Bioactive and Protective Polyphenolics from Roots and Stumps of Conifer Trees (Norway Spruce and Scots Pine)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Utilizing UVPD Fragmentation for Plant Molecules: Phenylpropanoids
Utilizing UVPD Fragmentation for Plant Molecules: Phenylpropanoids Romain Huguet1, Tim Stratton1, Seema Sharma1, Christopher Mullen1, Jesse Canterbury1, and Vlad Zabrouskov1 1Thermo Fisher Scientific, San Jose, California, USA RESULTS A significant difference between the fragmentation approaches arises from the means in which UVPD Laser In addition to early observation of typically higher energy fragmentation channels in the UVPD, an ABSTRACT they initiate fragmentation. In HCD, energy is imparted by the initial injection of the ions into the increase in fragment ions arising from ionization of the aromatic rings or the conjugated double For this work, we used a Nd:YAG (neodymium doped yttrium aluminum garnet) laser. This is an collision cell and collisions with a relatively static gas. A greater voltage offset gives rise to more Purpose: Investigate the potential use of UVPD to provide unique and potentially diagnostic Compound Structure and UV Absorption bond chalconoids was observed (Figure 6). While ionization was largely the result of the ketone or optically pumped laser that typically emits in the infrared range (>1000nm). When operated in a energetic collisions. The energy is internally distributed with bonds breaking to form fragment ions fragmentation information for structure determination of small molecules, specifically alcohol functions present on the compounds, specific absorption of photons generated unique pulsed Q-switching mode, where the laser energy is released in a pulse when reaching a threshold, which may also undergo subsequent fragmentation events generating several generations of phenylpropanoids and chalconoids. fragmentation. Several of these fragment ions were not observed in HCD at any energy level frequency doubling of the pulses can be used to obtain shorter wavelengths. -
Spruce Bark Extract As a Sun Protection Agent in Sunscreens
Mengmeng Sui Spruce bark extract as a Sun protection agent in sunscreens School of Chemical Engineering Master’s Program in Chemical, Biochemical and Materials Engineering Major in Chemical Engineering Master’s thesis for the degree of Master of Science in Technology Submitted for inspection, Espoo 21.07.2018 Thesis supervisor: Prof. Tapani Vuorinen Thesis advisors: M.Sc. (Tech.) Jinze Dou Ph.D. Kavindra Kesari AALTO UNIVERSITY SCHOLLO OF CHEMICAL ENGINEERING ABSTRACT Author: Mengmeng Sui Title: Spruce bark extract as a sun protection agent in sunscreens Date: 21.07. 2018 Language: English Number of pages: 48+7 Master’s programme in Chemical, Biochemical and Materials Engineering Major: Chemical and Process Engineering Supervisor: Prof: Tapani Vuorinen Advisors: M.Sc. (Tech.) Jinze Dou, Ph.D. Kavindra Kesari This study aimed to clarify the feasibility of utilizing spruce inner bark extract as a sun protection agent in sunscreens. Ultrasound-assisted extraction with 60 v-% ethanol was applied to isolate the extract in 25-30 % yield, that was almost independent of the temperature (45-75oC) and time (5-60 min) of the treatment. However, the yield of stilbene glucosides, measured by UV absorption spectroscopy, was highest after ca. 20 min extraction. Nuclear magnetic resonance spectroscopy of the extract showed that it consisted mainly of three stilbene glucosides, astringin, isorhapontin and polydatin (piceid). The maximum overall yield of the stilbene glucosides was > 20 %. Extraction with water gave a much lower yield of the stilbene glucosides. Sunscreens composed of a mixture of vegetable oils, surfactants (fatty acids), glycerin, water and the bark extract were prepared with the low-energy emulsification method. -
Fflc^Cj^^Lljp^ O Sources and Chemistry of Resveratrol
fflc^cj^^lljp^ O Sources and Chemistry of Resveratrol Navindra P. Seeram University of California, Los Angeles Vishal V. Kulkarni and Subhash Padhye University of Pune, India CONTENTS Introduction 17 Sources of Resveratrol 18 Structure of Resveratrol 22 Chemical Analyses of Resveratrol 23 Synthesis of Resveratrol 24 Theoretical and SAR Studies of Resveratrol 25 Conclusion 26 References 26 INTRODUCTION Stilbenoids are phenol-based plant metabolites widely represented in nature and implicated with human health benefits against problems such as cancer, inflammation, neurodegenerative disease, and heart disease. Among stilbenes, the phytoalexin resveratrol (3,4',5-trihydroxystilbene; Figure 2.1) has attracted immense attention from biologists and chemists due to its numerous biological properties. Resveratrol is a pivotal molecule in plant biology and plays an important role as the parent molecule of oligo mers known as the viniferins [1]. It is also found in nature as closely related analogs, derivatives, and conjugates (Table 2.1) [1-80]. In addition, the inherent structural simplicity of the resveratrol molecule allows for the rational design of new chemotherapeutic agents, and hence a number of its synthetic adducts, analogs, derivatives, and conjugates have been reported (Table 2.1) [1-80]. 17 18 Resveratrol in Health and Disease Trans-resveratrol (frans-3,4',5-trihydroxystilbene) C/s-resveratrol (c/s-3,4',5-trihydroxystilbene) FIGURE 2.1 Chemical structures of trans- and r/.v-resveratrol (3.4'. .5-trihydrox- vstilbene). Numerous efforts have been directed to studies of structure-activity relationships (SARs) of resveratrol and its analogs with the goal of increasing and enhancing their //; V/IY; biological potency and bioavailability. -
In Vitro Cytotoxic Activity of Brazilian Middle West Plant Extracts
Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy 21(3): 456-464, May./Jun. 2011 In vitro cytotoxic activity of Brazilian Middle West plant extracts Talal Suleiman Mahmoud,*,1 Maria Rita Marques,2 Cláudia do Ó Pessoa,3 Leticia V. C. Lotufo,3 Hemerson I. F. Magalhães,3 Manoel O. de Moraes,3 Dênis P. de Lima,4 Aristeu G. Tininis,5 José Eduardo de Oliveira1 Article 1Instituto de Química, Universidade Estadual Paulista, Brazil, 2Laboratório de Bioquímica Vegetal, Fundação Universidade Federal do Mato Grosso do Sul, Brazil, 3 Received 15 Apr 2010 Laboratório de Oncologia Experimental, Universidade Federal do Ceará, Brazil, Accepted 14 Nov 2010 4Departamento de Química-SINTMOLB-LP4, Fundação Universidade Federal do Available online 15 Apr 2011 Mato Grosso do Sul, Brazil, 5Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus de Sertãozinho, Brazil. Abstract: Cytotoxic activity of eight plant extracts, native from the Mid- Keywords: West of Brazil comprising Cerrado, Pantanal and semideciduous forest, was Brazilian Middle-west plants, evaluated for MDA-MB-435, SF-295, and HCT-8 cancer cell strains. A single cytotoxicity 100 µg.mL-1 dose of each extract was employed with 72 h of incubation for all cancer cell lines tests. Doxorubicin (1 µg.mL-1) was used as the positive control and the MTT method was used to detect the activity. Cytotoxicity of distinct polarities was observed in thirty extracts (46%), from different parts of the following species: Tabebuia heptaphylla (Vell.) Toledo, Bignoniaceae, Tapirira guianensis Aubl., Anacardiaceae, Myracrodruon urundeuva Allemão, Anacardiaceae, Schinus terebinthifolius Raddi, Anacardiaceae, Gomphrena elegans Mart., Amaranthaceae, Attalea phalerata Mart. -
Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark
molecules Article Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark Nellie Francezon 1,2, Naamwin-So-Bâwfu Romaric Meda 1,2 and Tatjana Stevanovic 1,2,* 1 Renewable Materials Research Centre, Department of Wood and Forest Sciences, Université Laval, Québec, QC G1V 0A6, Canada; [email protected] (N.F.); [email protected] (N.-S.-B.R.M.) 2 Institute of Nutrition and Functional Food (INAF), Université Laval, Quebec, QC G1V 0A6, Canada * Correspondence: [email protected]; Tel.: +1-418-656-2131 Received: 30 October 2017; Accepted: 30 November 2017; Published: 1 December 2017 Abstract: Reported for its antioxidant, anti-inflammatory and non-toxicity properties, the hot water extract of Picea mariana bark was demonstrated to contain highly valuable bioactive polyphenols. In order to improve the recovery of these molecules, an optimization of the extraction was performed using water. Several extraction parameters were tested and extracts obtained analyzed both in terms of relative amounts of different phytochemical families and of individual molecules concentrations. As a result, low temperature (80 ◦C) and low ratio of bark/water (50 mg/mL) were determined to be the best parameters for an efficient polyphenol extraction and that especially for low molecular mass polyphenols. These were identified as stilbene monomers and derivatives, mainly stilbene glucoside isorhapontin (up to 12.0% of the dry extract), astringin (up to 4.6%), resveratrol (up to 0.3%), isorhapontigenin (up to 3.7%) and resveratrol glucoside piceid (up to 3.1%) which is here reported for the first time for Picea mariana. New stilbene derivatives, piceasides O and P were also characterized herein as new isorhapontin dimers. -
Stilbenoids - Astringin and Astringinin of Saperavi Grape Variety (Vitis Vinifera L.) and Wine
Plant Archives Vol. 20 Supplement 1, 2020 pp. 2929-2934 e-ISSN:2581-6063 (online), ISSN:0972-5210 STILBENOIDS - ASTRINGIN AND ASTRINGININ OF SAPERAVI GRAPE VARIETY (VITIS VINIFERA L.) AND WINE M. Bezhuashvili* and M. Surguladze Viticulture and Oenology Institute, Georgian Agrarian University, Tbilisi 0159, Kakha Bendukidze University Campus, David Aghmashenebeli Alley 240, Georgia. Abstract It was identified and determined the stilbenoids – trans-astringinin (piceatannol) and its glucoside trans- astringin in the Saperavi grape variety and dry wine. The study shows that the grape juice is reach with trans-astringin and from the solid parts of grapes (skins, seeds and stems) - grape skin. Trans-astringin and trans-astringinin found in the Saperavi grapes and wine approved their biological activity: they possess the antiradical activity manifested to inhibit the 2, 2-diphenyl-picryl- hydrazyl. From the studied stilbenoids -stilbene tetramers were the most active. Trans-astringin and other stilbenoids do not inhibit the activity of lactobacteria during the process of malolactic fermentation in Saperavi wine. The identification of trans- astringin and trans-astringinin is a novelty for the stilbene profile of Saperavi grapes and wine and important data for substantiating the functional (therapeutic-preventive) purpose of the Saperavi wine. Key words: stilbenoids; grape; wine Introduction Labanda et al., 2004; Guebailia et al., 2006; Phenolic substances of the red varieties grapes and Baderschneider et al., 2000; He et al., 2009; Nougler et the wines made of them are presented with the flavonoids al., 2007). The concentration of stilbenoids in wines (anthocyans, procyanidins – oligomers and polymers, depends on many factors: varietal features of grapes, a flavonols, flavanols, etc.) and nonflavonoids (stilbenoids, place of vine propagation – climatic conditions, vineyard phenolic aldehydes, phenolic acids, etc.) ( Valuiko et al., location, wine production process, etc. -
Wine and Grape Polyphenols — a Chemical Perspective
Wine and grape polyphenols — A chemical perspective Jorge Garrido , Fernanda Borges abstract Phenolic compounds constitute a diverse group of secondary metabolites which are present in both grapes and wine. The phenolic content and composition of grape processed products (wine) are greatly influenced by the technological practice to which grapes are exposed. During the handling and maturation of the grapes several chemical changes may occur with the appearance of new compounds and/or disappearance of others, and con- sequent modification of the characteristic ratios of the total phenolic content as well as of their qualitative and quantitative profile. The non-volatile phenolic qualitative composition of grapes and wines, the biosynthetic relationships between these compounds, and the most relevant chemical changes occurring during processing and storage will be highlighted in this review. 1. Introduction Non-volatile phenolic compounds and derivatives are intrinsic com-ponents of grapes and related products, particularly wine. They constitute a heterogeneous family of chemical compounds with several compo-nents: phenolic acids, flavonoids, tannins, stilbenes, coumarins, lignans and phenylethanol analogs (Linskens & Jackson, 1988; Scalbert, 1993). Phenolic compounds play an important role on the sensorial characteris-tics of both grapes and wine because they are responsible for some of organoleptic properties: aroma, color, flavor, bitterness and astringency (Linskens & Jackson, 1988; Scalbert, 1993). The knowledge of the relationship between the quality of a particu-lar wine and its phenolic composition is, at present, one of the major challenges in Enology research. Anthocyanin fingerprints of varietal wines, for instance, have been proposed as an analytical tool for authen-ticity certification (Kennedy, 2008; Kontoudakis et al., 2011). -
Oxyresveratrol의 기원, 생합성, 생물학적 활성 및 약물동력학
KOREAN J. FOOD SCI. TECHNOL. Vol. 47, No. 5, pp. 545~555 (2015) http://dx.doi.org/10.9721/KJFST.2015.47.5.545 총설 ©The Korean Society of Food Science and Technology Oxyresveratrol의 기원, 생합성, 생물학적 활성 및 약물동력학 임영희·김기현 1·김정근 1,* 고려대학교 보건과학대학 바이오시스템의과학부, 1한국산업기술대학교 생명화학공학과 Source, Biosynthesis, Biological Activities and Pharmacokinetics of Oxyresveratrol 1 1, Young-Hee Lim, Ki-Hyun Kim , and Jeong-Keun Kim * School of Biosystem and Biomedical Science, Korea University 1Department of Chemical Engineering and Biotechnology, Korea Polytechnic University Abstract Oxyresveratrol (trans-2,3',4,5'-tetrahydroxystilbene) has been receiving increasing attention because of its astonishing biological activities, including antihyperlipidemic, neuroprotection, antidiabetic, anticancer, antiinflammation, immunomodulation, antiaging, and antioxidant activities. Oxyresveratrol is a stilbenoid, a type of natural phenol and a phytoalexin produced in the roots, stems, leaves, and fruits of several plants. It was first isolated from the heartwood of Artocarpus lakoocha, and has also been found in various plants, including Smilax china, Morus alba, Varatrum nigrum, Scirpus maritinus, and Maclura pomifera. Oxyresveratrol, an aglycone of mulberroside A, has been produced by microbial biotransformation or enzymatic hydrolysis of a glycosylated stilbene mulberroside A, which is one of the major compounds of the roots of M. alba. Oxyresveratrol shows less cytotoxicity, better antioxidant activity and polarity, and higher cell permeability and bioavailability than resveratrol (trans-3,5,4'-trihydroxystilbene), a well-known antioxidant, suggesting that oxyresveratrol might be a potential candidate for use in health functional food and medicine. This review focuses on the plant sources, chemical characteristics, analysis, biosynthesis, and biological activities of oxyresveratrol as well as describes the perspectives on further exploration of oxyresveratrol. -
WO 2011/123236 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 6 October 2011 (06.10.2011) WO 2011/123236 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A01N 43/04 (2006.01) A61K 31/70 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) Number: International Application CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/028305 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 14 March 201 1 (14.03.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/320,1 36 1 April 2010 (01 .04.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): BIO- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, SPHERICS, INC. [US/US]; 6430 Rockledge Drive, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, #503, Westmoreland Building, Bethesda, Maryland TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 2081 7 (US). -
Literature Review Zero Alcohol Red Wine
A 1876 LI A A U R S T T S R U A L A I A FLAVOURS, FRAGRANCES AND INGREDIENTS 6 1 7 8 7 8 1 6 A I B A L U A S R T B Essential Oils, Botanical Extracts, Cold Pressed Oils, BOTANICAL Infused Oils, Powders, Flours, Fermentations INNOVATIONS LITERATURE REVIEW HEALTH BENEFITS RED WINE ZERO ALCOHOL RED WINE RED WINE EXTRACT POWDER www.botanicalinnovations.com.au EXECUTIVE SUMMARY The term FRENCH PARADOX is used to describe the relatively low incidence of cardiovascular disease in the French population despite the high consumption of red wine. Over the past 27 years numerous clinical studies have found a linkages with the ANTIOXIDANTS in particular, the POLYPHENOLS, RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS in red wine and reduced incidences of cardiovascular disease. However, the alcohol in wine limits the benefits of wine. Studies have shown that zero alcohol red wine and red wine extract which contain the same ANTIOXIDANTS including POLYPHENOLS, RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS has the same is not more positive health benefits. The following literature review details some of the most recent positive health benefits derived from the ANTIOXIDANTS found in red wine POLYPHENOLS: RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS. The positive polyphenolic antioxidant effects of the polyphenols in red wine include: • Cardio Vascular Health Benefits • Increase antioxidants in the cardiovascular system • Assisting blood glucose control • Skin health • Bone Health • Memory • Liking blood and brain health • Benefits -
Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development
molecules Article Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development Ahmed Mohammed AlJabr 1,†, Abid Hussain 1,†,*, Muhammad Rizwan-ul-Haq 1 and Hassan Al-Ayedh 2 1 Laboratory of Bio-Control and Molecular Biology, Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Hofuf 31982, Al-Ahsa, Saudi Arabia; [email protected] (A.M.A.); [email protected] (M.R.-H.) 2 Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia; [email protected] * Correspondence: [email protected]; Tel.: +966-135-895-851 † These authors contributed equally to this work. Academic Editor: Marcello Iriti Received: 27 December 2016; Accepted: 17 January 2017; Published: 20 January 2017 Abstract: This study aimed to explore the larvicidal and growth-inhibiting activities, and underlying detoxification mechanism of red palm weevil against phenylpropanoids, an important class of plant secondary metabolites. Toxicity of α-asarone, eugenol, isoeugenol, methyl eugenol, methyl isoeugenol, coumarin, coumarin 6, coniferyl aldehyde, diniconazole, ethyl cinnamate, and rosmarinic acid was evaluated by incorporation into the artificial diet. All of the phenylpropanoids exhibited dose- and time-dependent insecticidal activity. Among all the tested phenylpropanoids, coumarin exhibited the highest toxicity by revealing the least LD50 value (0.672 g/L). In addition, the most toxic compound (coumarin) observed in the current study, deteriorated the growth resulting tremendous reduction (78.39%) in efficacy of conversion of digested food (ECD), and (ECI) efficacy of conversion of ingested food (70.04%) of tenth-instar red palm weevil larvae. -
Molecular Cloning and Functional Characterization of an O-Methyltransferase Catalyzing 4 -O-Methylation of Resveratrol in Acorus
Journal of Bioscience and Bioengineering VOL. 127 No. 5, 539e543, 2019 www.elsevier.com/locate/jbiosc Molecular cloning and functional characterization of an O-methyltransferase catalyzing 40-O-methylation of resveratrol in Acorus calamus Takao Koeduka,1,* Miki Hatada,1 Hideyuki Suzuki,2 Shiro Suzuki,3 and Kenji Matsui1 Graduate School of Sciences and Technology for Innovation (Agriculture), Department of Biological Chemistry, Yamaguchi University, Yamaguchi 753-8515, Japan,1 Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan,2 and Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan3 Received 17 July 2018; accepted 13 October 2018 Available online 22 November 2018 Resveratrol and its methyl ethers, which belong to a class of natural polyphenol stilbenes, play important roles as biologically active compounds in plant defense as well as in human health. Although the biosynthetic pathway of resveratrol has been fully elucidated, the characterization of resveratrol-specific O-methyltransferases remains elusive. In this study, we used RNA-seq analysis to identify a putative aromatic O-methyltransferase gene, AcOMT1,inAcorus calamus. Recombinant AcOMT1 expressed in Escherichia coli showed high 40-O-methylation activity toward resveratrol and its derivative, isorhapontigenin. We purified a reaction product enzymatically formed from resveratrol by AcOMT1 and confirmed it as 40-O-methylresveratrol (deoxyrhapontigenin). Resveratrol and isorhapontigenin were the most preferred substrates with apparent Km values of 1.8 mM and 4.2 mM, respectively. Recombinant AcOMT1 exhibited reduced activity toward other resveratrol derivatives, piceatannol, oxyresveratrol, and pinostilbene. In contrast, re- combinant AcOMT1 exhibited no activity toward pterostilbene or pinosylvin. These results indicate that AcOMT1 showed high 40-O-methylation activity toward stilbenes with non-methylated phloroglucinol rings.