ATS 351, Spring 2010 Lab #6 Stability & Skew-T – 48 Points

Total Page:16

File Type:pdf, Size:1020Kb

ATS 351, Spring 2010 Lab #6 Stability & Skew-T – 48 Points ATS 351, Spring 2010 Lab #6 Stability & Skew-T – 48 points 1. (5 points) What is an adiabatic process? Why are the moist and dry adiabatic rates of cooling different? An adiabatic process is a process that takes place without a transfer of heat between the system (such as an air parcel) and its surroundings. The dry adiabatic lapse rate is about 10C/km. When an air parcel becomes saturated, condensation occurs inside the parcel and latent heat is released. Therefore, this heat release balances some of the cooling by expansion and the parcel decreases temperature at a lesser rate. This rate is the moist adiabatic lapse rate, which is about 6C/km. 2. (5 points) If the atmosphere is conditionally unstable, what condition is necessary to bring on instability? If unsaturated air could be lifted to a level where it becomes saturated, instability would result. Conditional instability means that the environmental lapse rate is between the moist adiabatic lapse rate and dry adiabatic lapse rate. Therefore, an unsaturated parcel will follow the dry adiabatic lapse rate and will be colder than the environment. However, if that parcel becomes saturated, the parcel will now decrease in temperature at a slower rate than the environment and will be warmer = unstable. 3. (5 points) Explain the significance of the lifting condensation level. What is it and how is it determined from a Skew-T diagram? The lifting condensation level is the level at which a parcel of air, when lifted dry adiabatically, would become saturated. Above the LCL, the parcel cools at the moist adiabatic lapse rate. The LCL is found on the skew T by: 1) Follow the saturation mixing ratio from the dew point (follow line to lower pressures = up) 2) Following the dry adiabat line from the surface temperature (follow line to lower pressures = up) 3) The point where these 2 lines cross is the LCL. Using the skew-T below, please answer questions 4-9: (3 points each) 4. What was the surface temperature in Birmingham, Alabama? 19 degrees Celsius 5. What was the surface dewpoint in Birmingham, Alabama? 10 degrees Celsius 6. What is the lifting condensation level (LCL) for this sounding? 850 mb 7. What kind of stability is present in the layer from 700 mb to 650 mb? (absolutely unstable, absolutely stable, or neutral) Absolutely stable 8. An air parcel following a moist adiabat from 850 mb to 750 mb would experience what kind of stability? (unstable, stable, or neutral) Unstable – parcel is in a conditionally unstable environment and since it is saturated, parcel is unstable. 9. In what layer would clouds be located in the sounding? (give a range of pressures) 850 – 700 mb 10. (15 points) Plot the following temperatures and dew point temperatures on the Skew-T diagram provided. Do not forget to connect the points for each profile. The skew-T is constructed as follows: • Pressure is represented by the horizontal blue lines. (mb) • Temperature is represented by the diagonal red lines (°C) • Dry adiabats are the solid green lines • Moist adiabats are the dashed green lines • Mixing ratios are the diagonal dashed magenta line (g/kg) Pressure [mb] Temperature [ºC] Dew Point Temp. [ºC] 1000 24 17 950 22 16 900 19 14 850 15 10 800 10 8 750 6 4 700 2 -2 650 -2 -6 600 -4 -9 550 -8 -18 500 -11 -15 450 -14 -19 400 -18 -26 (1 point each) If an air parcel were to rise from the 1000 mb level: a. What is the pressure of the Lifting Condensation Level? About 900 mb b. What is the temperature of the Lifting Condensation Level? About 16C c. What would be the temperature of the parcel if it rose to the 700 mb level? About 6C d. What would be the temperature of the parcel if it rose to the 500 mb level? About -10C e. What is the pressure at the Level of Free Convection? About 825 mb f. What is the pressure at the Equilibrium Level? About 475 mb g. Shade in the area of the Convective Inhibition (CIN) in blue. On the scanned skew-T diagram h. Shade in the area of the Convective Available Potential Energy (CAPE) in red. On the scanned skew-T diagram i. What is the lapse rate between 1000 and 900 mb (approximately)? Is this lapse rate stable or unstable with respect to the dry adiabatic lapse rate? T(1000)-T(900) = 24C-19C = 5C * 3280 ft ~ 5.5C/km distance ~3000 ft. 3000ft 1 km STABLE..
Recommended publications
  • A Local Large Hail Probability Equation for Columbia, Sc
    EASTERN REGION TECHNICAL ATTACHMENT NO. 98-6 AUGUST, 1998 A LOCAL LARGE HAIL PROBABILITY EQUATION FOR COLUMBIA, SC Mark DeLisi NOAA/National Weather Service Forecast Office West Columbia, SC Editor’s Note: The author’s current affiliation is NWSFO Mt. Holly, NJ. 1. INTRODUCTION Skew-T/Hodograph Analysis and Research Program, or SHARP (Hart and Korotky Billet et al. (1997) derived a successful 1991). The dependent variable, hail diameter probability of large hail (diameter greater than or the absence of hail, was derived from or equal to 0.75 inch) equation as an aid in spotter reports for the CAE warning area from National Weather Service (NWS) severe May, 1995 through September, 1996. There thunderstorm warning operations. Hail of that were 136 cases used to develop the regression diameter or larger requires a severe equation. thunderstorm warning be issued by NWS offices. Shortly thereafter, a Weather The LPLH was verified using 69 spotter Surveillance Radar-1988 Doppler (WSR- reports from the period September, 1996 88D) radar probability of severe hail (POSH) through September, 1997. The POSH was became available for warning operations (Witt verified as well. Verification statistics et al. 1998). This study recreates the steps included the Brier score and the chi-square taken in Billet et al. (1997) to derive a local (32) statistic. probability of large hail equation (LPLH) for the Columbia, SC National Weather Service The goal of this study was to develop an Forecast Office (CAE) warning area, and it objective method to estimate the probability assesses the utility of the LPLH relative to the of large hail for use in forecast operations.
    [Show full text]
  • Use Style: Paper Title
    Environmental Conditions Producing Thunderstorms with Anomalous Vertical Polarity of Charge Structure Donald R. MacGorman Alexander J. Eddy NOAA/Nat’l Severe Storms Laboratory & Cooperative Cooperative Institute for Mesoscale Meteorological Institute for Mesoscale Meteorological Studies Studies Affiliation/ Univ. of Oklahoma and NOAA/OAR Norman, Oklahoma, USA Norman, Oklahoma, USA [email protected] Earle Williams Cameron R. Homeyer Massachusetts Insitute of Technology School of Meteorology, Univ. of Oklhaoma Cambridge, Massachusetts, USA Norman, Oklahoma, USA Abstract—+CG flashes typically comprise an unusually large Tessendorf et al. 2007, Weiss et al. 2008, Fleenor et al. 2009, fraction of CG activity in thunderstorms with anomalous vertical Emersic et al. 2011; DiGangi et al. 2016). Furthermore, charge structure. We analyzed more than a decade of NLDN previous studies have suggested that CG activity tends to be data on a 15 km x 15 km x 15 min grid spanning the contiguous delayed tens of minutes longer in these anomalous storms than United States, to identify storm cells in which +CG flashes in most storms elsewhere (MacGorman et al. 2011). constituted a large fraction of CG activity, as a proxy for thunderstorms with anomalous vertical charge structure, and For this study, we analyzed more than a decade of CG data storm cells with very low percentages of +CG lightning, as a from the National Lightning Detection Network throughout the proxy for thunderstorms with normal-polarity distributions. In contiguous United States to identify storm cells in which +CG each of seven regions, we used North American Regional flashes constituted a large fraction of CG activity, as a proxy Reanalysis data to compare the environments of anomalous for storms with anomalous vertical charge structure.
    [Show full text]
  • Chapter 8 Atmospheric Statics and Stability
    Chapter 8 Atmospheric Statics and Stability 1. The Hydrostatic Equation • HydroSTATIC – dw/dt = 0! • Represents the balance between the upward directed pressure gradient force and downward directed gravity. ρ = const within this slab dp A=1 dz Force balance p-dp ρ p g d z upward pressure gradient force = downward force by gravity • p=F/A. A=1 m2, so upward force on bottom of slab is p, downward force on top is p-dp, so net upward force is dp. • Weight due to gravity is F=mg=ρgdz • Force balance: dp/dz = -ρg 2. Geopotential • Like potential energy. It is the work done on a parcel of air (per unit mass, to raise that parcel from the ground to a height z. • dφ ≡ gdz, so • Geopotential height – used as vertical coordinate often in synoptic meteorology. ≡ φ( 2 • Z z)/go (where go is 9.81 m/s ). • Note: Since gravity decreases with height (only slightly in troposphere), geopotential height Z will be a little less than actual height z. 3. The Hypsometric Equation and Thickness • Combining the equation for geopotential height with the ρ hydrostatic equation and the equation of state p = Rd Tv, • Integrating and assuming a mean virtual temp (so it can be a constant and pulled outside the integral), we get the hypsometric equation: • For a given mean virtual temperature, this equation allows for calculation of the thickness of the layer between 2 given pressure levels. • For two given pressure levels, the thickness is lower when the virtual temperature is lower, (ie., denser air). • Since thickness is readily calculated from radiosonde measurements, it provides an excellent forecasting tool.
    [Show full text]
  • DEPARTMENT of GEOSCIENCES Name______San Francisco State University May 7, 2013 Spring 2009
    DEPARTMENT OF GEOSCIENCES Name_____________ San Francisco State University May 7, 2013 Spring 2009 Monteverdi Metr 201 Quiz #4 100 pts. A. Definitions. (3 points each for a total of 15 points in this section). (a) Convective Condensation Level --The elevation at which a lofted surface parcel heated to its Convective Temperature will be saturated and above which will be warmer than the surrounding air at the same elevation. (b) Convective Temperature --The surface temperature that must be met or exceeded in order to convert an absolutely stable sounding to an absolutely unstable sounding (because of elimination, usually, of the elevated inversion characteristic of the Loaded Gun Sounding). (c) Lifted Index -- the difference in temperature (in C or K) between the surrounding air and the parcel ascent curve at 500 mb. (d) wave cyclone -- a cyclone in which a frontal system is centered in a wave-like configuration, normally with a cold front on the west and a warm front on the east. (e) conditionally unstable sounding (conceptual definition) –a sounding for which the parcel ascent curve shows an LFC not at the ground, implying that the sounding is unstable only on the condition that a surface parcel is force lofted to the LFC. B. Units. (2 pts each for a total of 8 pts) Provide the units used conventionally for the following: θ ____ Ko * o o Td ______C ___or F ___________ PGA -2 ( )z ______m s _______________** w ____ m s-1_____________*** *θ = Theta = Potential Temperature **PGA = Pressure Gradient Acceleration *** At Equilibrium Level of Severe Thunderstorms € 1 C. Sounding (3 pts each for a total of 27 points in this section).
    [Show full text]
  • Severe Weather Forecasting Tip Sheet: WFO Louisville
    Severe Weather Forecasting Tip Sheet: WFO Louisville Vertical Wind Shear & SRH Tornadic Supercells 0-6 km bulk shear > 40 kts – supercells Unstable warm sector air mass, with well-defined warm and cold fronts (i.e., strong extratropical cyclone) 0-6 km bulk shear 20-35 kts – organized multicells Strong mid and upper-level jet observed to dive southward into upper-level shortwave trough, then 0-6 km bulk shear < 10-20 kts – disorganized multicells rapidly exit the trough and cross into the warm sector air mass. 0-8 km bulk shear > 52 kts – long-lived supercells Pronounced upper-level divergence occurs on the nose and exit region of the jet. 0-3 km bulk shear > 30-40 kts – bowing thunderstorms A low-level jet forms in response to upper-level jet, which increases northward flux of moisture. SRH Intense northwest-southwest upper-level flow/strong southerly low-level flow creates a wind profile which 0-3 km SRH > 150 m2 s-2 = updraft rotation becomes more likely 2 -2 is very conducive for supercell development. Storms often exhibit rapid development along cold front, 0-3 km SRH > 300-400 m s = rotating updrafts and supercell development likely dryline, or pre-frontal convergence axis, and then move east into warm sector. BOTH 2 -2 Most intense tornadic supercells often occur in close proximity to where upper-level jet intersects low- 0-6 km shear < 35 kts with 0-3 km SRH > 150 m s – brief rotation but not persistent level jet, although tornadic supercells can occur north and south of upper jet as well.
    [Show full text]
  • An 18-Year Climatology of Derechos in Germany
    Nat. Hazards Earth Syst. Sci., 20, 1–17, 2020 https://doi.org/10.5194/nhess-20-1-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. An 18-year climatology of derechos in Germany Christoph P. Gatzen1, Andreas H. Fink2, David M. Schultz3,4, and Joaquim G. Pinto2 1Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany 2Institute of Meteorology and Climate Research, Department Troposphere Research, Karlsruhe Institute of Technology, Karlsruhe, Germany 3Centre for Crisis Studies and Mitigation, University of Manchester, Manchester, UK 4Centre for Atmospheric Science, Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK Correspondence: Christoph P. Gatzen ([email protected]) Received: 18 July 2019 – Discussion started: 4 September 2019 Revised: 7 March 2020 – Accepted: 17 March 2020 – Published: Abstract. Derechos are high-impact convective wind events 1 Introduction that can cause fatalities and widespread losses. In this study, 40 derechos affecting Germany between 1997 and 2014 are analyzed to estimate the derecho risk. Similar to the Convective wind events can produce high losses and fatal- United States, Germany is affected by two derecho types. ities in Germany. One example is the Pentecost storm in The first, called warm-season-type derechos, form in strong 2014 (Mathias et al., 2017), with six fatalities in the region southwesterly 500 hPa flow downstream of western Euro- of Düsseldorf in western Germany and a particularly high pean troughs and account for 22 of the 40 derechos. They impact on the railway network. Trains were stopped due to have a peak occurrence in June and July.
    [Show full text]
  • Stability Analysis, Page 1 Synoptic Meteorology I
    Synoptic Meteorology I: Stability Analysis For Further Reading Most information contained within these lecture notes is drawn from Chapters 4 and 5 of “The Use of the Skew T, Log P Diagram in Analysis and Forecasting” by the Air Force Weather Agency, a PDF copy of which is available from the course website. Chapter 5 of Weather Analysis by D. Djurić provides further details about how stability may be assessed utilizing skew-T/ln-p diagrams. Why Do We Care About Stability? Simply put, we care about stability because it exerts a strong control on vertical motion – namely, ascent – and thus cloud and precipitation formation on the synoptic-scale or otherwise. We care about stability because rarely is the atmosphere ever absolutely stable or absolutely unstable, and thus we need to understand under what conditions the atmosphere is stable or unstable. We care about stability because the purpose of instability is to restore stability; atmospheric processes such as latent heat release act to consume the energy provided in the presence of instability. Before we can assess stability, however, we must first introduce a few additional concepts that we will later find beneficial, particularly when evaluating stability using skew-T diagrams. Stability-Related Concepts Convection Condensation Level The convection condensation level, or CCL, is the height or isobaric level to which an air parcel, if sufficiently heated from below, will rise adiabatically until it becomes saturated. The attribute “if sufficiently heated from below” gives rise to the convection portion of the CCL. Sufficiently strong heating of the Earth’s surface results in dry convection, which generates localized thermals that act to vertically transport energy.
    [Show full text]
  • Weather in the Vertical Ed Williams FPI Feb/March 2008
    Copyright © Ed Williams 2008 Weather in the Vertical Ed Williams FPI Feb/March 2008 http://edwilliams.org/ What’s it all about? • Why is the vertical temperature and moisture profile so important? – Atmospheric stability – Characteristics of stable/unstable wx. • How can we use vertical soundings (“Skew-T”) plots to augment our wx briefings? – Cloud layers and tops – Thunderstorm potential – Icing potential – Fog, mountain waves… A little weather “theory” is good for you! • To understand what is happening, it helps to know why. • The more we know, the less likely we are to be taken by surprise. • We most likely don’t have the skill and knowledge of a professional meteorologist. But we do have the advantage of being on the spot, in real time. Parcel theory is a tool to assess vertical motion in the atmosphere Vertical motion leads to: Clouds Precipitation Thunderstorms Icing Turbulence Warm front The air’s response to lifting is determined by its stability: We assess this by hypothetically lifting parcels (imaginary bubbles) of air. Actual lifting can come from a variety of causes: Fronts Cold Front Orographic etc. Stable systems return towards equilibrium when displaced Stable Unstable Conditionally Unstable • A region of the atmosphere is stable if on lifting a parcel of air, its immediate tendency is to sink back when released. • This requires the displaced air to be colder (and thus denser) than its surroundings. Balloons (and air parcels) rise if they weigh less than the air they displace. Pressure is the weight per unit area of the air above. “Warm air rises” – but it’s a little more complicated.
    [Show full text]
  • PHAK Chapter 12 Weather Theory
    Chapter 12 Weather Theory Introduction Weather is an important factor that influences aircraft performance and flying safety. It is the state of the atmosphere at a given time and place with respect to variables, such as temperature (heat or cold), moisture (wetness or dryness), wind velocity (calm or storm), visibility (clearness or cloudiness), and barometric pressure (high or low). The term “weather” can also apply to adverse or destructive atmospheric conditions, such as high winds. This chapter explains basic weather theory and offers pilots background knowledge of weather principles. It is designed to help them gain a good understanding of how weather affects daily flying activities. Understanding the theories behind weather helps a pilot make sound weather decisions based on the reports and forecasts obtained from a Flight Service Station (FSS) weather specialist and other aviation weather services. Be it a local flight or a long cross-country flight, decisions based on weather can dramatically affect the safety of the flight. 12-1 Atmosphere The atmosphere is a blanket of air made up of a mixture of 1% gases that surrounds the Earth and reaches almost 350 miles from the surface of the Earth. This mixture is in constant motion. If the atmosphere were visible, it might look like 2211%% an ocean with swirls and eddies, rising and falling air, and Oxygen waves that travel for great distances. Life on Earth is supported by the atmosphere, solar energy, 77 and the planet’s magnetic fields. The atmosphere absorbs 88%% energy from the sun, recycles water and other chemicals, and Nitrogen works with the electrical and magnetic forces to provide a moderate climate.
    [Show full text]
  • Atmospheric Stability
    General Meteorology Laboratory #7 Name ___________________________ Date _______________ Partners _________________________ Section _____________ Atmospheric Stability Purpose: Use vertical soundings to determine the stability of the atmosphere. Equipment: Station Thermometer Min./Max. Thermometer Anemometer Barometer Psychrometer Rain Gauge Psychometric Tables Barometric Correction Tables I. Surface observation. Begin the first 1/2 hour of lab performing a surface observation. Make sure you include pressure (station, sea level, and altimeter setting), temperature, dew point temperature, wind (direction, speed, and characteristics), precipitation, and sky conditions (cloud cover, cloud height, & visibility). From your observation generate a METAR and a station model. A. Generate a METAR for today's observation B. Generate a station model for today's observation. II. Plot the sounding On the skew T-ln p plot the CHS sounding. Locate the lifting condensation level (LCL), the level of free convection (LFC), and the equilibrium level (EL). 1. The LCL is found by following the dry adiabat from the surface temperature and the saturation mixing ratio from the dew point temperature. Where there two paths intersect, we would have condensation taking place. This is the LCL and represents the base of the cloud. 2. The LFC is found by following a moist adiabat from the LCL until it intersects the temperature sounding. Beyond this level a surface parcel will become warmer than the environment and will freely rise. 3. The EL is found by following a moist adiabat from the LFC until it intersects the temperature sounding again. At this point the surface parcel will be cooler than the environment and will no longer rise on its own accord.
    [Show full text]
  • A Physically Based Parameter for Lightning Prediction and Its Calibration in Ensemble Forecasts
    4.3 A Physically Based Parameter for Lightning Prediction and its Calibration in Ensemble Forecasts David R. Bright* NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma Matthew S. Wandishin CIMMS/University of Oklahoma, Norman, Oklahoma Ryan E. Jewell and Steven J. Weiss NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma 1. INTRODUCTION that explicitly predict moist convection do not predict the occurrence of lightning. Thus, after The Storm Prediction Center (SPC) issues determining where moist convection is plausible, forecasts for the contiguous United States related the potential for thunderstorms must be deduced to hazardous convective weather including through further interrogation of the data. In thunderstorms, severe thunderstorms, tornadoes, addition to deterministic NWP output, the and elements critical to fire weather such as dry NCEP/EMC Short Range Ensemble Forecast lightning. In addition to severe weather products (SREF) is available to the SPC and attempts to such as watches and outlooks, the SPC also account for initial condition, model, and convective issues “general” thunderstorm outlooks for the physics uncertainty (Du et al. 2004). The SPC contiguous United States and adjacent coastal post-processes the NCEP SREF to create a suite waters. These outlooks delineate a > 10% chance of customized ensemble products specifically for of cloud-to-ground (CG) lightning within thunderstorm and severe thunderstorm prediction approximately 15 miles of a point. (For the (Bright et al. 2004). A subset of these products is purposes of this paper, a thunderstorm is defined available in real-time on the SPC web site at as deep convection producing at least one CG http://www.spc.noaa.gov/exper/sref/.
    [Show full text]
  • Prmet Ch14 Thunderstorm Fundamentals
    Copyright © 2015 by Roland Stull. Practical Meteorology: An Algebra-based Survey of Atmospheric Science. 14 THUNDERSTORM FUNDAMENTALS Contents Thunderstorm Characteristics 481 Thunderstorm characteristics, formation, and Appearance 482 forecasting are covered in this chapter. The next Clouds Associated with Thunderstorms 482 chapter covers thunderstorm hazards including Cells & Evolution 484 hail, gust fronts, lightning, and tornadoes. Thunderstorm Types & Organization 486 Basic Storms 486 Mesoscale Convective Systems 488 Supercell Thunderstorms 492 INFO • Derecho 494 Thunderstorm Formation 496 ThundersTorm CharacterisTiCs Favorable Conditions 496 Key Altitudes 496 Thunderstorms are convective clouds INFO • Cap vs. Capping Inversion 497 with large vertical extent, often with tops near the High Humidity in the ABL 499 tropopause and bases near the top of the boundary INFO • Median, Quartiles, Percentiles 502 layer. Their official name is cumulonimbus (see Instability, CAPE & Updrafts 503 the Clouds Chapter), for which the abbreviation is Convective Available Potential Energy 503 Cb. On weather maps the symbol represents Updraft Velocity 508 thunderstorms, with a dot •, asterisk *, or triangle Wind Shear in the Environment 509 ∆ drawn just above the top of the symbol to indicate Hodograph Basics 510 rain, snow, or hail, respectively. For severe thunder- Using Hodographs 514 storms, the symbol is . Shear Across a Single Layer 514 Mean Wind Shear Vector 514 Total Shear Magnitude 515 Mean Environmental Wind (Normal Storm Mo- tion) 516 Supercell Storm Motion 518 Bulk Richardson Number 521 Triggering vs. Convective Inhibition 522 Convective Inhibition (CIN) 523 Triggers 525 Thunderstorm Forecasting 527 Outlooks, Watches & Warnings 528 INFO • A Tornado Watch (WW) 529 Stability Indices for Thunderstorms 530 Review 533 Homework Exercises 533 Broaden Knowledge & Comprehension 533 © Gene Rhoden / weatherpix.com Apply 534 Figure 14.1 Evaluate & Analyze 537 Air-mass thunderstorm.
    [Show full text]