1 Limpet Feeding Rate and the Consistency of Physiological Response to Temperature 2 3 Simon A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Analysis of the Community Composition of the Xiphophora Gladiata Dominated Subzone of the Tasmanian Sublittoral Fringe
Papers and Proceedings ol the Royal Society of Tasmania, Volume 123, 1989 191 AN ANALYSIS OF THE COMMUNITY COMPOSITION OF THE XIPHOPHORA GLADIATA DOMINATED SUBZONE OF THE TASMANIAN SUBLITTORAL FRINGE by E. L. Rice (with five tables and nine text-figures) RICE, E.L., 1989 (31:x): An analysis of the community composition of the Xiphophora iladiata dominated subzone of the Tasmanian sublittoral fringe. Pap. Proc. R. Soc. Tasm. 123: I 91-209. https://doi.org/10.26749/rstpp.123.191 ISSN 0080-4703. Biological Sciences Branch, Department of Fisheries and Oceans, Halifax Research Laboratory, PO Box 550, Halifax, Nova Scotia B3J 2S7, Canada; formerly Department of Botany, University of Tasmania The rocky shore sublittoral fringe of the oceanic coasts of Tasmania contains a subzone dominated by the large brown alga Xiphophora iladiata. The community composition of this subzone is here examined at fourteen sites. The phytal and fauna! assemblages are analysed by principal co-ordinate, classification and nodal analyses. This subzone is found to have a high species richness. including species which had been thought to occupy only higher or lower tidal levels. It is suggested that both plant and animal assemblages are strongly influenced by wave exposure, freshwater run-off and geography. Key Words: marine community composition, sublittoral fringe, Xiphophora, multivariate analyses. INTRODUCTION (Bennett & Pope 1960). Thus, on the oceanic coasts of Tasmania it is possible to define a Xiphophora The rocky shores of southeastern Australia are subzone, dominated by X. g/adiata, which marks known to be occupied primarily by barnacles and the highest limit of the sublittoral fringe on very molluscs in the upper intertidal (Underwood 1981), exposed shores and represents the upper sublittoral while algae dominate at midshore level and below. -
Ministério Da Educação Universidade Federal Rural Da Amazônia
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica BELÉM 2018 TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica Trabalho de Conclusão de Curso (TCC) apresentado ao curso de Graduação em Engenharia de Pesca da Universidade Federal Rural da Amazônia (UFRA) como requisito necessário para obtenção do grau de Bacharel em Engenharia de Pesca. Área de concentração: Ecologia Aquática. Orientador: Prof. Dr. rer. nat. Marko Herrmann. Coorientadora: Dra. Maria Carla de Aranzamendi. BELÉM 2018 TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica Trabalho de Conclusão de Curso apresentado à Universidade Federal Rural da Amazônia, como parte das exigências do Curso de Graduação em Engenharia de Pesca, para a obtenção do título de bacharel. Área de concentração: Ecologia Aquática. ______________________________________ Data da aprovação Banca examinadora __________________________________________ Presidente da banca Prof. Dr. Breno Gustavo Bezerra Costa Universidade Federal Rural da Amazônia - UFRA __________________________________________ Membro 1 Prof. Dr. Lauro Satoru Itó Universidade Federal Rural da Amazônia - UFRA __________________________________________ Membro 2 Profa. Msc. Rosália Furtado Cutrim Souza Universidade Federal Rural da Amazônia - UFRA Aos meus sobrinhos, Tháina, Kauã e Laura. “Cabe a nós criarmos crianças que não tenham preconceitos, crianças capazes de ser solidárias e capazes de sentir compaixão! Cabe a nós sermos exemplos”. AGRADECIMENTOS Certamente algumas páginas não irão descrever os meus sinceros agradecimentos a todos aqueles que cooperaram de alguma forma, para que eu pudesse realizar este sonho. -
ECOLOGICAL ENERGETICS of TROPICAL LIMPET Cellana Testudinaria (Linnaeus, 1758) LIVING on the ROCKY SHORE of OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA
Journal of Coastal Deveolpment ISSN : 1410-5217 Volume 11, Number 2, February 2008 : 89-96 ECOLOGICAL ENERGETICS OF TROPICAL LIMPET Cellana testudinaria (Linnaeus, 1758) LIVING ON THE ROCKY SHORE OF OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA Abraham Seumel Khouw Faculty of Fisheries and Marine Sciences, Pattimura University, Ambon Indonesia Received : November, 2, 2007 ; Accepted :January,4, 2008 ABSTRACT Study on ecological energetics of tropical limpet C. testudinaria has been carried out at approximately one year from October 2001 to September 2002. Population energy budgets estimated on the assumption of steady state conditions for C. testudinaria (Linnaeus, 1758) on the rocky shore of Ohoiwait, are presented. Large difference in population structure, and hence energetics, occurred at different localities along the rocky shore. Relatively high proportions (98 %) of the assimilated energy was lost via metabolism. Assimilation efficiency is 39 %, net growth efficiency is 1.8 %, and ecological efficiency 0.3 %. Production (P), energy flow (A) and total energy consumption (C) were expressed as functions of animal size, in order to facilitate gross estimations of the energy component for which data on size frequency and density are available. Key words: ecological energetics, cellana testudinaria, energy components Correspondence: Phone : +6281343044295, e-mail: [email protected] INTRODUCTION Cellana testudinaria is intertidal, grazing Little has been published on the gastropod abundant on medium to very ecology of C. testudinaria. Khouw (2002) exposed rocky shores of Ohoiwait. The discussed their growth pattern and shell species shows marked zonation, with only a shape variation in relation to zonal little overlap between zones. C. testudinaria distribution. Distribution, abundance, and occurs at several spatial and temporal scales biomass were investigated by Khouw from the extreme low water spring tide (2006a) and presented evidence for the (ELWST) to the extreme high water spring effects of drying. -
Title Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere
Biogeography in Cellana (Patellogastropoda, Nacellidae) with Title Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species González-Wevar, Claudio A.; Nakano, Tomoyuki; Palma, Author(s) Alvaro; Poulin, Elie Citation PLOS ONE (2017), 12(1) Issue Date 2017-01-18 URL http://hdl.handle.net/2433/218484 © 2017 González-Wevar et al. This is an open access article distributed under the terms of the Creative Commons Right Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Type Journal Article Textversion publisher Kyoto University RESEARCH ARTICLE Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species Claudio A. GonzaÂlez-Wevar1,2*, Tomoyuki Nakano3, Alvaro Palma4, Elie Poulin1 1 GAIA-AntaÂrtica, Universidad de Magallanes, Punta Arenas, Chile, 2 Instituto de EcologõÂa y Biodiversidad Ä a1111111111 (IEB), Departamento de Ciencias EcoloÂgicas, Facultad de Ciencias, Universidad de Chile, Nuñoa, Santiago, Chile, 3 Seto Marine Biological Laboratory, Field Science Education and Research Centre, Kyoto University, a1111111111 Nishimuro, Wakayama, Japan, 4 Universidad Gabriela Mistral, Facultad de IngenierõÂa y Negocios, a1111111111 Providencia, Santiago, Chile a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Oceanic islands lacking connections to other land are extremely isolated from sources of Citation: GonzaÂlez-Wevar CA, Nakano T, Palma A, potential colonists and have acquired their biota mainly through dispersal from geographi- Poulin E (2017) Biogeography in Cellana cally distant areas. Hence, isolated island biota constitutes interesting models to infer bio- (Patellogastropoda, Nacellidae) with Special geographical mechanisms of dispersal, colonization, differentiation, and speciation. Limpets Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species. -
E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
!e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore. -
Santiago Castillo.Pdf (1.922Mb)
Índice Índice ................................................................................................................................................ 1 Agradecimientos .............................................................................................................................. 2 Listado de abreviaturas .................................................................................................................... 4 Resumen ........................................................................................................................................... 5 Introducción ..................................................................................................................................... 6 Aspectos biológicos de Nacella concinna ................................................................................... 6 Relación trófica con la gaviota cocinera ...................................................................................... 8 Hipótesis..................................................................................................................................... 10 Objetivos .................................................................................................................................... 10 Metodología ................................................................................................................................... 11 Área de estudio.......................................................................................................................... -
2019 the Harold Martin Outstanding Student Development Award $2000
Sabrina Heiser Department of Biology (UAB) 1300 University Blvd, CH242 Birmingham, AL, 35294 Contact: 205-478 6666, [email protected] Education: University of Alabama at Birmingham: January 2016 – present PhD Candidate since October 2018; mentor: Dr. Charles D. Amsler current GPA: 4.0 Title: The ecology of secondary metabolite production in Plocamium cartilagineum and its population genetics on the Western Antarctic Peninsula. Plymouth University: September 2009 – June 2012 BSc (Hons) Marine Biology – Second Class Honours (Upper Division) Independent research topic – Distribution of the non-native kelp species Undaria pinnatifida in Plymouth Sound SAC Professional Appointments: British Antarctic Survey (UK) Sept 2012-April 2015 Marine Assistant at Rothera Research Station (Antarctica), continuing the Rothera Biological and Oceanographic Time Series (CTD measurements, taking and processing water samples, fulfilling dive tasks, science cruise which involved Agassiz trawls, Epibenthic Sledge work, deep camera work and processing water samples). Countryside Council for Wales (UK) May 2012-Sept 2012 Contract Diver for Cross Wales Diving Monitoring Project and Didemnum vexillum eradication. Funding: 2019 The Harold Martin Outstanding Student Development Award $2000 2018 Phycological Society of America Grants-in-Aid of Research $1974 2017 Sigma Xi Grants in Aid of Research $730 2017 Antarctic Science Bursary (£3730) $4500 Last updated: March 2019 1 Not funded: 2018 The Harold Martin Outstanding Student Development Award “Gene flow as a potential -
The Response of a Protandrous Species to Exploitation, and the Implications for Management: a Case Study with Patellid Limpets
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk University of Southampton Faculty of Engineering, Science and Mathematics National Oceanography Centre, Southampton School of Ocean and Earth Sciences The Response of a Protandrous Species to Exploitation, and the Implications for Management: a Case Study with Patellid Limpets. William J F Le Quesne Thesis for the degree of Doctor of Philosophy July 2005 Graduate School of the National Oceanography Centre, Southampton This PhD dissertation by William J F Le Quesne has been produced under the supervision of the following persons: Supervisors: Prof. John G. Shepherd Prof Stephen Hawkins Chair of Advisory Panel: Dr Lawrence E. Hawkins Member of Advisory Panel: Dr John A. Williams University -
Silica Biomineralization in the Radula of a Limpet
Zoological Studies 46(4): 379-388 (2007) Silica Biomineralization in the Radula of a Limpet Notoacmea schrenckii (Gastropoda: Acmaeidae) Tzu-En Hua and Chia-Wei Li* Institute of Molecular and Cellular Biology, College of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan (Accepted November 6, 2006) Tzu-En Hua and Chia-Wei Li (2007) Silica biomineralization in the radula of a limpet Notoacmea schrenckii (Gastropoda: Acmaeidae). Zoological Studies 46(4): 379-388. The radulae of limpets are regarded as an ideal experimental material for studying biologically controlled mineral deposition, because they possess teeth in dif- ferent mineralization stages. The pattern of silica precipitation in the limpet, Notoacmea schrenckii (Gastropoda: Acmaeidae), was elucidated in this study using transmission electron microscopy (TEM), electron diffraction, energy-dispersive X-ray (EDX) analysis, and inductively coupled plasma mass spectrometry (ICP- MS). The ICP-MS elemental analysis showed that iron and silica both infiltrate into the radula in early stages of tooth development. Electron-dense granules in a nanometer size range were observed in ultrathin sections of tooth specimens in early mineral-deposition stage; electron diffraction analysis indicated that silica is the prima- ry component of these granules. TEM images revealed the intimate association between silica granules and the organic matrix, which implies that the organic matrix may take a more-active role in catalysis besides mere- ly functioning as a physical constraint during mineral deposition. Exposure of the tooth cusp to NH4F treatment and the appearance of silica spheres after the addition of silicate suggest that the organic molecules embedded within the minerals may assist silica precipitation. -
Patterns and Processes in the Biogeography of the Limpet Nacella (Mollusca: Patellogastropoda) Across the Southern Ocean Claudio A
Journal of Biogeography (J. Biogeogr.) (2017) 44, 861–874 ORIGINAL Following the Antarctic Circumpolar ARTICLE Current: patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean Claudio A. Gonzalez-Wevar1,2*, Mathias Hune€ 2, Nicolas I. Segovia2, Tomoyuki Nakano3, Hamish G. Spencer4, Steven L. Chown5, Thomas Saucede6, Glenn Johnstone7,Andres Mansilla1 and Elie Poulin2 1Universidad de Magallanes, Bulnes 01890, ABSTRACT Punta Arenas, Chile, 2Instituto de Ecologıa y Aim We use an integrative biogeographical approach to further understand the Biodiversidad (IEB), Departamento de evolution of an important Southern Ocean marine benthic element, the limpet Ciencias Ecologicas, Universidad de Chile, Las Palmeras 3425, Nu~ noa,~ Santiago, Chile, 3Seto genus Nacella (Mollusca: Patellogastropoda). Marine Biological Laboratory, Field Science Location Southern Ocean. Education and Research Centre, Kyoto University, Wakayama 649-2211, Japan, Methods We used multi-locus time-calibrated phylogeny of Nacella at the 4Allan Wilson Centre, Department of Zoology, scale of the whole Southern Ocean to elucidate the underlying processes University of Otago, Dunedin 9054, New involved in the origin and diversification of the genus. Zealand, 5School of Biological Sciences, Results Divergence-time estimates suggest that soon after its origin during the Monash University, Melbourne, VIC 3800, mid-Miocene (c. 12.5 Ma), Nacella separated into two main lineages currently Australia, 6Biogeosciences, UMR CNRS 6282, distributed in (1) South America and (2) Antarctica and the sub-Antarctic Universite de Bourgogne, Dijon 21000, islands. We identified two pulses of diversification, during the late Miocene (8 France, 7Australian Antarctic Division, < Kingston TAS 7050, Australia to 5.5 Ma) and the Pleistocene ( 1 Ma). -
Population Characteristics of the Limpet Patella Caerulea (Linnaeus, 1758) in Eastern Mediterranean (Central Greece)
water Article Population Characteristics of the Limpet Patella caerulea (Linnaeus, 1758) in Eastern Mediterranean (Central Greece) Dimitris Vafidis, Irini Drosou, Kostantina Dimitriou and Dimitris Klaoudatos * Department of Ichthyology and Aquatic Environment, School of Agriculture Sciences, University of Thessaly, 38446 Volos, Greece; dvafi[email protected] (D.V.); [email protected] (I.D.); [email protected] (K.D.) * Correspondence: [email protected] Received: 27 February 2020; Accepted: 19 April 2020; Published: 21 April 2020 Abstract: Limpets are pivotal for structuring and regulating the ecological balance of littoral communities and are widely collected for human consumption and as fishing bait. Limpets of the species Patella caerulea were collected between April 2016 and April 2017 from two sites, and two samplings per each site with varying degree of exposure to wave action and anthropogenic pressure, in Eastern Mediterranean (Pagasitikos Gulf, Central Greece). This study addresses a knowledge gap on population characteristics of P. caerulea populations in Eastern Mediterranean, assesses population structure, allometric relationships, and reproductive status. Morphometric characteristics exhibited spatio-temporal variation. Population density was significantly higher at the exposed site. Spatial relationship between members of the population exhibited clumped pattern of dispersion during spring. Broadcast spawning of the population occurred during summer. Seven dominant age groups were identified, with the dominant cohort in the third-year -
Gut Content and Stable Isotope Analysis of an Abundant Teleost
Marine and Freshwater Research, 2019, 70, 270–279 © CSIRO 2019 https://doi.org/10.1071/MF18140 Supplementary material Geology is a significant indicator of algal cover and invertebrate species composition on intertidal reefs of Ngari Capes Marine Park, south-western Australia C. BesseyA,B,D,E, M. J. RuleB, M. DaseyC, A. BrearleyD,E, J. M. HuismanB, S. K. WilsonB,E, and A. J. KendrickB,F ACSIRO, Oceans and Atmosphere, Indian Ocean Marine Research Centre, 64 Fairway, Crawley, WA 6009, Australia. BDepartment of Biodiversity, Conservation and Attractions, Marine Science Program, 17 Dick Perry Avenue, Kensington, WA 6015, Australia. CDepartment of Biodiversity, Conservation and Attractions, Parks and Wildlife Service, 14 Queen Street, Busselton, WA 6280, Australia. DUniversity of Western Australia, School of Plant Biology, 35 Stirling Highway, Crawley, WA 6009, Australia. EOceans Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. FCorresponding author. Email: [email protected] Page 1 of 6 Marine and Freshwater Research © CSIRO 2019 https://doi.org/10.1071/MF18140 Table S1. Description of mean percentage cover and diversity of intertidal reef survey sites – foliose – turf matrix turfmatrix – – ched calcified Rugosity ± Complexity ± Site name Geology Zone s.d. s.d. Diversity of invertebrates Bare rock Rock Sand Sand Turf Algal film Low branching algae High branching algae Membranous algae Crustose algae Bran coralline algae Wrack Galeolaria Barnacle casings Yallingup Limestone Inner 2.65 ±