DEPARTMENT of GEOSCIENCES Name______San Francisco State University May 7, 2013 Spring 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Local Large Hail Probability Equation for Columbia, Sc
EASTERN REGION TECHNICAL ATTACHMENT NO. 98-6 AUGUST, 1998 A LOCAL LARGE HAIL PROBABILITY EQUATION FOR COLUMBIA, SC Mark DeLisi NOAA/National Weather Service Forecast Office West Columbia, SC Editor’s Note: The author’s current affiliation is NWSFO Mt. Holly, NJ. 1. INTRODUCTION Skew-T/Hodograph Analysis and Research Program, or SHARP (Hart and Korotky Billet et al. (1997) derived a successful 1991). The dependent variable, hail diameter probability of large hail (diameter greater than or the absence of hail, was derived from or equal to 0.75 inch) equation as an aid in spotter reports for the CAE warning area from National Weather Service (NWS) severe May, 1995 through September, 1996. There thunderstorm warning operations. Hail of that were 136 cases used to develop the regression diameter or larger requires a severe equation. thunderstorm warning be issued by NWS offices. Shortly thereafter, a Weather The LPLH was verified using 69 spotter Surveillance Radar-1988 Doppler (WSR- reports from the period September, 1996 88D) radar probability of severe hail (POSH) through September, 1997. The POSH was became available for warning operations (Witt verified as well. Verification statistics et al. 1998). This study recreates the steps included the Brier score and the chi-square taken in Billet et al. (1997) to derive a local (32) statistic. probability of large hail equation (LPLH) for the Columbia, SC National Weather Service The goal of this study was to develop an Forecast Office (CAE) warning area, and it objective method to estimate the probability assesses the utility of the LPLH relative to the of large hail for use in forecast operations. -
Use Style: Paper Title
Environmental Conditions Producing Thunderstorms with Anomalous Vertical Polarity of Charge Structure Donald R. MacGorman Alexander J. Eddy NOAA/Nat’l Severe Storms Laboratory & Cooperative Cooperative Institute for Mesoscale Meteorological Institute for Mesoscale Meteorological Studies Studies Affiliation/ Univ. of Oklahoma and NOAA/OAR Norman, Oklahoma, USA Norman, Oklahoma, USA [email protected] Earle Williams Cameron R. Homeyer Massachusetts Insitute of Technology School of Meteorology, Univ. of Oklhaoma Cambridge, Massachusetts, USA Norman, Oklahoma, USA Abstract—+CG flashes typically comprise an unusually large Tessendorf et al. 2007, Weiss et al. 2008, Fleenor et al. 2009, fraction of CG activity in thunderstorms with anomalous vertical Emersic et al. 2011; DiGangi et al. 2016). Furthermore, charge structure. We analyzed more than a decade of NLDN previous studies have suggested that CG activity tends to be data on a 15 km x 15 km x 15 min grid spanning the contiguous delayed tens of minutes longer in these anomalous storms than United States, to identify storm cells in which +CG flashes in most storms elsewhere (MacGorman et al. 2011). constituted a large fraction of CG activity, as a proxy for thunderstorms with anomalous vertical charge structure, and For this study, we analyzed more than a decade of CG data storm cells with very low percentages of +CG lightning, as a from the National Lightning Detection Network throughout the proxy for thunderstorms with normal-polarity distributions. In contiguous United States to identify storm cells in which +CG each of seven regions, we used North American Regional flashes constituted a large fraction of CG activity, as a proxy Reanalysis data to compare the environments of anomalous for storms with anomalous vertical charge structure. -
Chapter 8 Atmospheric Statics and Stability
Chapter 8 Atmospheric Statics and Stability 1. The Hydrostatic Equation • HydroSTATIC – dw/dt = 0! • Represents the balance between the upward directed pressure gradient force and downward directed gravity. ρ = const within this slab dp A=1 dz Force balance p-dp ρ p g d z upward pressure gradient force = downward force by gravity • p=F/A. A=1 m2, so upward force on bottom of slab is p, downward force on top is p-dp, so net upward force is dp. • Weight due to gravity is F=mg=ρgdz • Force balance: dp/dz = -ρg 2. Geopotential • Like potential energy. It is the work done on a parcel of air (per unit mass, to raise that parcel from the ground to a height z. • dφ ≡ gdz, so • Geopotential height – used as vertical coordinate often in synoptic meteorology. ≡ φ( 2 • Z z)/go (where go is 9.81 m/s ). • Note: Since gravity decreases with height (only slightly in troposphere), geopotential height Z will be a little less than actual height z. 3. The Hypsometric Equation and Thickness • Combining the equation for geopotential height with the ρ hydrostatic equation and the equation of state p = Rd Tv, • Integrating and assuming a mean virtual temp (so it can be a constant and pulled outside the integral), we get the hypsometric equation: • For a given mean virtual temperature, this equation allows for calculation of the thickness of the layer between 2 given pressure levels. • For two given pressure levels, the thickness is lower when the virtual temperature is lower, (ie., denser air). • Since thickness is readily calculated from radiosonde measurements, it provides an excellent forecasting tool. -
How Appropriate They Are/Will Be Using Future Satellite Data Sources?
Different Convective Indices - - - How appropriate they are/will be using future satellite data sources? Ralph A. Petersen1 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin – Madison, Madison, Wisconsin, USA Will additional input from Steve Weiss, NOAA/NWS/Storm Prediction Center ✓ Increasing the Utility / Value of real-time Satellite Sounder Products to fill gaps in their short-range forecasting processes Creating Temperature/Moisture Soundings from Infra-Red (IR) Satellite Observations A Conceptual Tutorial All level of the atmosphere is continually emit radiation toward space. Satellites observe the net amount reaching space. • Conceptually, we can think about the atmosphere being made up of many thin layers Start from the bottom and work up. 1 – The greatest amount of radiation is emitted from the earth’s surface 4 - Remember, Stefan’s Law: Emission ~ σTSfc 2 – Molecules of various gases in the lowest layer of the atmosphere absorb some of the radiation and then reemit it upward to space and back downward to the earth’s surface - Major absorbers are CO2 and H2O 4 - Emission again ~ σT , but TAtmosphere<TSfc - Amount of radiation decreases with altitude Creating Temperature/Moisture Soundings from Infra-Red (IR) Satellite Observations A Conceptual Tutorial All level of the atmosphere is continually emit radiation toward space. Satellites observe the net amount reaching space. • Conceptually, we can think about the atmosphere being made up of many thin layers Start from the bottom and work -
Effect of Deep Convection on the TTL Composition Over the Southwest Indian Ocean During Austral Summer
https://doi.org/10.5194/acp-2019-1072 Preprint. Discussion started: 22 January 2020 c Author(s) 2020. CC BY 4.0 License. Effect of deep convection on the TTL composition over the Southwest Indian Ocean during austral summer. Stephanie Evan1, Jerome Brioude1, Karen Rosenlof2, Sean. M. Davis2, Hölger Vömel3, Damien Héron1, Françoise Posny1, Jean-Marc Metzger4, Valentin Duflot1,4, Guillaume Payen4, Hélène Vérèmes1, 5 Philippe Keckhut5, and Jean-Pierre Cammas1,4 1LACy, Laboratoire de l’Atmosphère et des Cyclones, UMR8105 (CNRS, Université de La Réunion, Météo-France), Saint- Denis de la Réunion, 97490, France 2Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, 80305, CO, USA 3National Center for Atmospheric Research, Boulder, 80301, CO, USA 10 4Observatoire des Sciences de l’Univers de La Réunion, UMS3365 (CNRS, Université de La Réunion, Météo-France), Saint- Denis de la Réunion, 97490, France 5LATMOS, Laboratoire ATmosphères, Milieux, Observations Spatiales-IPSL UMR8190 (UVSQ Université Paris-Saclay, Sorbonne Université, CNRS), Guyancourt, 78280, France Correspondence to: Stephanie Evan ([email protected]) 15 Abstract. Balloon-borne measurements of CFH water vapor, ozone and temperature and water vapor lidar measurements from the Maïdo Observatory at Réunion Island in the Southwest Indian Ocean (SWIO) were used to study tropical cyclones' influence on TTL composition. The balloon launches were specifically planned using a Lagrangian model and METEOSAT 7 infrared images to sample the convective outflow from Tropical Storm (TS) Corentin on 25 January 2016 and Tropical Cyclone (TC) Enawo on 3 March 2017. 20 Comparing CFH profile to MLS monthly climatologies, water vapor anomalies were identified. Positive anomalies of water vapor and temperature, and negative anomalies of ozone between 12 and 15 km in altitude (247 to 121hPa) originated from convectively active regions of TS Corentin and TC Enawo, one day before the planned balloon launches, according to the Lagrangian trajectories. -
Basic Features on a Skew-T Chart
Skew-T Analysis and Stability Indices to Diagnose Severe Thunderstorm Potential Mteor 417 – Iowa State University – Week 6 Bill Gallus Basic features on a skew-T chart Moist adiabat isotherm Mixing ratio line isobar Dry adiabat Parameters that can be determined on a skew-T chart • Mixing ratio (w)– read from dew point curve • Saturation mixing ratio (ws) – read from Temp curve • Rel. Humidity = w/ws More parameters • Vapor pressure (e) – go from dew point up an isotherm to 622mb and read off the mixing ratio (but treat it as mb instead of g/kg) • Saturation vapor pressure (es)– same as above but start at temperature instead of dew point • Wet Bulb Temperature (Tw)– lift air to saturation (take temperature up dry adiabat and dew point up mixing ratio line until they meet). Then go down a moist adiabat to the starting level • Wet Bulb Potential Temperature (θw) – same as Wet Bulb Temperature but keep descending moist adiabat to 1000 mb More parameters • Potential Temperature (θ) – go down dry adiabat from temperature to 1000 mb • Equivalent Temperature (TE) – lift air to saturation and keep lifting to upper troposphere where dry adiabats and moist adiabats become parallel. Then descend a dry adiabat to the starting level. • Equivalent Potential Temperature (θE) – same as above but descend to 1000 mb. Meaning of some parameters • Wet bulb temperature is the temperature air would be cooled to if if water was evaporated into it. Can be useful for forecasting rain/snow changeover if air is dry when precipitation starts as rain. Can also give -
Severe Weather Forecasting Tip Sheet: WFO Louisville
Severe Weather Forecasting Tip Sheet: WFO Louisville Vertical Wind Shear & SRH Tornadic Supercells 0-6 km bulk shear > 40 kts – supercells Unstable warm sector air mass, with well-defined warm and cold fronts (i.e., strong extratropical cyclone) 0-6 km bulk shear 20-35 kts – organized multicells Strong mid and upper-level jet observed to dive southward into upper-level shortwave trough, then 0-6 km bulk shear < 10-20 kts – disorganized multicells rapidly exit the trough and cross into the warm sector air mass. 0-8 km bulk shear > 52 kts – long-lived supercells Pronounced upper-level divergence occurs on the nose and exit region of the jet. 0-3 km bulk shear > 30-40 kts – bowing thunderstorms A low-level jet forms in response to upper-level jet, which increases northward flux of moisture. SRH Intense northwest-southwest upper-level flow/strong southerly low-level flow creates a wind profile which 0-3 km SRH > 150 m2 s-2 = updraft rotation becomes more likely 2 -2 is very conducive for supercell development. Storms often exhibit rapid development along cold front, 0-3 km SRH > 300-400 m s = rotating updrafts and supercell development likely dryline, or pre-frontal convergence axis, and then move east into warm sector. BOTH 2 -2 Most intense tornadic supercells often occur in close proximity to where upper-level jet intersects low- 0-6 km shear < 35 kts with 0-3 km SRH > 150 m s – brief rotation but not persistent level jet, although tornadic supercells can occur north and south of upper jet as well. -
ESCI 241 – Meteorology Lesson 8 - Thermodynamic Diagrams Dr
ESCI 241 – Meteorology Lesson 8 - Thermodynamic Diagrams Dr. DeCaria References: The Use of the Skew T, Log P Diagram in Analysis And Forecasting, AWS/TR-79/006, U.S. Air Force, Revised 1979 An Introduction to Theoretical Meteorology, Hess GENERAL Thermodynamic diagrams are used to display lines representing the major processes that air can undergo (adiabatic, isobaric, isothermal, pseudo- adiabatic). The simplest thermodynamic diagram would be to use pressure as the y-axis and temperature as the x-axis. The ideal thermodynamic diagram has three important properties The area enclosed by a cyclic process on the diagram is proportional to the work done in that process As many of the process lines as possible be straight (or nearly straight) A large angle (90 ideally) between adiabats and isotherms There are several different types of thermodynamic diagrams, all meeting the above criteria to a greater or lesser extent. They are the Stuve diagram, the emagram, the tephigram, and the skew-T/log p diagram The most commonly used diagram in the U.S. is the Skew-T/log p diagram. The Skew-T diagram is the diagram of choice among the National Weather Service and the military. The Stuve diagram is also sometimes used, though area on a Stuve diagram is not proportional to work. SKEW-T/LOG P DIAGRAM Uses natural log of pressure as the vertical coordinate Since pressure decreases exponentially with height, this means that the vertical coordinate roughly represents altitude. Isotherms, instead of being vertical, are slanted upward to the right. Adiabats are lines that are semi-straight, and slope upward to the left. -
Can the Convective Temperature from the 12UTC Sounding Be a Good Predictor for the Maximum Temperature, During the Summer Months? Emily D
Meteorology Senior Theses Undergraduate Theses and Capstone Projects 12-1-2017 Can the Convective Temperature from the 12UTC Sounding be a Good Predictor for the Maximum Temperature, During the Summer Months? Emily D. Baalman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/mteor_stheses Part of the Meteorology Commons Recommended Citation Baalman, Emily D., "Can the Convective Temperature from the 12UTC Sounding be a Good Predictor for the Maximum Temperature, During the Summer Months?" (2017). Meteorology Senior Theses. 19. https://lib.dr.iastate.edu/mteor_stheses/19 This Dissertation/Thesis is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at Iowa State University Digital Repository. It has been accepted for inclusion in Meteorology Senior Theses by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Can the Convective Temperature from the 12UTC Sounding be a Good Predictor for the Maximum Temperature, During the Summer Months? Emily D. Baalman Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa Dr. William Gallus – Mentor Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa ABSTRACT Several forecasting techniques use soundings to get the value of the variable being forecasted. This study examines the validity of a using the convective temperature to forecast for the maximum temperature, while comparing it to other forecasting techniques that use soundings. These include adding 13 degrees to 850mb temperature and using the forecasted high that is included in the sounding analysis. This study also examined where the convective temperature matches the observed high temperature. -
An 18-Year Climatology of Derechos in Germany
Nat. Hazards Earth Syst. Sci., 20, 1–17, 2020 https://doi.org/10.5194/nhess-20-1-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. An 18-year climatology of derechos in Germany Christoph P. Gatzen1, Andreas H. Fink2, David M. Schultz3,4, and Joaquim G. Pinto2 1Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany 2Institute of Meteorology and Climate Research, Department Troposphere Research, Karlsruhe Institute of Technology, Karlsruhe, Germany 3Centre for Crisis Studies and Mitigation, University of Manchester, Manchester, UK 4Centre for Atmospheric Science, Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK Correspondence: Christoph P. Gatzen ([email protected]) Received: 18 July 2019 – Discussion started: 4 September 2019 Revised: 7 March 2020 – Accepted: 17 March 2020 – Published: Abstract. Derechos are high-impact convective wind events 1 Introduction that can cause fatalities and widespread losses. In this study, 40 derechos affecting Germany between 1997 and 2014 are analyzed to estimate the derecho risk. Similar to the Convective wind events can produce high losses and fatal- United States, Germany is affected by two derecho types. ities in Germany. One example is the Pentecost storm in The first, called warm-season-type derechos, form in strong 2014 (Mathias et al., 2017), with six fatalities in the region southwesterly 500 hPa flow downstream of western Euro- of Düsseldorf in western Germany and a particularly high pean troughs and account for 22 of the 40 derechos. They impact on the railway network. Trains were stopped due to have a peak occurrence in June and July. -
Chapter 3 Mesoscale Processes and Severe Convective Weather
CHAPTER 3 JOHNSON AND MAPES Chapter 3 Mesoscale Processes and Severe Convective Weather RICHARD H. JOHNSON Department of Atmospheric Science. Colorado State University, Fort Collins, Colorado BRIAN E. MAPES CIRESICDC, University of Colorado, Boulder, Colorado REVIEW PANEL: David B. Parsons (Chair), K. Emanuel, J. M. Fritsch, M. Weisman, D.-L. Zhang 3.1. Introduction tion, mesoscale phenomena occur on horizontal scales between ten and several hundred kilometers. This Severe convective weather events-tornadoes, hail range generally encompasses motions for which both storms, high winds, flash floods-are inherently mesoscale ageostrophic advections and Coriolis effects are im phenomena. While the large-scale flow establishes envi portant (Emanuel 1986). In general, we apply such a ronmental conditions favorable for severe weather, pro definition here; however, strict application is difficult cesses on the mesoscale initiate such storms, affect their since so many mesoscale phenomena are "multiscale." evolution, and influence their environment. A rich variety For example, a -100-km-Iong gust front can be less of mesocale processes are involved in severe weather, than -1 km across. The triggering of a storm by the ranging from environmental preconditioning to storm initi collision of gust fronts can actually occur on a ation to feedback of convection on the environment. In the -lOO-m scale (the microscale). Nevertheless, we will space available, it is not possible to treat all of these treat this overall process (and others similar to it) as processes in detail. Rather, we will introduce s~veral mesoscale since gust fronts are generally regarded as general classifications of mesoscale processes relatmg to mesoscale phenomena. -
Stability Analysis, Page 1 Synoptic Meteorology I
Synoptic Meteorology I: Stability Analysis For Further Reading Most information contained within these lecture notes is drawn from Chapters 4 and 5 of “The Use of the Skew T, Log P Diagram in Analysis and Forecasting” by the Air Force Weather Agency, a PDF copy of which is available from the course website. Chapter 5 of Weather Analysis by D. Djurić provides further details about how stability may be assessed utilizing skew-T/ln-p diagrams. Why Do We Care About Stability? Simply put, we care about stability because it exerts a strong control on vertical motion – namely, ascent – and thus cloud and precipitation formation on the synoptic-scale or otherwise. We care about stability because rarely is the atmosphere ever absolutely stable or absolutely unstable, and thus we need to understand under what conditions the atmosphere is stable or unstable. We care about stability because the purpose of instability is to restore stability; atmospheric processes such as latent heat release act to consume the energy provided in the presence of instability. Before we can assess stability, however, we must first introduce a few additional concepts that we will later find beneficial, particularly when evaluating stability using skew-T diagrams. Stability-Related Concepts Convection Condensation Level The convection condensation level, or CCL, is the height or isobaric level to which an air parcel, if sufficiently heated from below, will rise adiabatically until it becomes saturated. The attribute “if sufficiently heated from below” gives rise to the convection portion of the CCL. Sufficiently strong heating of the Earth’s surface results in dry convection, which generates localized thermals that act to vertically transport energy.