Anti-Inflammatory Activity in Selected Antarctic Benthic Organisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Santiago Castillo.Pdf (1.922Mb)
Índice Índice ................................................................................................................................................ 1 Agradecimientos .............................................................................................................................. 2 Listado de abreviaturas .................................................................................................................... 4 Resumen ........................................................................................................................................... 5 Introducción ..................................................................................................................................... 6 Aspectos biológicos de Nacella concinna ................................................................................... 6 Relación trófica con la gaviota cocinera ...................................................................................... 8 Hipótesis..................................................................................................................................... 10 Objetivos .................................................................................................................................... 10 Metodología ................................................................................................................................... 11 Área de estudio.......................................................................................................................... -
Analysis of the Complete Mitochondrial DNA Sequence of the Brachiopod Terebratulina Retusa Places Brachiopoda Within the Protostomes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/12415870 Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Article in Proceedings of the Royal Society B: Biological Sciences · November 1999 DOI: 10.1098/rspb.1999.0885 · Source: PubMed CITATIONS READS 83 50 2 authors, including: Martin Schlegel University of Leipzig 151 PUBLICATIONS 2,931 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Rare for a reason? Scale-dependence of factors influencing rarity and diversity of xylobiont beetles View project Bat diversity and vertical niche activity in the fluvial flood forest Leipzig View project All content following this page was uploaded by Martin Schlegel on 22 May 2014. The user has requested enhancement of the downloaded file. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Alexandra Stechmann* and Martin Schlegel UniversitÌt Leipzig, Institut fÏr Zoologie/Spezielle Zoologie,Talstr. 33, 04103 Leipzig, Germany Brachiopod phylogeny is still a controversial subject. Analyses using nuclear 18SrRNA and mitochondrial 12SrDNA sequences place them within the protostomes but some recent interpretations of morphological data support a relationship with deuterostomes. In order to investigate brachiopod a¤nities within the metazoa further,we compared the gene arrangement on the brachiopod mitochondrial genome with several metazoan taxa. The complete (15 451bp) mitochondrial DNA (mtDNA) sequence of the articulate brachiopod Terebratulina retusa was determined from two overlapping long polymerase chain reaction products. All the genes are encoded on the same strand and gene order comparisons showed that only one major rearrangement is required to interconvert the T.retusa and Katharina tunicata (Mollusca: Polyplaco- phora) mitochondrial genomes. -
Hemichordate Phylogeny: a Molecular, and Genomic Approach By
Hemichordate Phylogeny: A molecular, and genomic approach by Johanna Taylor Cannon A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Keywords: phylogeny, evolution, Hemichordata, bioinformatics, invertebrates Copyright 2014 by Johanna Taylor Cannon Approved by Kenneth M. Halanych, Chair, Professor of Biological Sciences Jason Bond, Associate Professor of Biological Sciences Leslie Goertzen, Associate Professor of Biological Sciences Scott Santos, Associate Professor of Biological Sciences Abstract The phylogenetic relationships within Hemichordata are significant for understanding the evolution of the deuterostomes. Hemichordates possess several important morphological structures in common with chordates, and they have been fixtures in hypotheses on chordate origins for over 100 years. However, current evidence points to a sister relationship between echinoderms and hemichordates, indicating that these chordate-like features were likely present in the last common ancestor of these groups. Therefore, Hemichordata should be highly informative for studying deuterostome character evolution. Despite their importance for understanding the evolution of chordate-like morphological and developmental features, relationships within hemichordates have been poorly studied. At present, Hemichordata is divided into two classes, the solitary, free-living enteropneust worms, and the colonial, tube- dwelling Pterobranchia. The objective of this dissertation is to elucidate the evolutionary relationships of Hemichordata using multiple datasets. Chapter 1 provides an introduction to Hemichordata and outlines the objectives for the dissertation research. Chapter 2 presents a molecular phylogeny of hemichordates based on nuclear ribosomal 18S rDNA and two mitochondrial genes. In this chapter, we suggest that deep-sea family Saxipendiidae is nested within Harrimaniidae, and Torquaratoridae is affiliated with Ptychoderidae. -
2019 the Harold Martin Outstanding Student Development Award $2000
Sabrina Heiser Department of Biology (UAB) 1300 University Blvd, CH242 Birmingham, AL, 35294 Contact: 205-478 6666, [email protected] Education: University of Alabama at Birmingham: January 2016 – present PhD Candidate since October 2018; mentor: Dr. Charles D. Amsler current GPA: 4.0 Title: The ecology of secondary metabolite production in Plocamium cartilagineum and its population genetics on the Western Antarctic Peninsula. Plymouth University: September 2009 – June 2012 BSc (Hons) Marine Biology – Second Class Honours (Upper Division) Independent research topic – Distribution of the non-native kelp species Undaria pinnatifida in Plymouth Sound SAC Professional Appointments: British Antarctic Survey (UK) Sept 2012-April 2015 Marine Assistant at Rothera Research Station (Antarctica), continuing the Rothera Biological and Oceanographic Time Series (CTD measurements, taking and processing water samples, fulfilling dive tasks, science cruise which involved Agassiz trawls, Epibenthic Sledge work, deep camera work and processing water samples). Countryside Council for Wales (UK) May 2012-Sept 2012 Contract Diver for Cross Wales Diving Monitoring Project and Didemnum vexillum eradication. Funding: 2019 The Harold Martin Outstanding Student Development Award $2000 2018 Phycological Society of America Grants-in-Aid of Research $1974 2017 Sigma Xi Grants in Aid of Research $730 2017 Antarctic Science Bursary (£3730) $4500 Last updated: March 2019 1 Not funded: 2018 The Harold Martin Outstanding Student Development Award “Gene flow as a potential -
Curriculum Vitae in Confidence
CURRICULUM VITAE IN CONFIDENCE Professor Lloyd Samuel Peck Overview Outstanding Antarctic scientist with leading international status. NERC Theme Leader and IMP, and over 250 refereed science papers, major reviews and book chapters. ISI H factor of 46, Google Scholar H factor of 53. Dynamic and inspirational leader of a large and diverse science programmes (BEA, LATEST and BIOFLAME) of around 30 science and support staff researching subjects from hard rock geology through biodiversity, ecology, physiology and biochemistry to molecular (genomic) biology. Twenty one years experience of strategic development of major science programmes, and subsequent management and direction of their science in the UK, Antarctica, the Arctic, temperate and tropical sites, on stations, ships, and field sites. Exceptional communicator. Royal Institution Christmas lecturer 2004. 15 televised lectures given in Japan, Korea and Brazil since 2005. Over 100 TV, radio and news interviews given in 10 years. Most recently major contributor to “A Licence to Krill” documentary (DOX productions). Over 35 keynote lectures, departmental seminars and other major presentations given since 2000. High quality University teaching record. Positions include Visiting Professor in Ecology, Sunderland University, and Visiting Lecturer, Cambridge University. Visiting Professor in Marine Biology, Portsmouth University, Deputy Chair Cambridge NERC DTP. Strong grant success record. In last 10 years: PI of BAS programmes valued over £2 million. PI or Co-I on 28 grants (total value of over £8 million). Over 50% success rate in grant applications. Integrated member of NERC science review processes for over 10 years. Member of NERC peer review college, and 6 years experience of Chairing grant panels. -
Biodiversity
Founded in 1888 as the Marine Biological Laboratory Catalyst SPRING 2012 VOLUME 7, NUMBER 1 IN THIS ISSUE 4 All Species, Great and Small 8 Microbial Diversity, Leaf by Leaf 10 Life, Literature, and the Pursuit of Global Access BIODIVERSITY: Exploring Life on Earth Page 2 F R OM THE D ir ECTO R MBL Catalyst Dear Friends, SPRING 2012 VOLUME 7, NUMBER 1 In February, a group of MBL trustees, overseers, and friends took a memorable MBL Catalyst is published twice yearly by the Office of “eco-expedition” by safari through East Africa. For most of us, the most exciting Communications at the Marine Biological Laboratory aspect was seeing the megafauna – giraffes, zebras, lions, warthogs, wildebeests, (MBL) in Woods Hole, Massachusetts. The MBL is rhinoceroses—roaming wild in a pristine landscape. Except in tropical Asia, these dedicated to scientific discovery and improving the human condition through research and education large, charismatic animals aren’t found anywhere else on the planet—not in the in biology, biomedicine, and environmental science. Americas, Europe, Australia, or New Zealand. Founded in 1888, the MBL is an independent, nonprofit corporation. Why did they disappear? The reasons are debated, but there is good evidence Senior Advisors that overkill by prehistoric humans caused major losses. Unfortunately, the near- President and Director: Gary Borisy Chief Academic and extinction of these species 10,000 to 50,000 years ago is not the end of the story. Scientific Officer: Joshua Hamilton It is generally agreed that the Earth is facing another biodiversity crisis in this Director of External Relations: Pamela Clapp Hinkle century, with extinctions largely driven by destruction of habitat. -
The Case of the South American Limpet Nacella Mytilina
RESEARCH ARTICLE Genetics, Gene Flow, and Glaciation: The Case of the South American Limpet Nacella mytilina Claudio A. González-Wevar1,2,3*, Sebastián Rosenfeld2,3, Nicolás I. Segovia2, Mathias Hüne2,4, Karin Gérard1,3, Jaime Ojeda2,3, Andrés Mansilla2,3, Paul Brickle5, Angie Díaz6, Elie Poulin2 1 GAIA Antártica – Universidad de Magallanes, Departamento de Recursos Naturales, Bulnes 01890, Punta Arenas, Chile, 2 Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad a11111 de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile, 3 Laboratorio de Macroalgas Antárticas y Subantárticas, Universidad de Magallanes, casilla 113-D, Punta Arenas, Chile, 4 Fundación Ictiológica, Providencia – Santiago, Chile, 5 South Atlantic Environmental Research Institute (SAERI), PO Box 609, Stanley Cottage, Stanley, Falkland Islands, 6 Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile * [email protected] OPEN ACCESS Citation: González-Wevar CA, Rosenfeld S, Segovia Abstract NI, Hüne M, Gérard K, Ojeda J, et al. (2016) Genetics, Gene Flow, and Glaciation: The Case of Glacial episodes of the Quaternary, and particularly the Last Glacial Maximum (LGM) drasti- the South American Limpet Nacella mytilina. PLoS ONE 11(9): e0161963. doi:10.1371/journal. cally altered the distribution of the Southern-Hemisphere biota, principally at higher lati- pone.0161963 tudes. The irregular coastline of Patagonia expanding for more than 84.000 km constitutes Editor: Geerat J. Vermeij, University of California, a remarkable area to evaluate the effect of Quaternary landscape and seascape shifts over UNITED STATES the demography of near-shore marine benthic organisms. Few studies describing the bio- Received: May 27, 2016 geographic responses of marine species to the LGM have been conducted in Patagonia, but existing data from coastal marine species have demonstrated marked genetic signa- Accepted: August 15, 2016 tures of post-LGM recolonization and expansion. -
The Fox/Forkhead Transcription Factor Family of the Hemichordate Saccoglossus Kowalevskii
The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Fritzenwanker, Jens H, John Gerhart, Robert M Freeman, and Christopher J Lowe. 2014. “The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii.” EvoDevo 5 (1): 17. doi:10.1186/2041-9139-5-17. http://dx.doi.org/10.1186/2041-9139-5-17. Published Version doi:10.1186/2041-9139-5-17 Accessed February 16, 2015 3:46:47 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12717458 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms- of-use#LAA (Article begins on next page) The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii Fritzenwanker et al. Fritzenwanker et al. EvoDevo 2014, 5:17 http://www.evodevojournal.com/content/5/1/17 Fritzenwanker et al. EvoDevo 2014, 5:17 http://www.evodevojournal.com/content/5/1/17 RESEARCH Open Access The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii Jens H Fritzenwanker1*, John Gerhart2, Robert M Freeman Jr3 and Christopher J Lowe1 Abstract Background: The Fox gene family is a large family of transcription factors that arose early in organismal evolution dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene regulatory networks essential for embryonic development. -
1 Limpet Feeding Rate and the Consistency of Physiological Response to Temperature 2 3 Simon A
1 Limpet feeding rate and the consistency of physiological response to temperature 2 3 Simon A. Morley*a, Chien‐Hsiang Laib, Andrew Clarkea, Koh Siang Tanb, Michael A.S. Thornea, Lloyd S. 4 Pecka 5 a British Antarctic Survey, Natural Environment Research Council, Cambridge, UK 6 b Tropical Marine Science Institute, National University of Singapore, Singapore 7 *Corresponding author: [email protected] 8 9 Abstract 10 Thermal reaction norms are fundamental relationships for geographic comparisons of organism 11 response to temperature. They are shaped by an organism’s environmental history and provide 12 insights into both the global patterns of thermal sensitivity and the physiological mechanisms 13 underlying temperature response. In this study we conducted the first measure of the thermal 14 reaction norm for feeding, comparing the radula rasping rate of two tropical and one polar limpet 15 species. The consistency of thermal response was tested through comparisons with limpet duration 16 tenacity. Feeding and duration tenacity of limpets are ecologically important muscular mechanisms 17 that rely on very different aspects of muscle physiology, repeated concentric (shortening) and 18 isometric (fixed length) contraction of muscles, respectively. In these limpets the thermal reaction 19 norms of feeding limpets were best described by a single break point at a maximum temperature 20 with linear declines at higher (S. atra) or lower temperatures (N. concinna and C. radiata) rather 21 than a bell shaped curve. The thermal reaction norms for duration tenacity were similar in the two 22 tropical limpets. However, the rasping rate in Antarctic Nacella concinna, increased linearly with 23 temperature up to a maximum at 12.3°C (maximal range 8.5 to 12.3°C) when feeding stopped. -
Uncorrected Proof
JrnlID 12526_ArtID 933_Proof# 1 - 07/12/2018 Marine Biodiversity https://doi.org/10.1007/s12526-018-0933-2 1 3 ORIGINAL PAPER 2 4 5 On the larva and the zooid of the pterobranch Rhabdopleura recondita 6 Beli, Cameron and Piraino, 2018 (Hemichordata, Graptolithina) 7 F. Strano1,2 & V. Micaroni3 & E. Beli4,5 & S. Mercurio6 & G. Scarì7 & R. Pennati6 & S. Piraino4,8 8 9 Received: 31 October 2018 /Revised: 29 November 2018 /Accepted: 3 December 2018 10 # Senckenberg Gesellschaft für Naturforschung 2018 11 Abstract 12 Hemichordates (Enteropneusta and Pterobranchia) belong to a small deuterostome invertebrate group that may offer insights on 13 the origin and evolution of the chordate nervous system. Among them, the colonial pterobranchOF Rhabdopleuridae are recognized 14 as living representatives of Graptolithina, a taxon with a rich fossil record. New information is provided here on the substrate 15 selection and the life cycle of Rhabdopleura recondita Beli, Cameron and Piraino, 2018, and for the first time, we describe the 16 nervous system organization of the larva and the adult zooid, as well as the morphological, neuroanatomical and behavioural 17 changes occurring throughout metamorphosis. Immunohistochemical analyses disclosed a centralized nervous system in the 18 sessile adult zooid, characterized by different neuronal subsets with three distinctPRO neurotransmitters, i.e. serotonin, dopamine and 19 RFamide. The peripheral nervous system comprises GABA-, serotonin-, and dopamine-immunoreactive cells. These observa- 20 tions support and integrate previous neuroanatomical findings on the pterobranchD zooid of Cephalodiscus gracilis. Indeed, this is 21 the first evidence of dopamine, RFamide and GABA neurotransmittersE in hemichordates pterobranchs. In contrast, the 22 lecithotrophic larva is characterized by a diffuse basiepidermal plexus of GABAergic cells, coupled with a small group of 23 serotonin-immunoreactive cells localized in the characteristic ventral depression. -
Halogenation Enzymes in Bacteria Associated with the Red-Banded Acorn Worm, Ptychodera Jamaicensis" (2011)
San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2011 Halogenation Enzymes in Bacteria Associated with the Red- banded Acorn Worm, Ptychodera jamaicensis Milena May Lilles San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Lilles, Milena May, "Halogenation Enzymes in Bacteria Associated with the Red-banded Acorn Worm, Ptychodera jamaicensis" (2011). Master's Theses. 4099. DOI: https://doi.org/10.31979/etd.snbx-gv6x https://scholarworks.sjsu.edu/etd_theses/4099 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS A Thesis Presented to The Faculty of the Department of Biology San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Milena M. Lilles December 2011 © 2011 Milena M. Lilles ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS by Milena M. Lilles APPROVED FOR THE DEPARTMENT OF BIOLOGY SAN JOSÉ STATE UNIVERSITY December 2011 Dr. Sabine Rech Department of Biology Dr. Brandon White Department of Biology Dr. Roy Okuda Department of Chemistry ABSTRACT HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS by Milena M. Lilles Organohalogens have diverse biological functions in the environment. -
Paired Sequence Difference in Ribosomal Rnas: Evolutionary and Phylogenetic Implications’
Paired Sequence Difference in Ribosomal RNAs: Evolutionary and Phylogenetic Implications’ Ward C. Wheeler and Rodney L. Honey&t Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University Ribosomal RNAs have secondary structures that are maintained by internal Watson- Crick pairing. Through analysis of chordate, arthropod, and plant 5s ribosomal RNA sequences, we show that Darwinian selection operates on these nucleotide sequences to maintain functionally important secondary structure. Insect phylog- enies based on nucleotide positions involved in pairing and the production of sec- ondary structure are incongruent with those constructed on the basis of positions that are not. Furthermore, phylogeny reconstruction using these nonpairing bases is concordant with other, morphological data. Introduction The neutral hypothesis, as stated by Kimura (1968, 1969, 1983), suggests that most changes in nucleotide sequence occur in the absence of positive selection whereas those that are deleterious are removed by negative or “purifying” selection. The im- plications of such a theory are broad not only with respect to the interpretation of molecular evolutionary processes but also in the reconstruction of evolutionary patterns as reflected in phylogenetic trees. RNA molecules provide a unique opportunity to examine the patterns of nu- cleotide sequence change. A large body of nucleotide sequences representing diverse organisms has been compiled (Erdmann et al. 1985) and small ribosomal RNA (rRNA) molecules have been used extensively in phylogenetic studies (Fox et al. 1980; Ohama et al. 1984; De Wachter et al. 1985). In addition, the structure of these molecules is such that one may address both the neutrality of nucleotide changes in RNAs and the effects that secondary structure might have on the derivation of phylogenies by means of sequence data.