United States Patent 19 11) 4,045,383 Koff 45) Aug

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent 19 11) 4,045,383 Koff 45) Aug United States Patent 19 11) 4,045,383 Koff 45) Aug. 30, 1977 (54) STABLE EMULSIONS AND IMPROVED (56) References Cited TEMPERATURE MONITORING FILMS FOREIGN PATENT DOCUMENTS PREPARED THEREFROM 1,138,590 1/1969 United Kingdom (75) Inventor: Arnold Koff, West Orange, N.J. OTHER PUBLICATIONS (73) Assignee: Hoffmann-La Roche Inc., Nutley, Chem. Abstract 48:225 h. N.J. Chem. Abstract 64:17,361 g. 21 Appl. No.: 651,010 Primary Examiner-Theodore Morris Attorney, Agent, or Firm-Samuel L. Welt; Bernard S. 22) Filed: Jan. 21, 1976 Leon; William M. Farley 57 ABSTRACT Related U.S. Application Data Improved temperature monitoring films formed from (63) Continuation of Ser. No. 221,408, Jan. 27, 1972, stable emulsions containing compounds capable of ex abandoned, which is a continuation-in-part of Ser. No. isting in the cholesteric liquid crystalline phase which 885,353, Dec. 15, 1969, abandoned. are protected and stabilized against aging, and the atmo 51 Int. C.’................................................ C09K 3/34 sphere by the inclusion of an antioxidant are provided. (52) U.S. C. ................................... 260/8; 23/230 LC; The thus-formed film materials are used in thermogra 106/135; 252/299 phy and/or thermometry. 58) Field of Search ........................ 106/135; 252/299; 260/8; 428/1; 23/230 LC 3 Claims, No Drawings 4,045,383 1. 2 viewed, has an apparent color which is a complement of STABLE EMULSONS AND MPROVED the color of the light transmitted through the film. TEMPERATURE MONTORING FILMS The terms "light” and "color" as used herein have a PREPARED THEREFROM broad connotation of referring to electromagnetic radi ation generally, rather than to solely visible radiation. The phenomenon of selective scattering as exhibited RELATED APPLICATION by cholesteric liquid crystalline films is independent of This is a continuation, of application Ser. No. 221,408 whether the light illuminating the film is polarized or filed Jan. 27, 1972, now abandoned which is a continua not. The color and intensity of the scattered light de tion-in-part of U.S. Pat. application Ser. No. 885,353, 10 pends upon the temperature of the scattering material filed Dec. 15, 1969, now abandoned, the benefit of the and upon the angle of incidence of illumination. date of which is hereby claimed. Because of the thermochromic properties of choles teric liquid crystals, films containing them are useful for BACKGROUND OF THE INVENTION detecting temperature patterns on various objects, i.e., Liquid crystalline materials have properties that are 15 thermography and/or themometry. This temperature intermediate those of a true liquid and a true crystal pattern is manifested by an irredescent color pattern since they have an ordered structure while also having exhibited by compounds in their cholesteric liquid crys fluidity. These materials are known and are character talline phase. ized or identified by one of three phases or structures Compounds capable of existing in the cholesteric known as the smectic phase, the nematic phase, and the 20 liquid crystalline phase exhibit thermochromic proper cholestric phase (a special form of the nematic phase). ties at temperature ranges which are unique for that The present invention is concerned with materials ex compound. Therefore, the particular cholesteric liquid hibiting a cholesteric liquid crystalline phase. crystalline compound or mixtures of compounds uti Compounds with the cholestric liquid crystalline lized to detect a temperature pattern can be varied to structure exhibit certain characteristics which are mark 25 result in color sensitivity at the particular temperature edly different from those having the smectic or the range being measured. At the lower temperature within nematic structures. The characteristic properties of the range, which can be varied from fractions of a de compounds with the cholesteric liquid crystalline struc gree to several degrees of temperature, the color exhib ture may be summarized as follows: (1) they are opti ited is in the red end of the spectrum and at the higher cally negative, in contrast to the smectic and nematic 30 temperature within the range, the color is in the violet structures which are optically positive; (2) the choles end of the spectrum. Intermediate temperatures result in teric liquid crystalline structure is optically active and intermediate colors, e.g., green. Thus, for example, if it shows strong optical rotatory power; (3) when illumi is desired to measure and detect the temperature pattern nated with white light, the most striking property of the of a particular portion of the anatomy of a person sus compounds with the cholesteric liquid crystalline struc 35 pected of having a blood circulatory disorder or a tu ture is that they scatter light selectively to give vivid mor, a composition which shows a color change at the colors. The color and intensity of the scattered light appropriate temperature can be formulated. Further depends upon the temperature of the scattering material more, cholesteric liquid crystals have been utilized to and upon the degree of incidence of illumination. A determine faults of metal parts of machines and air cholesteric material exhibits a scattering peak having a planes by non-destructive testing techniques. band width of about 200 angstroms that occurs in or Previously, it has been found that in order to more between the infrared and ultraviolet portions of the easily visualize the colors exhibited by cholesteric liquid spectrum; (4) in the cholesteric structure, one circular crystals, it is advantageous to utilize a black back polar component of the incident beam is completely ground. However, the use of a black background gives unaffected. For the dextro cholesteric structure, it is 45 rise to problems which make the use of cholesteric only the circular polarized beam with counterclockwise liquid crystals for detecting temperature patterns diffi rotating electric vector which is reflected. (The sign of cult and uneconomical. One problem is that the black rotation refers to an observer who looks in the direction background must be painted on in the form of a paint or of the incident light.) Levo cholesteric structures have a spray and then the liquid crystals must be applied to the reverse effect; (5) when circular polarized light is 50 the black background so the colors can be readily ob scattered from these materials, the sense of polarization served. Because of the problems involved, the adapt is unchanged. In ordinary materials, the sense of circu ability of these systems is limited. Further, these meth lar polarization is reversed; (6) the mean wave length of ods are disadvantageous since the oily cholesteric liquid the reflected band depends upon the angle of incidence crystals must be applied to the black background as a of the beam. The relationship can be roughly approxi 55 solution in a volatile solvent, thus causing obvious dan mated by the Bragg difraction equation for birefringent gers. Furthermore, the removal of the background and materials. These enumerated properties effectively de particularly the liquid crystals themselves is difficult fine cholesteric liquid crystals. particularly where large areas are concerned. These Thin films of cholesteric liquid crystals exhibit a prop methods are also disadvantageous since it is very diffi erty upon interaction with light, which may be termed 60 cult if not impossible to get a uniformly even coating of "selective scattering". The term "scattering' is used the liquid crystals upon the background, thus rendering rather than "reflection' in order to distinguish from the the pattern unreliable. Furthermore, by the known effect occurring on mirror surfaces wherein light is methods, the re-use of the liquid crystals is, for practical reflected at an angle equal to the angle of incident light. purposes, impossible. A scattered light ray may leave the scattering material 65 In instances wherein the black background is painted at an angle unrelated to the angle of the incident light. or sprayed on a plastic film prior to the application of A selectively scattering film, when observed with light liquid crystals, as well as wherein no plastic film is impinging the film on the same side as that which is utilized, problems arise since the liquid crystals age and 4,045,383 3 4. are unstable when exposed to the atmosphere causing color between 36 C. and 37.5 C, a homogeneous partial decomposition of the compounds and loss of mixture of 46.0 parts of cholesteryl nonanoate, 8.0 parts color intensity and either a shift in the color-tempera cholesteryl oleyl carbonate and 6.0 parts cholesteryl ture response. Even in the case wherein the liquid crys chloride can be used. tals are protected from the atmosphere, e.g., minute 5 The antioxidants useful in this invention are those transparent liquid walled capsules, aging and other which do not adversely affect the color-temperature problems arise. This is true since films formed contain response of the cholesteric liquid crystals and which ing these materials tend to be rough and the protected also do not mask the colors. Typical suitable antioxi liquid crystalline material can be rubbed off, thus caus dants are butylated hydroxytoluene (BHT), butylated ing losses of color intensity and thermographic reliabil 10 hydroxy anisole (BHA), nordihydroguaiaretic acid ity. Furthermore, the thin walls of the capsules can (NDGA), 6-ethoxy-1,2-dihydro-2,2,4-trimethylquino shatter under pressure, thus exposing unprotected liquid line (EMO), dl-a-tocopherol, tertiary butylhydroqui crystals to the atmosphere. none (TBHQ), 1,5-dihydroxynaphthalene (1,5-DHN) or It is more advantageous to use a film of the choles mixtures thereof. The amount and identity of antioxi teric liquid crystals, preferably on a flexible substrate 5 dant used can vary, however, preferably from about blackened prior to the application of liquid crystals, 0.2% to about 1.75% based on the weight of the choles since the utilization of a black paint or spray to serve as teric liquid crystals is suitable.
Recommended publications
  • Cosmedix Active Ingredients Glossary
    COSMEDIX ACTIVE INGREDIENTS GLOSSARY INCI Name Function Acetyl Hexapeptide-1 Is a biomimetic peptide antagonist specific of the alpha-melanocyte stimulating hormone by preventing any further activation of the tyrosinase, and thus blocking melanin synthesis. Adenine is a nucleobase with a variety of roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and protein synthesis, as a chemical component of DNA and . Alcohol Carrier, Solubilizer and Antiseptic Alcohol Denat. Carrier, Solubilizer and Antiseptic Allantoin it is derived from the extracts of a comfrey plant. It softens the skin and enables it to absorb more moisture. It’s particularly effective at treating wounds, burns, skin ulcers, eczema, and any other abrasion in the skin. Aloe Barbadensis Leaf Juice Powder it is a species of succulent plant in the genus Aloe that grows in arid climates and is widely distributed in Africa, India, and other arid areas. As a soothing, moisturizing and conditioning agent, Aloe vera extracts may be useful in the treatment of wound and burn healing, minor skin infections, Sebaceous cyst, diabetes, and elevated blood lipids in humans.These positive effects are thought to be due to the presence of compounds such as polysaccharides, mannans, anthraquinones, and lectins. Amino Esters-1 Skin-Conditioning Agent - Aminoguanidine HCL It is an investigational drug for the treatment of diabetic nephropathy. It is a diamine oxidase and nitric oxide synthase inhibitor and acts as an anti-oxidant that helps reducing the formation of advanced glycation end-products (AGEs) which destroy collagen and contribute skin aging. Arabinogalactan Protein (AGP) is a polysaccharide extracted from larch trees.
    [Show full text]
  • Unlted States Patent [19] [11] Patent Number: 4,469,452 Sharpless Et Al
    Unlted States Patent [19] [11] Patent Number: 4,469,452 Sharpless et al. [45] Date of Patent: Sep. 4, 1984 [54] INDICATOR SYSTEM AND MEANS FOR 3,946,611 3/ 1976 Larsson ............................. .. 374/ 106 IRREVERSIBLY RECORDING A 3,946,612 3/1976 Sagi et a1. 374/ 106 TEMPERATURE LIMIT 3,974,317 8/1976 Sharpless 252/299.7 3,996,007 12/1976 Fanc et al. .. 116/206 [75] Inventors: Edward N. Sharpless, Somerville; 4,042,336 8/1977 Larsson . .. 374/106 Joseph Lichtenstein, Colonia, both of 4,066,567 1/1978 Labes ........ .. 252/299.7 N,J_ 4,137,049 1/1979 Couch et a1. 116/206 ’ _ 0 ‘ _ 4,154,106 5/1979 Inoue et a1. 374/106 [73] Asslgnee: Whitman Medlcal Corporatmn, 4,232,552 11/1980 Hof ct a1. .. 374/106 Clark, NJ. 4,285,697 8/1981 Neary ........ .. 252/4081 [21] Appl‘ No‘: 368,379 4,299,727 11/1981 Hof et a1. .......................... .. 374/106 [22] Filed: Apr. 14’ 1982 FOREIGN PATENT DOCUMENTS 595661 4/1978 U.S.S.R. ......................... .. 252/299.7 [51] 1111- C“, --------------------- -- (309K 343416011“ 21/06; 703560 12/1979 U.S.S.R. ......................... .. 252/299.7 G01N 31/22; COlK 3/00;C01K 11/16 [52] US. Cl. .................................. .. 374/160; 116/206; OTHER PUBLICATIONS 116/ 207; 116/216; 116/ 217; 116/ 219; “Use of Liquid Crystals as Vapor Detectors”, M0]. 252/299.5; 252/229.7; 252/408.1; 252/962; Cryst Ll-q Cry“ vol 27 E J Posiomek et al 374/102; 374/106; 374/141; 374/161; 374/162; ' ' " ' ’ ' ' ’ ' - 436/2 Primary Examiner—Teddy S.
    [Show full text]
  • Www .Alfa.Com
    Bio 2013-14 Alfa Aesar North America Alfa Aesar Korea Uni-Onward (International Sales Headquarters) 101-3701, Lotte Castle President 3F-2 93 Wenhau 1st Rd, Sec 1, 26 Parkridge Road O-Dong Linkou Shiang 244, Taipei County Ward Hill, MA 01835 USA 467, Gongduk-Dong, Mapo-Gu Taiwan Tel: 1-800-343-0660 or 1-978-521-6300 Seoul, 121-805, Korea Tel: 886-2-2600-0611 Fax: 1-978-521-6350 Tel: +82-2-3140-6000 Fax: 886-2-2600-0654 Email: [email protected] Fax: +82-2-3140-6002 Email: [email protected] Email: [email protected] Alfa Aesar United Kingdom Echo Chemical Co. Ltd Shore Road Alfa Aesar India 16, Gongyeh Rd, Lu-Chu Li Port of Heysham Industrial Park (Johnson Matthey Chemicals India Toufen, 351, Miaoli Heysham LA3 2XY Pvt. Ltd.) Taiwan England Kandlakoya Village Tel: 866-37-629988 Bio Chemicals for Life Tel: 0800-801812 or +44 (0)1524 850506 Medchal Mandal Email: [email protected] www.alfa.com Fax: +44 (0)1524 850608 R R District Email: [email protected] Hyderabad - 501401 Andhra Pradesh, India Including: Alfa Aesar Germany Tel: +91 40 6730 1234 Postbox 11 07 65 Fax: +91 40 6730 1230 Amino Acids and Derivatives 76057 Karlsruhe Email: [email protected] Buffers Germany Tel: 800 4566 4566 or Distributed By: Click Chemistry Reagents +49 (0)721 84007 280 Electrophoresis Reagents Fax: +49 (0)721 84007 300 Hydrus Chemical Inc. Email: [email protected] Uchikanda 3-Chome, Chiyoda-Ku Signal Transduction Reagents Tokyo 101-0047 Western Blot and ELISA Reagents Alfa Aesar France Japan 2 allée d’Oslo Tel: 03(3258)5031 ...and much more 67300 Schiltigheim Fax: 03(3258)6535 France Email: [email protected] Tel: 0800 03 51 47 or +33 (0)3 8862 2690 Fax: 0800 10 20 67 or OOO “REAKOR” +33 (0)3 8862 6864 Nagorny Proezd, 7 Email: [email protected] 117 105 Moscow Russia Alfa Aesar China Tel: +7 495 640 3427 Room 1509 Fax: +7 495 640 3427 ext 6 CBD International Building Email: [email protected] No.
    [Show full text]
  • United States Patent (19) ESSSÉÉ
    United States Patent (19) 11 Patent Number: 4,469,452 Sharpless et al. 45) Date of Patent: Sep. 4, 1984 54 NDCATOR SYSTEMAND MEANS FOR 3,946,611 3/1976 Larsson ............................... 374/106 RREVERSIBLY RECORDING A 3,946,612 3/1976 Sagi et al. ........................... 374/106 TEMPERATURE LIMIT 3,974,317 8/1976 Sharpless ... ... 252/299.7 3,996,007 12/1976 Fanc et al. .......................... 6/206 (75) Inventors: Edward N. Sharpless, Somerville; 4,042,336 8/1977 Larsson ............................... 374/106 Joseph Lichtenstein, Colonia, both of 4,066,567 1/978 Labes .......... ... 252/299.7 4,137,049 1/1979 Couch et al. ........................ 116/206 4,154,106 5/1979 Inoue et al. ......................... 374/106 73) Assignee: Whitman Medical Corporation, 4,232,552 11/1980 Hof et al. ............................ 374/106 Clark, N.J. 4,285,697 8/1981 Neary .......... ... 252A408.1 (21) Appl. No.: 368,379 4,299,727 1/1981 Hof et al. ............................ 374/106 22 Filed: Apr. 14, 1982 FOREIGN PATENT DOCUMENTS 59566 4/1978 U.S.S.R. ........................... 252/299.7 51 Int. Cl. ....................... C09K 3/34; G01N 21/06; 703560 12A1979 U.S.S.R. ........................... 252/299.7 31/22; CO1K 3/00; C01K 11/16 52 U.S. C. .................................... 374/160; 116/206; OTHER PUBLICATIONS 116/207; 116/216; 116/217; 116/219; "Use of Liquid Crystals as Vapor Detectors', Mol. 252/299.5; 252/229.7; 252/408.1; 252/962; Cryst. Liq. Cryst., vol. 27, E. J. Posiomek, et al. 374/102; 374/106,374/141; 374/161; 374/162; 436/2 Primary Examiner-Teddy S.
    [Show full text]
  • Bioresorbable Microdroplet Lasers As Injectable Systems for Transient Thermal Sensing and Modulation
    Article www.acsnano.org Bioresorbable Microdroplet Lasers as Injectable Systems for Transient Thermal Sensing and Modulation Daniel Franklin, Tyler Ueltschi, Andrea Carlini, Shenglian Yao, Jonathan Reeder, Benjamin Richards, Richard P. Van Duyne, and John A. Rogers* Cite This: ACS Nano 2021, 15, 2327−2339 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Minimally invasive methods for temperature sensing and thermal modulation in living tissues have extensive applications in biological research and clinical care. As alternatives to bioelectronic devices for this purpose, functional nanomaterials that self-assemble into optically active microstructures offer important features in remote sensing, injectability, and compact size. This paper introduces a transient, or bioresorbable, system based on injectable slurries of well-defined microparticles that serve as photopumped lasers with temperature-sensitive emission wave- lengths (>4−300 nm °C−1). The resulting platforms can act as tissue-embedded thermal sensors and, simultaneously, as distrib- uted vehicles for thermal modulation. Each particle consists of a spherical resonator formed by self-organized cholesteric liquid crystal molecules doped with fluorophores as gain media, encapsulated in thin shells of soft hydrogels that offer adjustable rates of bioresorption through chemical modification. Detailed studies highlight fundamental aspects of these systems including particle sensitivity, lasing threshold, and size. Additional experiments explore functionality as photothermal agents with active temperature feedback (ΔT =1°C) and potential routes in remote evaluation of thermal transport properties. Cytotoxicity evaluations support their biocompatibility, and ex vivo demonstrations in Casper fish illustrate their ability to measure temperature within biological tissues with resolution of 0.01 °C. This collective set of results demonstrates a range of multifunctional capabilities in thermal sensing and modulation.
    [Show full text]
  • Synthesis of Cholesteryl Ester Liquid Crystals
    Preparation of Cholesteryl Ester Liquid Crystals © 2011 by David A. Katz. All rights reserved The procedure for temperature sensitive liquid crystals is based on G. H. Brown and J. J. Wolken, Liquid Crystals and Biological Systems, Academic Press, NY, 1979, pp. 165-167 and W. Elser and R. D. Ennulat, Adv. Liq. Cryst. 2, 73 (1976). This experiment is modified from the Lab Manual for Nanoscale Science and Technology at http://mrsec.wisc.edu/Edetc/nanolab/LC_prep/index.html The procedure for pressure sensitive liquid crystals is based on Griffiths, Jonathan S., Experimental Chemistry, Stockton State College, Pomona, NJ, 1988 Additional information and procedures added by David A. Katz, Department of Chemistry, Pima Community College Liquid crystals are organic compounds that are in a state between liquid and solid forms. They are viscous, jelly-like materials that resemble liquids in certain respects (viscosity) and crystals in other properties (light scattering and reflection). Liquid crystals must be geometrically highly anisotropic (having different optical properties in different directions)-usually long and narrow - and revert to an isotropic liquid (same optical properties in all directions) through thermal action (heat) or by the influence of a solvent. Liquid crystals are classified as: smectic: molecules arranged in horizontal layers or strata and are standing on end either vertically or at a tilt. nematic: molecules possess a high degree of long-range order with their long axes approximately parallel, but without the distinct layers of the smectic crystals. lyotropic: molecules consist of a nonpolar hydrocarbon chain with a polar head group. In a solvent, such as water, the water molecules are sandwiched between the polar heads of adjacent layers while the hydrocarbon tails lie in a nonpolar environment.
    [Show full text]
  • EXPLORATORY INVESTIGATION on the MEASUREMENT of SKIN FRICTION by MEANS of LIQUID CRYSTALS by Enrique J
    NASA TECHNICAL NA SA TM X-17 74 MEMORANDUM ......v .-­...... I >< c EXPLORATORY INVESTIGATION ON THE MEASUREMENT OF SKIN FRICTION BY MEANS OF LIQUID CRYSTALS by Enrique J. Klein and Angelo P. Margozzi Ames Research Center Moffett Field, Calif. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHING TON, D. C. • MAY 1969 NASA TM X-1774 EXPLORA TORY INVESTIGATION ON THE MEASUREMENT OF SKIN FRICTION BY MEANS OF LIQUID CRYSTALS By Enrique J. Klein and Angelo P. Margozzi Ames Research Center Moffett Field, Calif. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Vi rginia 22151 - CFSTI price $3.00 EXPLORATORY INVESTIGATION ON THE MEASUREMENT OF SKIN FRICTION BY MEANS OF LIQUID CRYSTALS 1 By Enrique J. Klein and Angelo P. Margozzi Ames Research Center SUMMARY A new method is proposed for directly measuring local skin friction in aerodynamic testing. It makes use of thin coatings of cholesteric liquid crystal mixtures that respond to shearing forces by changes in the wavelength of maximum light scattering. A calibration of shear versus wavelength was obtained for a sample substance; a static calibration was made to measure the effects of temperature, pressure, and angle of viewing; and the behavior of the substance was observed in a pipe-flow experiment. Preliminary results showed that the method appears feasible. However, for such a method to become widely applicable in wind-tunnel testing, further research will be needed in (1) obtaining liquid crystal mixtures sensitive over appropriate ranges on the shear scale, (2) preventing the occurrence of roughness on the surface of liquid crystal coatings subjected to aerodynamic shear forces, and (3) developing a suitable optical measuring technique for data acquisition.
    [Show full text]
  • Sigma Biochemical Condensed Phase
    Sigma Biochemical Condensed Phase Library Listing – 10,411 spectra This library provides a comprehensive spectral collection of the most common chemicals found in the Sigma Biochemicals and Reagents catalog. It includes an extensive combination of spectra of interest to the biochemical field. The Sigma Biochemical Condensed Phase Library contains 10,411 spectra acquired by Sigma-Aldrich Co. which were examined and processed at Thermo Fisher Scientific. These spectra represent a wide range of chemical classes of particular interest to those engaged in biochemical research or QC. The spectra include compound name, molecular formula, CAS (Chemical Abstract Service) registry number, and Sigma catalog number. Sigma Biochemical Condensed Phase Index Compound Name Index Compound Name 8951 (+)-1,2-O-Isopropylidene-sn-glycerol 4674 (+/-)-Epinephrine methyl ether .HCl 7703 (+)-10-Camphorsulfonic acid 8718 (+/-)-Homocitric acid lactone 10051 (+)-2,2,2-Trifluoro-1-(9-anthryl)ethanol 4739 (+/-)-Isoproterenol .HCl 8016 (+)-2,3-Dibenzoyl-D-tartaric acid 4738 (+/-)-Isoproterenol, hemisulfate salt 8948 (+)-2,3-O-Isopropylidene-2,3- 5031 (+/-)-Methadone .HCl dihydroxy-1,4-bis- 9267 (+/-)-Methylsuccinic acid (diphenylphosphino)but 9297 (+/-)-Miconazole, nitrate salt 6164 (+)-2-Octanol 9361 (+/-)-Nipecotic acid 9110 (+)-6-Methoxy-a-methyl-2- 9618 (+/-)-Phenylpropanolamine .HCl naphthaleneacetic acid 4923 (+/-)-Sulfinpyrazone 7271 (+)-Amethopterin 10404 (+/-)-Taxifolin 4368 (+)-Bicuculline 4469 (+/-)-Tetrahydropapaveroline .HBr 7697 (+)-Camphor 4992 (+/-)-Verapamil,
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,999,348 Cioca Et Al
    United States Patent (19) 11 Patent Number: 4,999,348 Cioca et al. 45 Date of Patent: Mar. 12, 1991 (54) LIQUID CRYSTAL CONTAINING 4,524,778 6/1985 Brown, Jr. et al. ................. 128/736 COSMETIC AND PHARMACEUTICAL 4,524,779 6/1985 Brown, Jr. .......................... 128/736 COMPOST ONS AND METHODS FOR 4,525,344 6/1985 Tutsky .................................. 424/73 UTLZNG SUCH COMPOSTIONS 4,600,526 7/1986 Gallot et al. 252/299.01 4,603, 146 7/1986 Kligman .............................. 54/559 (75) Inventors: Gheorghe Cioca, Lake Grove; James 4,656,031 4/1987 Lane et al. ... ... 424/49 A. Hayward, Port Jefferson; Manuel 4,673,567 6/1987 Jizomoto . ... 424/38 L. Tan, Glen Cove; Morris Herstein, 4,690,825 9/1987 Won ............ 424/501 4,691,712 9/1987 Brown, Jr. .......................... 125/736 Scarsdale, all of N.Y.; Walter P. 4,702,913 10/1987 Marty ........... ... 424/95 Smith, Stamford, Conn. 4,703,041 10/1987 Weber et al. ......................... 514/23 (73) Assignee: Estee Lauder Inc., New York, N.Y. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 131,458 1108838 9/1981 Canada . 22 Filed: Dec. 11, 1987 0034298 8/1981 European Pat. Off. 133004. 1 1/1978 Germah Democratic Rep. (51) Int. Cl............................................... A61K 3/56 10272 4/1975 Japan. (52) U.S. C. ..................................... 514/171; 514/182 703560 12/1979 U.S.S.R. (58) Field of Search ................ 514/170, 171, 180, 182 1349050 3/1974 United Kingdom. (56) References Cited OTHER PUBLICATIONS U.S. PATENT DOCUMENTS J. Fergason, "Liquid Crystals', Scientific American, 21 1, 3,409,404 ll/1968 Fergason ..............................
    [Show full text]
  • United States Patent 19 11, 3,720,623 Cartmell Et Al
    United States Patent 19 11, 3,720,623 Cartmell et al. (45 March 13, 1973 (54) ENCAPSULATED LIQUID CRYSTALS 3,499,112 3f 1970 Heilmeier et al............. 231230 LC X 75) Inventors: James W. Cartmell; Donald 3,578,844 5/1971 Churchill et al.................. 252/316X Churchill, both of Dayton, Ohio 3,600,060 8/1971 Churchill et al.................. 252/316X 73) Assignee: The National Cash Register Com Primary Examiner-Richard D. Lovering pany, Dayton, Ohio Attorney-E. Frank McKinney and Patrick P. Pacella 22 Filed: Feb. 8, 1971 (21) Appl. No.: 113,716 57 ABSTRACT A mixture of cholesteric liquid crystal material such as 52 U.S. Cl.............. 252/316, 231230 LC, 1 17137 R, cholesteryl nonanoate and nematic liquid crystal 1 17/100 A, 1171159, 2521403, 252/.408, material such as methoxybenzilidene-p-n-butylaniline 264/4, 350/160 P, 350/160 R is disclosed. The mixture can be encapsulated and em 51) Int. Cl..............................................Bo1j 13/02 ployed in temperature-sensitive visual display devices. 58) Field of Search ............... 252/316; 1171 100 A; The addition of nematic liquid crystal material to 231230 LC; 350/160 R, 160 P: 26414 cholesteric liquid crystal material enhances the brightness of films employing cholesteric liquid crystal 56) References Cited material and prolongs the usable life of the films. UNITED STATES PATENTS 6 Claims, No Drawings 3,341,466 9/1967 Brynko et al......................... 252/316 3,720,623 1. 2 ENCAPSULATED LIQUID CRYSTALS the usable lifetime. Also, by the addition of nematic liquid crystals, oleyl cholesteryl carbonate can be This invention relates to unencapsulated and encap eliminated from the mixtures, if desired.
    [Show full text]
  • Cholesteric Liquid Crystals: Optics, Electro-Optics, and Photo-Optics
    6 Cholesteric Liquid Crystals: Optics, Electro-optics, and Photo-optics Guram Chilaya Cholesteric liquid crystals (CLCs) show very distinctly that molecular struc- ture and external ®elds have a profound e¨ect on cooperative behavior and phase structure (see also Chapters 2 and 3). CLCs possess a supermolecular periodic helical structure due to the chirality of molecules. The spatial peri- odicity (helical pitch) of cholesterics can be of the same order of magnitude as the wavelength of visible light. If so, a visible Bragg re¯ection occurs. On the other hand, the helix pitch is very sensitive to the in¯uence of external conditions. A combination of these properties leads to the unique optical properties of cholesterics which are of both scienti®c and practical interest. The in¯uence of electric ®elds and light irradiation on the optical proper- ties of cholesteric structures are reviewed in this chapter. In Section 6.1 we consider the general optical properties of CLCs, such as Bragg di¨raction due to the periodical structure, refractive indices, and induced circular di- chroism. In the subsequent sections, electro-optic e¨ects and light-induced e¨ects are described. Several types of electro-optic e¨ects have been observed in cholesteric liquid crystals [1]±[3]. Section 6.2 of this chapter is focused on some of the most recent results, e.g., bistability, color change e¨ects, ``amorphous cholesterics,'' and the ¯exoelectric e¨ect. In addition, dielectric, hydrodynamic, and ¯exoelectric instabilities, as well as domain structures in cholesterics, are discussed brie¯y. Light-induced molecular reorientations and optical nonlinearities in transparent (nonabsorbing) and absorbing cho- lesterics, photostimulated shift of the pitch, optical bistability, and optical switching are presented in Section 6.3.
    [Show full text]
  • Nov. 5, 1968 J. L. FERGASON 3,409,404 ANALYTICAL METHODS and DEVICES EMPLOYING CHOLESTERIC LIQUID CRYSTALLINE MATERIALS Filed Nov
    Nov. 5, 1968 J. L. FERGASON 3,409,404 ANALYTICAL METHODS AND DEVICES EMPLOYING CHOLESTERIC LIQUID CRYSTALLINE MATERIALS Filed Nov. 13, 1963 2 Sheets-Sheet 1 4/70 M j 20 2/ 26 22 INVENTOR. JAMES L . FEQGASO/V A 77'ORNEY. 1 3,409,404 United States Patent 0 1C@ Patented Nov. 5, 1968 1 2 It is optically negative, while smectic and nematic struc ' ' 3,409,404 ' ANALYTICAL METHODS AND DEVICES EM tures are optically positive. (2) The structure is opti PLOYING 'CHOLESTERIC LIQUID CRYSTAL cally active. It shows strong optical rotatory power. (3) LINE MATERIALS When illuminated with white light, the most striking James , L. Fergason, Verona, Pa., assignor to Westing property of the cholesteric structure is that it scatters house Electric Corporation, Pittsburgh, Pa., a corpora light selectively to ‘give vivid colors. A cholesteric mate tion of Pennsylvania ‘ rial exhibits a scattering peak having a bandwidth of Filed Nov. 13, 1963, Ser. No. 323,341 about 200 angstroms that occurs in or between the infra 19 ‘Claims. (Cl. 23-230) red and ultraviolet portions of the spectrum. (4) In the 10 cholesteric structure, one circular polar component of the incident beam is completely unaffected. For the dextro ABSTRACT OF THE DISCLOSURE cholesteric structure, it is only the circular. polarized The optical properties of a chloresteric liquid crystal beam with counter-clockwise rotating electric vector line material are changed when the cholesteric material which is re?ected. (The sign of ‘rotation refers to an ob is contacted with another material. A variety of mate 15 server who looks in the direction of the incident light.) rials, particularly vapors, are identi?ed by observing their Levo cholesteric structures have the reverse effect.
    [Show full text]