United States Patent 19 11, 3,720,623 Cartmell Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent 19 11, 3,720,623 Cartmell Et Al United States Patent 19 11, 3,720,623 Cartmell et al. (45 March 13, 1973 (54) ENCAPSULATED LIQUID CRYSTALS 3,499,112 3f 1970 Heilmeier et al............. 231230 LC X 75) Inventors: James W. Cartmell; Donald 3,578,844 5/1971 Churchill et al.................. 252/316X Churchill, both of Dayton, Ohio 3,600,060 8/1971 Churchill et al.................. 252/316X 73) Assignee: The National Cash Register Com Primary Examiner-Richard D. Lovering pany, Dayton, Ohio Attorney-E. Frank McKinney and Patrick P. Pacella 22 Filed: Feb. 8, 1971 (21) Appl. No.: 113,716 57 ABSTRACT A mixture of cholesteric liquid crystal material such as 52 U.S. Cl.............. 252/316, 231230 LC, 1 17137 R, cholesteryl nonanoate and nematic liquid crystal 1 17/100 A, 1171159, 2521403, 252/.408, material such as methoxybenzilidene-p-n-butylaniline 264/4, 350/160 P, 350/160 R is disclosed. The mixture can be encapsulated and em 51) Int. Cl..............................................Bo1j 13/02 ployed in temperature-sensitive visual display devices. 58) Field of Search ............... 252/316; 1171 100 A; The addition of nematic liquid crystal material to 231230 LC; 350/160 R, 160 P: 26414 cholesteric liquid crystal material enhances the brightness of films employing cholesteric liquid crystal 56) References Cited material and prolongs the usable life of the films. UNITED STATES PATENTS 6 Claims, No Drawings 3,341,466 9/1967 Brynko et al......................... 252/316 3,720,623 1. 2 ENCAPSULATED LIQUID CRYSTALS the usable lifetime. Also, by the addition of nematic liquid crystals, oleyl cholesteryl carbonate can be This invention relates to unencapsulated and encap eliminated from the mixtures, if desired. sulated mixtures of liquid crystals. This invention also The term "nematic' means "thread-like,' since relates to temperature-sensitive visual display devices. 5 materials in this state frequently assume a charac Most organic crystalline solids exhibit a distinct teristic thread-like texture when a thin section of the transition temperature at which the solid melts to an material is viewed between crossed polaroids. When a isotropic liquid state. Many compounds, however, ex nematic crystalline solid is heated in a capillary tube, hibit an intermediate phase such that on heating to a the crystals collapse sharply at the melting point and temperature (T), the solid melts to a highly colored 10 form a flowing turbid liquid. At a higher temperature, liquid state which can be optically anisotropic. On the turbidity of the nematic liquid crystal disappears further heating, the material undergoes one or more and the liquid becomes an ordinary isotropic liquid. An subsequent phase transitions finally becoming an opti example of a nematic liquid crystal is methoxybenzi cally anisotropic liquid. The intermediate phases com lidene-p-n-butylaniline. monly are called liquid crystals. A general discussion of 15 With respect to both cholesteric and nematic liquid liquid crystals is found in the publication, "Molecular crystals, the liquid crystal state often is called the Structure and the Properties of Liquid Crystals,' by G. mesomorphic state or mesophase. W. Gray, published in 1962 by Academic Press, New Accordingly, an object of this invention is to provide York and London. 20 unencapsulated and encapsulated mixtures of at least The liquid crystal state of most interest to this inven one cholesteric liquid crystal material and at least one tion is that most commonly exhibited by esters of nematic liquid crystal material. cholesterol called the cholesteric state. The domains of Another object of this invention is to provide tem aligned molecules in cholesteric liquid crystals are perature-sensitive visual display devices. capable of affecting a probing incident light in such a 25 Other objects, aspects and advantages of this inven manner that the probing light is reflected in a distinc tion will be apparent to one skilled in the art from the tive spectral hue, usually in bands, dependent on tem following disclosure and appended claims. perature. In most instances the effect is iridescent, de The cholesteric liquid crystals that can be employed pending on the quality of the incident light. This in this invention vary widely. Examples of the reflectance of light in relatively narrow bands is usually 30 cholesteric liquid crystals that can be employed in this referred to as light scattering. This light scattering is a invention are found on page 3 of the above-identified function of the physical ordering of the material in the U.S. Pat. application Ser. No. 798,237, now aban liquid crystal state rather than electronic absorption of doned. light as in the case of other dyes and absorbing Suitable chromatically responsive cholesteric liquid molecules. 35 crystal materials include, but are not limited to, the fol The particular color of the scattered light is a func lowing: cholesteryl halides, e.g., cholesteryl chloride, tion of the temperature of the liquid crystals. This fea cholesteryl bromide and cholesteryl iodide; cholesteryl ture has led to the use of liquid crystals for thermal nitrate and other mixed esters of cholesterol and inor mapping. Thin films of liquid crystals can indicate the ganic acids, cholesteryl esters of saturated and unsatu temperature of a substrate by the color of the film. 40 rated, substituted and unsubstituted organic acids, esp. Up to this time, the utility of cholesteric liquid cholesteryl esters of C to Caliphatic, monocarboxyl crystals in temperature-sensitive systems has been ic acids, e.g., cholesteryl nonanoate, cholesteryl severely limited for a number of reasons. For example, crotonate, cholesteryl chloroformate, cholesteryl in the light scattering state, cholesteric liquid crystals 45 chlorodecanoate, cholesteryl chloroeisosanoate, are a viscous, sticky liquid and require considerable cholesteryl butyrate, cholesteryl caprate, cholesteryl care in handling. Other problems are set forth in U.S. oleate, cholesteryl linolate, cholesteryl linolenate, Pat. application Ser. No. 798,237, filed Nov. 5, 1968, cholesteryl laurate, cholesteryl erucate, cholesteryl by Donald Churchill et al. One answer lies in the myristate, oleyl cholesteryl carbonate, cholesteryl hep encapsulation of cholesteric liquid crystals as de- 50 tyl carbamate, decyl cholesteryl carbonate; cholesteryl scribed in U.S. Pat. application Ser. No. 798,237. esters of unsubstituted or halogenated aryl, -alkenaryl, Another problem which besets these systems is the -aralkenyl, -alkaryl and -aralkyl organic acids, espe loss of color brightness over a period of time. cially cholesteryl esters of those organic acids contain Cholesteric liquid crystals used for thermal mapping ing an aromatic moiety and from seven to 19 carbon and other applications are generally a combination of 55 atoms, such as, cholesteryl p-chlorobenzoate, choles several esters, ethers or carbonates of cholesterol. By teryl cinnamate; cholesteryl ethers, e.g., cholesteryl adjustment of the components and proportions, it is decyl ether, cholesteryl lauryl ether, cholesteryl oleyl possible to select the temperature at which color ap ether, etc. pears and the temperature range over which color is Some exemplary mixtures of cholesteric liquid seen. One of the major components of commonly used 60 crystal materials which can be employed in accordance mixtures is oleyl cholesteryl carbonate. This compound with this invention include, but are not limited to, the is relatively unstable and contributes to the visual following: cholesteryl nonanoate, cholesteryl chloride deterioration of the system. and cholesteryl cinnamate; cholesteryl nonanoate and Encapsulated mixtures of at least one cholesteric cholesteryl chloride; cholesteryl nonanoate and choles liquid crystal and at least one nematic liquid crystal 65 teryl bromide; cholesteryl nonanoate, cholesteryl bro now have been found. The addition of nematic liquid mide and cholesteryl cinnamate; cholesteryl crystals enhances the brightness of films and prolongs nonanoate, cholesteryl iodide and cholesteryl cinna 3,720,623 3 4. mate; cholesteryl nonanoate, cholesteryl iodide and without the use of an added binder such as polymeric cholesteryl benzoate; cholesteryl nonanoate, choles film-forming material. teryl chloride and oley cholestery carbonate; choles If desired, an added binder matrix of polymeric teryl nonanoate, cholesteryl chloride and oleyl choles material can be used in manufacture of the display film teryl carbonate and cholesteryl bromide; oleyl choles wherein capsules which contain the mesomorphic teryl carbonate and cholesteryl iodide, oleyl cholesteryl material are dispersed in a liquid solution of polymeric carbonate and cholestery p-chlorobenzoate; etc. binder material and the resulting dispersion is cast onto Also, it should be understood that included within a substrate material and dried to yield a coated con the term cholesteric liquid crystalline mixtures can be struction of capsules embedded in a polymeric binder mixtures of two or more individual cholesteric materi O film. The substrate can be of any conventional sheet als. material, including glass, and a polymeric material of The nematic liquid crystals that can be employed in the same kind as that of the binder material or not, as this invention are alkoxybenzilidene-p-n-alkylaniline or desired or required by the intended purpose. Binder hydroxyalkoxybenzilidene-p-n-alkylaniline wherein material useful in the practice of this invention must be each alkoxy, hydroxyalkoxy or alkyl group has
Recommended publications
  • United States Patent 19 11) 4,045,383 Koff 45) Aug
    United States Patent 19 11) 4,045,383 Koff 45) Aug. 30, 1977 (54) STABLE EMULSIONS AND IMPROVED (56) References Cited TEMPERATURE MONITORING FILMS FOREIGN PATENT DOCUMENTS PREPARED THEREFROM 1,138,590 1/1969 United Kingdom (75) Inventor: Arnold Koff, West Orange, N.J. OTHER PUBLICATIONS (73) Assignee: Hoffmann-La Roche Inc., Nutley, Chem. Abstract 48:225 h. N.J. Chem. Abstract 64:17,361 g. 21 Appl. No.: 651,010 Primary Examiner-Theodore Morris Attorney, Agent, or Firm-Samuel L. Welt; Bernard S. 22) Filed: Jan. 21, 1976 Leon; William M. Farley 57 ABSTRACT Related U.S. Application Data Improved temperature monitoring films formed from (63) Continuation of Ser. No. 221,408, Jan. 27, 1972, stable emulsions containing compounds capable of ex abandoned, which is a continuation-in-part of Ser. No. isting in the cholesteric liquid crystalline phase which 885,353, Dec. 15, 1969, abandoned. are protected and stabilized against aging, and the atmo 51 Int. C.’................................................ C09K 3/34 sphere by the inclusion of an antioxidant are provided. (52) U.S. C. ................................... 260/8; 23/230 LC; The thus-formed film materials are used in thermogra 106/135; 252/299 phy and/or thermometry. 58) Field of Search ........................ 106/135; 252/299; 260/8; 428/1; 23/230 LC 3 Claims, No Drawings 4,045,383 1. 2 viewed, has an apparent color which is a complement of STABLE EMULSONS AND MPROVED the color of the light transmitted through the film. TEMPERATURE MONTORING FILMS The terms "light” and "color" as used herein have a PREPARED THEREFROM broad connotation of referring to electromagnetic radi ation generally, rather than to solely visible radiation.
    [Show full text]
  • Cosmedix Active Ingredients Glossary
    COSMEDIX ACTIVE INGREDIENTS GLOSSARY INCI Name Function Acetyl Hexapeptide-1 Is a biomimetic peptide antagonist specific of the alpha-melanocyte stimulating hormone by preventing any further activation of the tyrosinase, and thus blocking melanin synthesis. Adenine is a nucleobase with a variety of roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and protein synthesis, as a chemical component of DNA and . Alcohol Carrier, Solubilizer and Antiseptic Alcohol Denat. Carrier, Solubilizer and Antiseptic Allantoin it is derived from the extracts of a comfrey plant. It softens the skin and enables it to absorb more moisture. It’s particularly effective at treating wounds, burns, skin ulcers, eczema, and any other abrasion in the skin. Aloe Barbadensis Leaf Juice Powder it is a species of succulent plant in the genus Aloe that grows in arid climates and is widely distributed in Africa, India, and other arid areas. As a soothing, moisturizing and conditioning agent, Aloe vera extracts may be useful in the treatment of wound and burn healing, minor skin infections, Sebaceous cyst, diabetes, and elevated blood lipids in humans.These positive effects are thought to be due to the presence of compounds such as polysaccharides, mannans, anthraquinones, and lectins. Amino Esters-1 Skin-Conditioning Agent - Aminoguanidine HCL It is an investigational drug for the treatment of diabetic nephropathy. It is a diamine oxidase and nitric oxide synthase inhibitor and acts as an anti-oxidant that helps reducing the formation of advanced glycation end-products (AGEs) which destroy collagen and contribute skin aging. Arabinogalactan Protein (AGP) is a polysaccharide extracted from larch trees.
    [Show full text]
  • Unlted States Patent [19] [11] Patent Number: 4,469,452 Sharpless Et Al
    Unlted States Patent [19] [11] Patent Number: 4,469,452 Sharpless et al. [45] Date of Patent: Sep. 4, 1984 [54] INDICATOR SYSTEM AND MEANS FOR 3,946,611 3/ 1976 Larsson ............................. .. 374/ 106 IRREVERSIBLY RECORDING A 3,946,612 3/1976 Sagi et a1. 374/ 106 TEMPERATURE LIMIT 3,974,317 8/1976 Sharpless 252/299.7 3,996,007 12/1976 Fanc et al. .. 116/206 [75] Inventors: Edward N. Sharpless, Somerville; 4,042,336 8/1977 Larsson . .. 374/106 Joseph Lichtenstein, Colonia, both of 4,066,567 1/1978 Labes ........ .. 252/299.7 N,J_ 4,137,049 1/1979 Couch et a1. 116/206 ’ _ 0 ‘ _ 4,154,106 5/1979 Inoue et a1. 374/106 [73] Asslgnee: Whitman Medlcal Corporatmn, 4,232,552 11/1980 Hof ct a1. .. 374/106 Clark, NJ. 4,285,697 8/1981 Neary ........ .. 252/4081 [21] Appl‘ No‘: 368,379 4,299,727 11/1981 Hof et a1. .......................... .. 374/106 [22] Filed: Apr. 14’ 1982 FOREIGN PATENT DOCUMENTS 595661 4/1978 U.S.S.R. ......................... .. 252/299.7 [51] 1111- C“, --------------------- -- (309K 343416011“ 21/06; 703560 12/1979 U.S.S.R. ......................... .. 252/299.7 G01N 31/22; COlK 3/00;C01K 11/16 [52] US. Cl. .................................. .. 374/160; 116/206; OTHER PUBLICATIONS 116/ 207; 116/216; 116/ 217; 116/ 219; “Use of Liquid Crystals as Vapor Detectors”, M0]. 252/299.5; 252/229.7; 252/408.1; 252/962; Cryst Ll-q Cry“ vol 27 E J Posiomek et al 374/102; 374/106; 374/141; 374/161; 374/162; ' ' " ' ’ ' ' ’ ' - 436/2 Primary Examiner—Teddy S.
    [Show full text]
  • Thermal, Purity, and Solubility Properties of Cholesteryl Esters and Their Thermal Behavior in Lipid-Water Systems
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-1969 Thermal, purity, and solubility properties of cholesteryl esters and their thermal behavior in lipid-water systems. Gershon Jerry Davis University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Davis, Gershon Jerry, "Thermal, purity, and solubility properties of cholesteryl esters and their thermal behavior in lipid-water systems." (1969). Doctoral Dissertations 1896 - February 2014. 581. https://scholarworks.umass.edu/dissertations_1/581 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. " "'i imi inn mil mil mil mil inn iiimiiii (HI 31EDbb DDIS MMM? b 1 l(>f>f] './ft i/'rt , THERMAL, PURITY, AND SOLUBILITY PROPERTIES OF CHOLESTERYL ESTERS AND THEIR THERMAL BEHAVIOR IN LIPID-WATER SYSTEMS A Dissertation Presented by Gershon Jerry Davis Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY December 1969 Major Subject: Polymer Science and Engineering THERMAL, PURITY, AND SOLUBILITY PROPERTIES OF CHOLESTERYL ESTERS AND THEIR THERMAL BEHAVIOR IN LIPID-WATER SYSTEMS A Dissertation Presented By Gershon Jerry Davis Approved as to style and content by: {) C O -J" (Chairman of Committee) (Head of Department) (Member) (Member) December 1969 iii (c) Gershon Jerry Davis 1970 All Rights Reserved iv To My Family ACKNOWLEDGEMENT The author wishes to thank Professor Roger S.
    [Show full text]
  • Www .Alfa.Com
    Bio 2013-14 Alfa Aesar North America Alfa Aesar Korea Uni-Onward (International Sales Headquarters) 101-3701, Lotte Castle President 3F-2 93 Wenhau 1st Rd, Sec 1, 26 Parkridge Road O-Dong Linkou Shiang 244, Taipei County Ward Hill, MA 01835 USA 467, Gongduk-Dong, Mapo-Gu Taiwan Tel: 1-800-343-0660 or 1-978-521-6300 Seoul, 121-805, Korea Tel: 886-2-2600-0611 Fax: 1-978-521-6350 Tel: +82-2-3140-6000 Fax: 886-2-2600-0654 Email: [email protected] Fax: +82-2-3140-6002 Email: [email protected] Email: [email protected] Alfa Aesar United Kingdom Echo Chemical Co. Ltd Shore Road Alfa Aesar India 16, Gongyeh Rd, Lu-Chu Li Port of Heysham Industrial Park (Johnson Matthey Chemicals India Toufen, 351, Miaoli Heysham LA3 2XY Pvt. Ltd.) Taiwan England Kandlakoya Village Tel: 866-37-629988 Bio Chemicals for Life Tel: 0800-801812 or +44 (0)1524 850506 Medchal Mandal Email: [email protected] www.alfa.com Fax: +44 (0)1524 850608 R R District Email: [email protected] Hyderabad - 501401 Andhra Pradesh, India Including: Alfa Aesar Germany Tel: +91 40 6730 1234 Postbox 11 07 65 Fax: +91 40 6730 1230 Amino Acids and Derivatives 76057 Karlsruhe Email: [email protected] Buffers Germany Tel: 800 4566 4566 or Distributed By: Click Chemistry Reagents +49 (0)721 84007 280 Electrophoresis Reagents Fax: +49 (0)721 84007 300 Hydrus Chemical Inc. Email: [email protected] Uchikanda 3-Chome, Chiyoda-Ku Signal Transduction Reagents Tokyo 101-0047 Western Blot and ELISA Reagents Alfa Aesar France Japan 2 allée d’Oslo Tel: 03(3258)5031 ...and much more 67300 Schiltigheim Fax: 03(3258)6535 France Email: [email protected] Tel: 0800 03 51 47 or +33 (0)3 8862 2690 Fax: 0800 10 20 67 or OOO “REAKOR” +33 (0)3 8862 6864 Nagorny Proezd, 7 Email: [email protected] 117 105 Moscow Russia Alfa Aesar China Tel: +7 495 640 3427 Room 1509 Fax: +7 495 640 3427 ext 6 CBD International Building Email: [email protected] No.
    [Show full text]
  • United States Patent (19) ESSSÉÉ
    United States Patent (19) 11 Patent Number: 4,469,452 Sharpless et al. 45) Date of Patent: Sep. 4, 1984 54 NDCATOR SYSTEMAND MEANS FOR 3,946,611 3/1976 Larsson ............................... 374/106 RREVERSIBLY RECORDING A 3,946,612 3/1976 Sagi et al. ........................... 374/106 TEMPERATURE LIMIT 3,974,317 8/1976 Sharpless ... ... 252/299.7 3,996,007 12/1976 Fanc et al. .......................... 6/206 (75) Inventors: Edward N. Sharpless, Somerville; 4,042,336 8/1977 Larsson ............................... 374/106 Joseph Lichtenstein, Colonia, both of 4,066,567 1/978 Labes .......... ... 252/299.7 4,137,049 1/1979 Couch et al. ........................ 116/206 4,154,106 5/1979 Inoue et al. ......................... 374/106 73) Assignee: Whitman Medical Corporation, 4,232,552 11/1980 Hof et al. ............................ 374/106 Clark, N.J. 4,285,697 8/1981 Neary .......... ... 252A408.1 (21) Appl. No.: 368,379 4,299,727 1/1981 Hof et al. ............................ 374/106 22 Filed: Apr. 14, 1982 FOREIGN PATENT DOCUMENTS 59566 4/1978 U.S.S.R. ........................... 252/299.7 51 Int. Cl. ....................... C09K 3/34; G01N 21/06; 703560 12A1979 U.S.S.R. ........................... 252/299.7 31/22; CO1K 3/00; C01K 11/16 52 U.S. C. .................................... 374/160; 116/206; OTHER PUBLICATIONS 116/207; 116/216; 116/217; 116/219; "Use of Liquid Crystals as Vapor Detectors', Mol. 252/299.5; 252/229.7; 252/408.1; 252/962; Cryst. Liq. Cryst., vol. 27, E. J. Posiomek, et al. 374/102; 374/106,374/141; 374/161; 374/162; 436/2 Primary Examiner-Teddy S.
    [Show full text]
  • Bioresorbable Microdroplet Lasers As Injectable Systems for Transient Thermal Sensing and Modulation
    Article www.acsnano.org Bioresorbable Microdroplet Lasers as Injectable Systems for Transient Thermal Sensing and Modulation Daniel Franklin, Tyler Ueltschi, Andrea Carlini, Shenglian Yao, Jonathan Reeder, Benjamin Richards, Richard P. Van Duyne, and John A. Rogers* Cite This: ACS Nano 2021, 15, 2327−2339 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Minimally invasive methods for temperature sensing and thermal modulation in living tissues have extensive applications in biological research and clinical care. As alternatives to bioelectronic devices for this purpose, functional nanomaterials that self-assemble into optically active microstructures offer important features in remote sensing, injectability, and compact size. This paper introduces a transient, or bioresorbable, system based on injectable slurries of well-defined microparticles that serve as photopumped lasers with temperature-sensitive emission wave- lengths (>4−300 nm °C−1). The resulting platforms can act as tissue-embedded thermal sensors and, simultaneously, as distrib- uted vehicles for thermal modulation. Each particle consists of a spherical resonator formed by self-organized cholesteric liquid crystal molecules doped with fluorophores as gain media, encapsulated in thin shells of soft hydrogels that offer adjustable rates of bioresorption through chemical modification. Detailed studies highlight fundamental aspects of these systems including particle sensitivity, lasing threshold, and size. Additional experiments explore functionality as photothermal agents with active temperature feedback (ΔT =1°C) and potential routes in remote evaluation of thermal transport properties. Cytotoxicity evaluations support their biocompatibility, and ex vivo demonstrations in Casper fish illustrate their ability to measure temperature within biological tissues with resolution of 0.01 °C. This collective set of results demonstrates a range of multifunctional capabilities in thermal sensing and modulation.
    [Show full text]
  • Synthesis of Cholesteryl Ester Liquid Crystals
    Preparation of Cholesteryl Ester Liquid Crystals © 2011 by David A. Katz. All rights reserved The procedure for temperature sensitive liquid crystals is based on G. H. Brown and J. J. Wolken, Liquid Crystals and Biological Systems, Academic Press, NY, 1979, pp. 165-167 and W. Elser and R. D. Ennulat, Adv. Liq. Cryst. 2, 73 (1976). This experiment is modified from the Lab Manual for Nanoscale Science and Technology at http://mrsec.wisc.edu/Edetc/nanolab/LC_prep/index.html The procedure for pressure sensitive liquid crystals is based on Griffiths, Jonathan S., Experimental Chemistry, Stockton State College, Pomona, NJ, 1988 Additional information and procedures added by David A. Katz, Department of Chemistry, Pima Community College Liquid crystals are organic compounds that are in a state between liquid and solid forms. They are viscous, jelly-like materials that resemble liquids in certain respects (viscosity) and crystals in other properties (light scattering and reflection). Liquid crystals must be geometrically highly anisotropic (having different optical properties in different directions)-usually long and narrow - and revert to an isotropic liquid (same optical properties in all directions) through thermal action (heat) or by the influence of a solvent. Liquid crystals are classified as: smectic: molecules arranged in horizontal layers or strata and are standing on end either vertically or at a tilt. nematic: molecules possess a high degree of long-range order with their long axes approximately parallel, but without the distinct layers of the smectic crystals. lyotropic: molecules consist of a nonpolar hydrocarbon chain with a polar head group. In a solvent, such as water, the water molecules are sandwiched between the polar heads of adjacent layers while the hydrocarbon tails lie in a nonpolar environment.
    [Show full text]
  • EXPLORATORY INVESTIGATION on the MEASUREMENT of SKIN FRICTION by MEANS of LIQUID CRYSTALS by Enrique J
    NASA TECHNICAL NA SA TM X-17 74 MEMORANDUM ......v .-­...... I >< c EXPLORATORY INVESTIGATION ON THE MEASUREMENT OF SKIN FRICTION BY MEANS OF LIQUID CRYSTALS by Enrique J. Klein and Angelo P. Margozzi Ames Research Center Moffett Field, Calif. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHING TON, D. C. • MAY 1969 NASA TM X-1774 EXPLORA TORY INVESTIGATION ON THE MEASUREMENT OF SKIN FRICTION BY MEANS OF LIQUID CRYSTALS By Enrique J. Klein and Angelo P. Margozzi Ames Research Center Moffett Field, Calif. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Vi rginia 22151 - CFSTI price $3.00 EXPLORATORY INVESTIGATION ON THE MEASUREMENT OF SKIN FRICTION BY MEANS OF LIQUID CRYSTALS 1 By Enrique J. Klein and Angelo P. Margozzi Ames Research Center SUMMARY A new method is proposed for directly measuring local skin friction in aerodynamic testing. It makes use of thin coatings of cholesteric liquid crystal mixtures that respond to shearing forces by changes in the wavelength of maximum light scattering. A calibration of shear versus wavelength was obtained for a sample substance; a static calibration was made to measure the effects of temperature, pressure, and angle of viewing; and the behavior of the substance was observed in a pipe-flow experiment. Preliminary results showed that the method appears feasible. However, for such a method to become widely applicable in wind-tunnel testing, further research will be needed in (1) obtaining liquid crystal mixtures sensitive over appropriate ranges on the shear scale, (2) preventing the occurrence of roughness on the surface of liquid crystal coatings subjected to aerodynamic shear forces, and (3) developing a suitable optical measuring technique for data acquisition.
    [Show full text]
  • Sigma Biochemical Condensed Phase
    Sigma Biochemical Condensed Phase Library Listing – 10,411 spectra This library provides a comprehensive spectral collection of the most common chemicals found in the Sigma Biochemicals and Reagents catalog. It includes an extensive combination of spectra of interest to the biochemical field. The Sigma Biochemical Condensed Phase Library contains 10,411 spectra acquired by Sigma-Aldrich Co. which were examined and processed at Thermo Fisher Scientific. These spectra represent a wide range of chemical classes of particular interest to those engaged in biochemical research or QC. The spectra include compound name, molecular formula, CAS (Chemical Abstract Service) registry number, and Sigma catalog number. Sigma Biochemical Condensed Phase Index Compound Name Index Compound Name 8951 (+)-1,2-O-Isopropylidene-sn-glycerol 4674 (+/-)-Epinephrine methyl ether .HCl 7703 (+)-10-Camphorsulfonic acid 8718 (+/-)-Homocitric acid lactone 10051 (+)-2,2,2-Trifluoro-1-(9-anthryl)ethanol 4739 (+/-)-Isoproterenol .HCl 8016 (+)-2,3-Dibenzoyl-D-tartaric acid 4738 (+/-)-Isoproterenol, hemisulfate salt 8948 (+)-2,3-O-Isopropylidene-2,3- 5031 (+/-)-Methadone .HCl dihydroxy-1,4-bis- 9267 (+/-)-Methylsuccinic acid (diphenylphosphino)but 9297 (+/-)-Miconazole, nitrate salt 6164 (+)-2-Octanol 9361 (+/-)-Nipecotic acid 9110 (+)-6-Methoxy-a-methyl-2- 9618 (+/-)-Phenylpropanolamine .HCl naphthaleneacetic acid 4923 (+/-)-Sulfinpyrazone 7271 (+)-Amethopterin 10404 (+/-)-Taxifolin 4368 (+)-Bicuculline 4469 (+/-)-Tetrahydropapaveroline .HBr 7697 (+)-Camphor 4992 (+/-)-Verapamil,
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,999,348 Cioca Et Al
    United States Patent (19) 11 Patent Number: 4,999,348 Cioca et al. 45 Date of Patent: Mar. 12, 1991 (54) LIQUID CRYSTAL CONTAINING 4,524,778 6/1985 Brown, Jr. et al. ................. 128/736 COSMETIC AND PHARMACEUTICAL 4,524,779 6/1985 Brown, Jr. .......................... 128/736 COMPOST ONS AND METHODS FOR 4,525,344 6/1985 Tutsky .................................. 424/73 UTLZNG SUCH COMPOSTIONS 4,600,526 7/1986 Gallot et al. 252/299.01 4,603, 146 7/1986 Kligman .............................. 54/559 (75) Inventors: Gheorghe Cioca, Lake Grove; James 4,656,031 4/1987 Lane et al. ... ... 424/49 A. Hayward, Port Jefferson; Manuel 4,673,567 6/1987 Jizomoto . ... 424/38 L. Tan, Glen Cove; Morris Herstein, 4,690,825 9/1987 Won ............ 424/501 4,691,712 9/1987 Brown, Jr. .......................... 125/736 Scarsdale, all of N.Y.; Walter P. 4,702,913 10/1987 Marty ........... ... 424/95 Smith, Stamford, Conn. 4,703,041 10/1987 Weber et al. ......................... 514/23 (73) Assignee: Estee Lauder Inc., New York, N.Y. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 131,458 1108838 9/1981 Canada . 22 Filed: Dec. 11, 1987 0034298 8/1981 European Pat. Off. 133004. 1 1/1978 Germah Democratic Rep. (51) Int. Cl............................................... A61K 3/56 10272 4/1975 Japan. (52) U.S. C. ..................................... 514/171; 514/182 703560 12/1979 U.S.S.R. (58) Field of Search ................ 514/170, 171, 180, 182 1349050 3/1974 United Kingdom. (56) References Cited OTHER PUBLICATIONS U.S. PATENT DOCUMENTS J. Fergason, "Liquid Crystals', Scientific American, 21 1, 3,409,404 ll/1968 Fergason ..............................
    [Show full text]
  • Cholesteryl Oleyl Carbonate at Various Temperature with Acoustic Parametres
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 3, Issue 5 (Mar. - Apr. 2013), PP 88-91 www.iosrjournals.org Viscosity variation of Cholesteryl oleyl carbonate at various temperature with Acoustic parametres Jatinder Pal Singh*, Rajesh Sharma Department of Physics, Post-graduate government college sector-11, chandigarh, India Abstract:Viscoelastic properties of liquid crystals are very important for applications like display technology. Certain molecules do not show a single phase transition from the crystalline to the liquid state on heating, but rather a series of transformations involving new phases possessing a state of aggregation intermediate bctwcen those of highly ordered crystals and of isotropic liquids. For this reason they are termed as liquid crystals (LC) or mesogens. Liquid crystals can be roughly categorized as lyotropic or thennotropic liquid crystals. Heating such crystalline solids or cooling them from their isotropic liquid phase can give rise to liquid crystalline phases. Several materials exist in the LC phase at room temperature, and many other room temperature LC materials can be produced by using mixtures of compounds. All components of the mixture need not necessarily be individually capable of forming LC phases in the latter case. An essential requirement for liquid crystalline or mesomorphic behaviour is that the molecules must be geometrically anisotropic in shape. The ultrasonic velocity measurement is a unique tool in characterizing the structure and properties of the system and provides significant information on the arrangement of matter in solutions and also finds an extensive application in studying the nature of intermolecular forces. In the present work, attempts have been made to investigate the behavior of cholesteryl oleyl carbonate at various concentrations also at different temperatures.
    [Show full text]