Prmet Ch14 Thunderstorm Fundamentals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Local Large Hail Probability Equation for Columbia, Sc
EASTERN REGION TECHNICAL ATTACHMENT NO. 98-6 AUGUST, 1998 A LOCAL LARGE HAIL PROBABILITY EQUATION FOR COLUMBIA, SC Mark DeLisi NOAA/National Weather Service Forecast Office West Columbia, SC Editor’s Note: The author’s current affiliation is NWSFO Mt. Holly, NJ. 1. INTRODUCTION Skew-T/Hodograph Analysis and Research Program, or SHARP (Hart and Korotky Billet et al. (1997) derived a successful 1991). The dependent variable, hail diameter probability of large hail (diameter greater than or the absence of hail, was derived from or equal to 0.75 inch) equation as an aid in spotter reports for the CAE warning area from National Weather Service (NWS) severe May, 1995 through September, 1996. There thunderstorm warning operations. Hail of that were 136 cases used to develop the regression diameter or larger requires a severe equation. thunderstorm warning be issued by NWS offices. Shortly thereafter, a Weather The LPLH was verified using 69 spotter Surveillance Radar-1988 Doppler (WSR- reports from the period September, 1996 88D) radar probability of severe hail (POSH) through September, 1997. The POSH was became available for warning operations (Witt verified as well. Verification statistics et al. 1998). This study recreates the steps included the Brier score and the chi-square taken in Billet et al. (1997) to derive a local (32) statistic. probability of large hail equation (LPLH) for the Columbia, SC National Weather Service The goal of this study was to develop an Forecast Office (CAE) warning area, and it objective method to estimate the probability assesses the utility of the LPLH relative to the of large hail for use in forecast operations. -
Lecture 7. More on BL Wind Profiles and Turbulent Eddy Structures in This
Atm S 547 Boundary Layer Meteorology Bretherton Lecture 7. More on BL wind profiles and turbulent eddy structures In this lecture… • Stability and baroclinicity effects on PBL wind and temperature profiles • Large-eddy structures and entrainment in shear-driven and convective BLs. Stability effects on overall boundary layer structure Above the surface layer, the wind profile is also affected by stability. As we mentioned previously, unstable BLs tend to have much more well-mixed wind profiles than stable BLs. Fig. 1 shows observations from the Wangara experiment on how the velocity defects and temperature profile are altered by BL stability (as measured by H/L). Within stability classes, the velocity profiles collapse when scaled with a velocity scale u* and the observed BL depth H, but there is a large difference between the stability classes. Baroclinicity We would expect baroclinicity (vertical shear of geostrophic wind) to also affect the observed wind profile. This is most easily seen for a laminar steady-state Ekman layer in a geostrophic wind with constant vertical shear ug(z) = (G + Mz, Nz), where M = -(g/fT0)∂T/∂y, N = (g/fT0)∂T/∂x. The momentum equations and BCs are: -f(v - Nz) = ν d2u/dz2 f(u - G - Mz) = ν d2v/dz2 u(0) = 0, u(z) ~ G + Mz as z → ∞. v(0) = 0, v(z) ~ Nz as z → ∞. The resultant BL velocity profile is the classical Ekman layer with the thermal wind added onto it. u(z) = G(1 - e-ζ cos ζ) + Mz, (7.1) 1/2 v(z) = G e- ζ sin ζ + Nz. -
How Does Convective Self-Aggregation Affect Precipitation Extremes?
EGU21-5216 https://doi.org/10.5194/egusphere-egu21-5216 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. How does convective self-aggregation affect precipitation extremes? Nicolas Da Silva1, Sara Shamekh2, Caroline Muller2, and Benjamin Fildier2 1Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom 2Laboratoire de Météorologie Dynamique (LMD)/Institut Pierre Simon Laplace (IPSL), École Normale Supérieure, Paris Sciences & Lettres (PSL) Research University, Sorbonne Université, École Polytechnique, CNRS, Paris, France Convective organisation has been associated with extreme precipitation in the tropics. Here we investigate the impact of convective self-aggregation on extreme rainfall rates. We find that convective self-aggregation significantly increases precipitation extremes, for 3-hourly accumulations but also for instantaneous rates (+ 30 %). We show that this latter enhanced instantaneous precipitation is mainly due to the local increase in relative humidity which drives larger accretion efficiency and lower re-evaporation and thus a higher precipitation efficiency. An in-depth analysis based on an adapted scaling of precipitation extremes, reveals that the dynamic contribution decreases (- 25 %) while the thermodynamic is slightly enhanced (+ 5 %) with convective aggregation, leading to lower condensation rates (- 20 %). When the atmosphere is more organized into a moist convecting region, and a dry convection-free region, deep convective updrafts are surrounded by a warmer environment which reduces convective instability and thus the dynamic contribution. The moister boundary-layer explains the positive thermodynamic contribution. The microphysic contribution is increased by + 50 % with aggregation. The latter is partly due to reduced evaporation of rain falling through a moister near-cloud environment (+ 30 %), but also to the associated larger accretion efficiency (+ 20 %). -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
American Meteorological Society Revised Manuscript Click Here to Download Manuscript (Non-Latex): JAMC-D-14-0252 Revision3.Docx
AMERICAN METEOROLOGICAL SOCIETY Journal of Applied Meteorology and Climatology EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version. The DOI for this manuscript is doi: 10.1175/JAMC-D-14-0252.1 The final published version of this manuscript will replace the preliminary version at the above DOI once it is available. If you would like to cite this EOR in a separate work, please use the following full citation: Wang, Y., and B. Geerts, 2015: Vertical-plane dual-Doppler radar observations of cumulus toroidal circulations. J. Appl. Meteor. Climatol. doi:10.1175/JAMC-D-14- 0252.1, in press. © 2015 American Meteorological Society Revised manuscript Click here to download Manuscript (non-LaTeX): JAMC-D-14-0252_revision3.docx Vertical-plane dual-Doppler radar observations of cumulus toroidal circulations Yonggang Wang1, and Bart Geerts University of Wyoming Submitted to J. Appl. Meteor. Climat. October 2014 Revised version submitted in May 2015 1 Corresponding author address: Yonggang Wang, Department of Atmospheric Science, University of Wyoming, Laramie WY 82071, USA; email: [email protected] 1 Profiling dual-Doppler radar observations of cumulus toroidal circulations 2 3 Abstract 4 5 6 High-resolution vertical-plane dual-Doppler velocity data, collected by an airborne profiling 7 cloud radar in transects across non-precipitating orographic cumulus clouds, are used to examine 8 vortical circulations near cloud top. -
The Art and Science of Forecasting Morning Temperature Inversions by Anthony J
Air Quality Forecasting Excl usive Con tent The Art and Science of Forecasting Morning Temperature Inversions by Anthony J. Sadar Anthony J. Sadar is a Certified Consulting Meteorologist and Air Pollution Administrator with the Allegheny County Health Department, Air Quality Program in Pittsburgh, PA. E-mail: [email protected]. The author provides an overview of the key resources and variables used to produce morning surface air inversion forecasts in Pittsburgh, PA. Although the focus is southwestern Pennsylvania, the forecasting approach can be applied to similar locations across the globe. Air quality in southwestern Pennsylvania, as in most other areas of the Accurate forecasting of the onset of an inversion would benefit areas world, is very much influenced by surface-based temperature inver - prone to strong and/or persistent inversions. Advanced notice of im - sions. An atmospheric temperature inversion occurs when air temper - pending stagnant air conditions would give government regulators, ature increases with increasing height. In the layer of air nearest the industry operators, and the public time to mitigate emissions, and earth’s surface—the troposphere—this situation is the inverse of the hence, pollutant concentrations, as well as reduce exposure to “normal” condition where a warm ground keeps low-lying air warmer elevated pollution levels. than air higher up. Normally then, the warm surface air can rise and the cool air aloft can descend, causing the atmosphere to mix. Detecting Inversions To collect temperature, wind, and other data with height, the National A surface-based (or ground-level) temperature inversion forms Weather Service (NWS) releases a balloon-borne measurement trans - when air close to the ground cools faster than air at a higher altitude. -
Laboratory Studies of Turbulent Mixing J.A
Laboratory Studies of Turbulent Mixing J.A. Whitehead Woods Hole Oceanographic Institution, Woods Hole, MA, USA Laboratory measurements are required to determine the rates of turbulent mixing and dissipation within flows of stratified fluid. Rates based on other methods (theory, numerical approaches, and direct ocean measurements) require models based on assumptions that are suggested, but not thoroughly verified in the laboratory. An exception to all this is recently provided by direct numerical simulations (DNS) mentioned near the end of this article. Experiments have been conducted with many different devices. Results span a wide range of gradient or bulk Richardson number and more limited ranges of Reynolds number and Schmidt number, which are the three most relevant dimensionless numbers. Both layered and continuously stratified flows have been investigated, and velocity profiles include smooth ones, jets, and clusters of eddies from stirrers or grids. The dependence of dissipation through almost all ranges of Richardson number is extensively documented. The buoyancy flux ratio is the turbulent kinetic energy loss from raising the potential energy of the strata to loss of kinetic energy by viscous dissipation. It rises from zero at small Richardson number to values of about 0.1 at Richardson number equal to 1, and then falls off for greater values. At Richardson number greater than 1, a wide range of power laws spanning the range from −0.5 to −1.5 are found to fit data for different experiments. Considerable layering is found at larger values, which causes flux clustering and may explain both the relatively large scatter in the data as well as the wide range of proposed power laws. -
Use Style: Paper Title
Environmental Conditions Producing Thunderstorms with Anomalous Vertical Polarity of Charge Structure Donald R. MacGorman Alexander J. Eddy NOAA/Nat’l Severe Storms Laboratory & Cooperative Cooperative Institute for Mesoscale Meteorological Institute for Mesoscale Meteorological Studies Studies Affiliation/ Univ. of Oklahoma and NOAA/OAR Norman, Oklahoma, USA Norman, Oklahoma, USA [email protected] Earle Williams Cameron R. Homeyer Massachusetts Insitute of Technology School of Meteorology, Univ. of Oklhaoma Cambridge, Massachusetts, USA Norman, Oklahoma, USA Abstract—+CG flashes typically comprise an unusually large Tessendorf et al. 2007, Weiss et al. 2008, Fleenor et al. 2009, fraction of CG activity in thunderstorms with anomalous vertical Emersic et al. 2011; DiGangi et al. 2016). Furthermore, charge structure. We analyzed more than a decade of NLDN previous studies have suggested that CG activity tends to be data on a 15 km x 15 km x 15 min grid spanning the contiguous delayed tens of minutes longer in these anomalous storms than United States, to identify storm cells in which +CG flashes in most storms elsewhere (MacGorman et al. 2011). constituted a large fraction of CG activity, as a proxy for thunderstorms with anomalous vertical charge structure, and For this study, we analyzed more than a decade of CG data storm cells with very low percentages of +CG lightning, as a from the National Lightning Detection Network throughout the proxy for thunderstorms with normal-polarity distributions. In contiguous United States to identify storm cells in which +CG each of seven regions, we used North American Regional flashes constituted a large fraction of CG activity, as a proxy Reanalysis data to compare the environments of anomalous for storms with anomalous vertical charge structure. -
Comparison Between Observed Convective Cloud-Base Heights and Lifting Condensation Level for Two Different Lifted Parcels
AUGUST 2002 NOTES AND CORRESPONDENCE 885 Comparison between Observed Convective Cloud-Base Heights and Lifting Condensation Level for Two Different Lifted Parcels JEFFREY P. C RAVEN AND RYAN E. JEWELL NOAA/NWS/Storm Prediction Center, Norman, Oklahoma HAROLD E. BROOKS NOAA/National Severe Storms Laboratory, Norman, Oklahoma 6 January 2002 and 16 April 2002 ABSTRACT Approximately 400 Automated Surface Observing System (ASOS) observations of convective cloud-base heights at 2300 UTC were collected from April through August of 2001. These observations were compared with lifting condensation level (LCL) heights above ground level determined by 0000 UTC rawinsonde soundings from collocated upper-air sites. The LCL heights were calculated using both surface-based parcels (SBLCL) and mean-layer parcels (MLLCLÐusing mean temperature and dewpoint in lowest 100 hPa). The results show that the mean error for the MLLCL heights was substantially less than for SBLCL heights, with SBLCL heights consistently lower than observed cloud bases. These ®ndings suggest that the mean-layer parcel is likely more representative of the actual parcel associated with convective cloud development, which has implications for calculations of thermodynamic parameters such as convective available potential energy (CAPE) and convective inhibition. In addition, the median value of surface-based CAPE (SBCAPE) was more than 2 times that of the mean-layer CAPE (MLCAPE). Thus, caution is advised when considering surface-based thermodynamic indices, despite the assumed presence of a well-mixed afternoon boundary layer. 1. Introduction dry-adiabatic temperature pro®le (constant potential The lifting condensation level (LCL) has long been temperature in the mixed layer) and a moisture pro®le used to estimate boundary layer cloud heights (e.g., described by a constant mixing ratio. -
Boundary Layer Verification
Boundary Layer Verification ECMWF training course April 2015 Maike Ahlgrimm Aim of this lecture • To give an overview over strategies for boundary layer evaluation • By the end of this session you should be able to: – Identify data sources and products suitable for BL verification – Recognize the strengths and limitations of the verification strategies discussed – Choose a suitable verification method to investigate model errors in boundary layer height, transport and cloudiness. smog over NYC Overview • General strategy for process-oriented model evaluation • What does the BL parameterization do? • Broad categories of BL parameterizations • Which aspects of the BL can we evaluate? – What does each aspect tell us about the BL? • What observations are available – What are the observations’ advantages and limitations? • Examples – Clear convective BL – Cloud topped convective BL – Stable BL Basic strategy for model evaluation and improvement: Observations Identify discrepancy Model Output Figure out source of model error Improve parameterization When and where does error occur? Which parameterization(s) is/are involved? What does the BL parameterization do? Attempts to integrate Turbulence transports effects of small scale temperature, moisture and turbulent motion on momentum (+tracers). prognostic variables at grid resolution. Stull 1988 Ultimate goal: good model forecast and realistic BL Broad categories of BL parameterizations Unified BL schemes Specialized BL scheme •Attempt to integrate BL (and •One parameterization for each shallow cloud) effects in one discrete BL type scheme to allow seamless transition •Simplifies parameterization for •Often statistical schemes (i.e. each type, parameterization for making explicit assumptions about each type ideally suited PDFs of modelled variables) using •Limitation: must identify BL type moist-conserved variables reliably, is noisy (lots of if •Limitation: May not work well for statements) mixed-phase or ice •Example: Met-Office (Lock et al. -
On the Computation of Planetary Boundary-Layer Height Using the Bulk Richardson Number Method
Geosci. Model Dev., 7, 2599–2611, 2014 www.geosci-model-dev.net/7/2599/2014/ doi:10.5194/gmd-7-2599-2014 © Author(s) 2014. CC Attribution 3.0 License. On the computation of planetary boundary-layer height using the bulk Richardson number method Y. Zhang1, Z. Gao2, D. Li3, Y. Li1, N. Zhang4, X. Zhao1, and J. Chen1,5 1International Center for Ecology, Meteorology & Environment, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China 2State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 3Program of Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08540, USA 4School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China 5Department of Geography, Michigan State University, East Lansing, MI 48824, USA Correspondence to: Z. Gao ([email protected]) Received: 15 March 2014 – Published in Geosci. Model Dev. Discuss.: 24 June 2014 Revised: 12 September 2014 – Accepted: 22 September 2014 – Published: 10 November 2014 Abstract. Experimental data from four field campaigns are 1 Introduction used to explore the variability of the bulk Richardson num- ber of the entire planetary boundary layer (PBL), Ribc, which The planetary boundary layer (PBL), or the atmospheric is a key parameter for calculating the PBL height (PBLH) boundary layer, is the lowest part of the atmosphere that is in numerical weather and climate models with the bulk directly influenced by earth’s surface and has significant im- Richardson number method. First, the PBLHs of three differ- pacts on weather, climate, and the hydrologic cycle (Stull, ent thermally stratified boundary layers (i.e., strongly stable 1988; Garratt, 1992; Seidel et al., 2010). -
Downloaded 09/29/21 11:17 PM UTC 4144 MONTHLY WEATHER REVIEW VOLUME 128 Ferentiate Among Our Concerns About the Application of TABLE 1
DECEMBER 2000 NOTES AND CORRESPONDENCE 4143 The Intricacies of Instabilities DAVID M. SCHULTZ NOAA/National Severe Storms Laboratory, Norman, Oklahoma PHILIP N. SCHUMACHER NOAA/National Weather Service, Sioux Falls, South Dakota CHARLES A. DOSWELL III NOAA/National Severe Storms Laboratory, Norman, Oklahoma 19 April 2000 and 30 May 2000 ABSTRACT In response to Sherwood's comments and in an attempt to restore proper usage of terminology associated with moist instability, the early history of moist instability is reviewed. This review shows that many of Sherwood's concerns about the terminology were understood at the time of their origination. De®nitions of conditional instability include both the lapse-rate de®nition (i.e., the environmental lapse rate lies between the dry- and the moist-adiabatic lapse rates) and the available-energy de®nition (i.e., a parcel possesses positive buoyant energy; also called latent instability), neither of which can be considered an instability in the classic sense. Furthermore, the lapse-rate de®nition is really a statement of uncertainty about instability. The uncertainty can be resolved by including the effects of moisture through a consideration of the available-energy de®nition (i.e., convective available potential energy) or potential instability. It is shown that such misunderstandings about conditional instability were likely due to the simpli®cations resulting from the substitution of lapse rates for buoyancy in the vertical acceleration equation. Despite these valid concerns about the value of the lapse-rate de®nition of conditional instability, consideration of the lapse rate and moisture separately can be useful in some contexts (e.g., the ingredients-based methodology for forecasting deep, moist convection).