytic generation of lactic acid in the gas gland. It is con- cluded that carbon dioxide brought into the swim-bladder is liberated from blood by the addition of lactic acid. The rete mirabile must act to multiply the primary partial pressure of carbon dioxide produced by acidification of the blood. The function of the rete mirabile as a countercutrent multiplier has been proposed by Kuhn, W., Ramel, A., Kuhn, H. J., and Marti, E., Experientia, 1963, 19, 497. Our findings provide strong support for their theory.
    [Show full text]
  • Constant Neuropilar Ratio in the Insect Brain Alexey A
    www.nature.com/scientificreports OPEN Constant neuropilar ratio in the insect brain Alexey A. Polilov* & Anastasia A. Makarova Revealing scaling rules is necessary for understanding the morphology, physiology and evolution of living systems. Studies of animal brains have revealed both general patterns, such as Haller’s rule, and patterns specifc for certain animal taxa. However, large-scale studies aimed at studying the ratio of the entire neuropil and the cell body rind in the insect brain have never been performed. Here we performed morphometric study of the adult brain in 37 insect species of 26 families and ten orders, ranging in volume from the smallest to the largest by a factor of more than 4,000,000, and show that all studied insects display a similar ratio of the volume of the neuropil to the cell body rind, 3:2. Allometric analysis for all insects shows that the ratio of the volume of the neuropil to the volume of the brain changes strictly isometrically. Analyses within particular taxa, size groups, and metamorphosis types also reveal no signifcant diferences in the relative volume of the neuropil; isometry is observed in all cases. Thus, we establish a new scaling rule, according to which the relative volume of the entire neuropil in insect brain averages 60% and remains constant. Large-scale studies of animal proportions supposedly started with the publication D’Arcy Wentworth Tompson’s book Growth and Forms1. In fact, the frst studies on the subject appeared long before the book (e.g.2), but it was Tomson’s work that laid the foundations for this discipline, which, following the studies of Julian Huxley 3,4, became a major fundamental and applied area of science5–8.
    [Show full text]
  • Evolution of Nervous Systems and Brains 2
    Evolution of Nervous Systems and Brains 2 Gerhard Roth and Ursula Dicke The modern theory of biological evolution, as estab- drift”) is incomplete; they point to a number of other lished by Charles Darwin and Alfred Russel Wallace and perhaps equally important mechanisms such as in the middle of the nineteenth century, is based on (i) neutral gene evolution without natural selection, three interrelated facts: (i) phylogeny – the common (ii) mass extinctions wiping out up to 90 % of existing history of organisms on earth stretching back over 3.5 species (such as the Cambrian, Devonian, Permian, and billion years, (ii) evolution in a narrow sense – Cretaceous-Tertiary mass extinctions) and (iii) genetic modi fi cations of organisms during phylogeny and and epigenetic-developmental (“ evo - devo ”) self-canal- underlying mechanisms, and (iii) speciation – the ization of evolutionary processes [ 2 ] . It remains uncer- process by which new species arise during phylogeny. tain as to which of these possible processes principally Regarding the phylogeny, it is now commonly accepted drive the evolution of nervous systems and brains. that all organisms on Earth are derived from a com- mon ancestor or an ancestral gene pool, while contro- versies have remained since the time of Darwin and 2.1 Reconstruction of the Evolution Wallace about the major mechanisms underlying the of Nervous Systems and Brains observed modi fi cations during phylogeny (cf . [1 ] ). The prevalent view of neodarwinism (or better In most cases, the reconstruction of the evolution of “new” or “modern evolutionary synthesis”) is charac- nervous systems and brains cannot be based on fossil- terized by the assumption that evolutionary changes ized material, since their soft tissues decompose, but are caused by a combination of two major processes, has to make use of the distribution of neural traits in (i) heritable variation of individual genomes within a extant species.
    [Show full text]
  • Unit 6 in Entomology [1] Unit Six. Reception and Integration: the Insect Nervous System. [2] in This Unit, You'll Need to Desc
    Unit 6 in Entomology [1] Unit six. Reception and Integration: The Insect Nervous System. [2] In this unit, you'll need to describe the origin of the insect nervous system, identify the major structures of the insect nervous system and describe their function, compare and contrast the physical structure and functions of compound eyes and simple eyes, differentiate between the two types of simple eyes and describe the four types of mechanical receptors insects possess. [3] Have you ever thought about how insects receive information from their environment? We use all of our five senses, but what about insects? Think about this. Do they have eyes? Yeah, mostly. Do they have a nose? The answer may seem obvious to you: insects don't have noses, but have you ever thought about how they smell or do they even smell? Well, yes, they do. They have receptors on their antenna and other parts of their body to pick up scents. In order to understand how an insect picks up a scent, let's first look at how humans do it. [4] Someone is baking luscious bread in the kitchen. As you walk by the kitchen, chemical molecules mixed with the steam waft up from the cooking food and enter your nose. The molecules then bind to tiny hairs in the nasal cavity. These hairs are extensions of olfactory nerve cells. Nerve cells are also called neurons. The binding of the chemical causes your olfactory nerves to fire and send a message to your brain. There, the brain interprets the message and fires another nerve cell in response that stimulates your salivary glands.
    [Show full text]
  • Cells of the Nervous System Two Major Cell/Tissue Types in Nervous System
    Cells of the Nervous System two major cell/tissue types in Nervous System: neurons – impulse conduction 100 Billion generally no mitosis neuroglia – support, protection, insulation, etc [need specialized cells because of unique sensitivity of neurons to their environment] 900 Billion some mitosis Neuroglia 1. astrocytes 2. oligodendroglia 3. microglia 4. ependymal cells 5. Schwann cells 1. Astrocytes largest and most abundant type form tight webs around brains capillaries =blood/brain barrier small molecules (O2, CO2, alcohol) diffuse rapidly larger molecules penetrate slowly or not at all this blockage of free exchange between capillaries and tissues is unique for nervous tissue => prevents sudden and extreme fluctuations in composition of tissue fluid in CNS => protects irreplaceable neurons from damage 2. Oligodendrocytes (oligodendroglia) smaller cells, fewer processes clustered around nerve cell bodies help hold nerve fibers together produce myelin sheath (electrical insulation) around neurons in CNS [myelin=fatty substance] 3. Microglia small stationary cells in inflamed or degenerating brain tissue they: enlarge move about 1 carry out phagocytosis of microbes and cellular debris 4. Ependymal Cells ciliated cells line ventricles and spinal canal help to circulate CerebroSpinal Fluid 5. Schwann Cells found only in PNS form a segmental wrapping around nerve fibers each segment is produced by 1 Schwann cell gaps between cells = Nodes of Ranvier form neurilemma and myelin sheath in PNS neurons myelin (in CNS and PNS) can be: thick =
    [Show full text]
  • Myelin Sheath Are Called Myelinated Nerve Fibers
    Physiology of the Nerve & Muscle System(2) Second Stage/ University of Anbar-College of Dentistry By : Dr. Rana Hazim Ph.D. Human Physiology. Dep. Basic Science The axon has a long central core of cytoplasm called axoplasm. The axoplasm is covered by the tubular sheath like membrane called axolemma which is the continuation of the cell membrane of nerve cell body. The axoplasm along with the axolemma is called the axis cylinder of the nerve fiber (Fig. 1). Axoplasm contains mitochondria, neurofibrils and axoplasmic vesicles. But, Nissl bodies are absent in the axon Figure (1) :- A- Myelinated never fiber B- Non- myelinated nerve Myelinated nerve fiber The nerve fibers which are insulated by myelin sheath are called myelinated nerve fibers. Non - myelinated nerve fiber The nerve fiber described above is the non-myelinated nerve fiber which is not covered by myelin sheath Myelin Sheath Myelin sheath is a thick lipoprotein sheath that insulates the myelinated nerve fiber. Myelin sheath is not a continuous sheath. It is absent at regular intervals. The area where the myelin sheath is absent is called node of Ranvier . The segment of the nerve fiber between two nodes is called internode. Myelin sheath is responsible for the white color of the nerve fibers. Chemistry of Myelin Sheath Myelin sheath is formed by concentric layers of proteins alternating with lipids. The lipids are cholesterol and lecithin. The formation of myelin sheath around the axon is called the myelinogenesis. It is formed by Schwann cells in neurilemma. Functions of myelin sheath 1- Faster conduction: Myelin sheath is responsible for faster conduction of impulse through the nerve fibers.
    [Show full text]
  • Terminology List for the Nervous System
    Terminology List for the Nervous System Nerve cell: neuron, cell body, axon, dendrite, axon hillock, axon terminal, synaptic cleft, neuroglia, Schwann cells, myelin, Nodes of Ranvier, neurilemma, endoneurium Human Brain: cerebrum: right and left cerebral hemispheres transverse fissure longitudinal fissure lateral sulcus central sulcus parieto-occipital sulcus precentral gyrus postcentral gyrus frontal lobe parietal lobe temporal lobe occipital lobe insula cortex basal nuclei (=cerebral nuclei or basal ganglia) corpus callosum septum pellucidum fornix internal capsule cerebellum: right and left cerebellar hemispheres vermis cortex arbor vitae diencephalon: epithalamus (pineal body, pineal gland) thalamus intermediate mass hypothalamus infundibulum pituitary gland mammillary bodies brainstem: midbrain (=mesencephalon) corpora quadrigemina superior colliculi inferior colliculi cerebral peduncles pons cerebellar peduncles medulla oblongata pyramids Sheep Brain: Cerebrum: cerebral hemispheres, gyri, sulci, olfactory bulbs, olfactory tracts, optic nerves, optic chiasma, corpus callosum Diencephalon: epithalamus (or pineal gland), thalamus hypothalamus, pituitary gland Cerebellum: arbor vitae Brain Stem: midbrain pons medulla Meninges & Ventricles: dura mater, arachnoid layer, subacrachnoid space, pia mater, falx cerebri, falx cerebelli, tentorium cerebelli, lateral ventricles, third ventricle, cerebral aqueduct, fourth ventricle, choroid plexuses, arachnoid villi (=arachnoid granulations) Spinal cord: central canal, posterior median sulcus,
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]