Spruce Bark Extract As a Sun Protection Agent in Sunscreens

Total Page:16

File Type:pdf, Size:1020Kb

Spruce Bark Extract As a Sun Protection Agent in Sunscreens Mengmeng Sui Spruce bark extract as a Sun protection agent in sunscreens School of Chemical Engineering Master’s Program in Chemical, Biochemical and Materials Engineering Major in Chemical Engineering Master’s thesis for the degree of Master of Science in Technology Submitted for inspection, Espoo 21.07.2018 Thesis supervisor: Prof. Tapani Vuorinen Thesis advisors: M.Sc. (Tech.) Jinze Dou Ph.D. Kavindra Kesari AALTO UNIVERSITY SCHOLLO OF CHEMICAL ENGINEERING ABSTRACT Author: Mengmeng Sui Title: Spruce bark extract as a sun protection agent in sunscreens Date: 21.07. 2018 Language: English Number of pages: 48+7 Master’s programme in Chemical, Biochemical and Materials Engineering Major: Chemical and Process Engineering Supervisor: Prof: Tapani Vuorinen Advisors: M.Sc. (Tech.) Jinze Dou, Ph.D. Kavindra Kesari This study aimed to clarify the feasibility of utilizing spruce inner bark extract as a sun protection agent in sunscreens. Ultrasound-assisted extraction with 60 v-% ethanol was applied to isolate the extract in 25-30 % yield, that was almost independent of the temperature (45-75oC) and time (5-60 min) of the treatment. However, the yield of stilbene glucosides, measured by UV absorption spectroscopy, was highest after ca. 20 min extraction. Nuclear magnetic resonance spectroscopy of the extract showed that it consisted mainly of three stilbene glucosides, astringin, isorhapontin and polydatin (piceid). The maximum overall yield of the stilbene glucosides was > 20 %. Extraction with water gave a much lower yield of the stilbene glucosides. Sunscreens composed of a mixture of vegetable oils, surfactants (fatty acids), glycerin, water and the bark extract were prepared with the low-energy emulsification method. The performance of the sunscreens was assessed by spreading them on a photosensitive paper and observing the change in color during exposure to light. Commercial sunscreens with known SPF values (15-50) were used as references. Addition of 2-5 % of the bark extract in the sunscreen provided similar protection against UV light compared to the commercial products. Use of the spruce inner bark extract as the sun protection agent in sunscreens appeared to be potentially feasible and should be studied further. Keywords: Spruce bark; Stilbenes; Ultrasound-Assisted Extraction; UV-Vis; NMR II Contents ABSTRACT .................................................................................................................................... II Contents ......................................................................................................................................... III List of Figures ................................................................................................................................. V List of Tables ................................................................................................................................. VI Symbols and abbreviations ........................................................................................................... VII Symbols ..................................................................................................................................... VII Abbreviations ............................................................................................................................ VII Preface.......................................................................................................................................... VIII 1 Introduction .................................................................................................................................. 1 2 Research objectives ...................................................................................................................... 3 3 Literature review .......................................................................................................................... 4 3.1 Spruce bark ............................................................................................................................ 4 3.1.1 Structure.......................................................................................................................... 4 3.1.2 Chemical composition .................................................................................................... 4 3.1.3 Utilization ....................................................................................................................... 5 3.2 Stilbenes ................................................................................................................................ 6 3.2.1 Structure and chemical composition............................................................................... 6 3.2.2 Seasonal and position variation ...................................................................................... 7 3.2.3 Properties ........................................................................................................................ 7 3.2.3.1 Storage .................................................................................................................... 7 3.2.3.2 Solubility ................................................................................................................. 8 3.2.3.3 Stability ................................................................................................................... 8 3.2.3.4 Anti – UV ability .................................................................................................... 9 3.3 Extraction and isolation methods .......................................................................................... 9 3.4 Utilization in sunscreens and health care ............................................................................ 12 4 Materials and methods ............................................................................................................... 13 4.1 Materials .............................................................................................................................. 13 4.1.1 Source of raw materials ................................................................................................ 13 4.1.2 Raw material preparation .............................................................................................. 13 III 4.2 Methods ............................................................................................................................... 14 4.2.1 Ultrasound-Assisted Extraction .................................................................................... 15 4.2.2 Analytical techniques ................................................................................................... 16 4.2.2.1 UV-Vis spectroscopy ............................................................................................ 16 4.2.2.2 Nuclear Magnetic Resonance spectroscopy .......................................................... 17 4.2.2.3 Chemical composition .......................................................................................... 18 4.2.3 Sunscreen preparation ................................................................................................... 22 4.2.3.1 Raw material selection .......................................................................................... 22 4.2.3.2 Production ............................................................................................................. 23 4.2.3.3 Properties .............................................................................................................. 24 4.2.3.4 Sun protection test................................................................................................. 25 5 Results and discussion ............................................................................................................... 26 5.1 Chemical composition of inner bark ................................................................................... 26 5.2 Quantification of stilbenes by UV-Vis absorption spectroscopy ........................................ 28 5.2.1 Calibration curve .......................................................................................................... 28 5.2.2 Yield of extract and stilbenes ....................................................................................... 30 5.2.3 Stability ......................................................................................................................... 31 5.2.4 Solvent comparison ...................................................................................................... 32 5.3 Quantification by NMR spectroscopy ................................................................................. 33 5.4 Sun protection ability .......................................................................................................... 36 5.4.1 Stability ......................................................................................................................... 37 5.4.2 Cost ............................................................................................................................... 38 6 Conclusions ................................................................................................................................ 39 7 Future research topics ................................................................................................................ 39 Reference .....................................................................................................................................
Recommended publications
  • Ajantasaista Tietoa Veteraanien Erityisetuuksista 2004 Sivut (12 – 13)
    Ajantasaista tietoa veteraanien erityisetuuksista 2004 Sivut (12 – 13) N:o 1/2004 Tarkastettu levikki 77 606 Helmikuun 25. päivänä 2004 Ensimmäiset kultaiset ansioristit on luovutettu Suomen Sotaveteraaniliitto otti vuoden vaihtu- essa käyttöön uuden tavan osoittaa kiitollisuut- ta päämääriensä hyväksi tehdystä erittäin an- 38. Sotaveteraaniviikkoa vietetään siokkaasta työstä. Sen merkkinä on kultainen ansioristi. Ensimmäiset ristit ojennettiin presi- (sivu 3) dentti Mauno Koivistolle, joka on Suomen ve- Raumalla ja Tukholmassa teraaniliittojen valtuuskunnan VEVAn kunnia- puheenjohtaja, ja tasavallan presidentti Tarja Haloselle. Muista uuden kunniamerkin saajista kerrotaan sivulla 7. Helsingin pommitukset helmikuussa 1944 Liiton hallitus järjestäytyi (sivu 8) Framom främsta linjen – Etulinjan edessä – elokuvan ensi-ilta (sivu 44) Näkymä Meritullinkadulta Helsingistä 26-27 helmikuuta 1944 suurpommitusten jälkeen. (sivu 32) 2 1/04 Helmikuun 25. päivänä 2004 Helsingissä 25. helmikuuta 2004 Tulevaisuuden haasteet iten voit tänään van lähiympäristön, kuten huomauttaneet pyrkies- mahdollisuudet osallis- Ajankohtainen on liiton ja huomenna, ve- omaishoitajien kunnosta sään saamaan yhteyksiä tua työhön tosin vähitel- historian tutkimiseen ja Mteraani? Parhail- huolehtimisen. Tutkimuk- syrjään jääneisiin vete- len ehtyvät. Mutta jo teh- historiateoksen aikaan- laan uusitaan — tosin ai- sen kysymyksiin antamis- raanisisarien ja –veljien ty työ jättää pysyvät jäljet saamiseen liittyvien tehtä- kaisempaa suppeampana saan vastauksissa veteraa- koteihin.
    [Show full text]
  • Fflc^Cj^^Lljp^ O Sources and Chemistry of Resveratrol
    fflc^cj^^lljp^ O Sources and Chemistry of Resveratrol Navindra P. Seeram University of California, Los Angeles Vishal V. Kulkarni and Subhash Padhye University of Pune, India CONTENTS Introduction 17 Sources of Resveratrol 18 Structure of Resveratrol 22 Chemical Analyses of Resveratrol 23 Synthesis of Resveratrol 24 Theoretical and SAR Studies of Resveratrol 25 Conclusion 26 References 26 INTRODUCTION Stilbenoids are phenol-based plant metabolites widely represented in nature and implicated with human health benefits against problems such as cancer, inflammation, neurodegenerative disease, and heart disease. Among stilbenes, the phytoalexin resveratrol (3,4',5-trihydroxystilbene; Figure 2.1) has attracted immense attention from biologists and chemists due to its numerous biological properties. Resveratrol is a pivotal molecule in plant biology and plays an important role as the parent molecule of oligo­ mers known as the viniferins [1]. It is also found in nature as closely related analogs, derivatives, and conjugates (Table 2.1) [1-80]. In addition, the inherent structural simplicity of the resveratrol molecule allows for the rational design of new chemotherapeutic agents, and hence a number of its synthetic adducts, analogs, derivatives, and conjugates have been reported (Table 2.1) [1-80]. 17 18 Resveratrol in Health and Disease Trans-resveratrol (frans-3,4',5-trihydroxystilbene) C/s-resveratrol (c/s-3,4',5-trihydroxystilbene) FIGURE 2.1 Chemical structures of trans- and r/.v-resveratrol (3.4'. .5-trihydrox- vstilbene). Numerous efforts have been directed to studies of structure-activity relationships (SARs) of resveratrol and its analogs with the goal of increasing and enhancing their //; V/IY; biological potency and bioavailability.
    [Show full text]
  • Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark
    molecules Article Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark Nellie Francezon 1,2, Naamwin-So-Bâwfu Romaric Meda 1,2 and Tatjana Stevanovic 1,2,* 1 Renewable Materials Research Centre, Department of Wood and Forest Sciences, Université Laval, Québec, QC G1V 0A6, Canada; [email protected] (N.F.); [email protected] (N.-S.-B.R.M.) 2 Institute of Nutrition and Functional Food (INAF), Université Laval, Quebec, QC G1V 0A6, Canada * Correspondence: [email protected]; Tel.: +1-418-656-2131 Received: 30 October 2017; Accepted: 30 November 2017; Published: 1 December 2017 Abstract: Reported for its antioxidant, anti-inflammatory and non-toxicity properties, the hot water extract of Picea mariana bark was demonstrated to contain highly valuable bioactive polyphenols. In order to improve the recovery of these molecules, an optimization of the extraction was performed using water. Several extraction parameters were tested and extracts obtained analyzed both in terms of relative amounts of different phytochemical families and of individual molecules concentrations. As a result, low temperature (80 ◦C) and low ratio of bark/water (50 mg/mL) were determined to be the best parameters for an efficient polyphenol extraction and that especially for low molecular mass polyphenols. These were identified as stilbene monomers and derivatives, mainly stilbene glucoside isorhapontin (up to 12.0% of the dry extract), astringin (up to 4.6%), resveratrol (up to 0.3%), isorhapontigenin (up to 3.7%) and resveratrol glucoside piceid (up to 3.1%) which is here reported for the first time for Picea mariana. New stilbene derivatives, piceasides O and P were also characterized herein as new isorhapontin dimers.
    [Show full text]
  • Stilbenoids - Astringin and Astringinin of Saperavi Grape Variety (Vitis Vinifera L.) and Wine
    Plant Archives Vol. 20 Supplement 1, 2020 pp. 2929-2934 e-ISSN:2581-6063 (online), ISSN:0972-5210 STILBENOIDS - ASTRINGIN AND ASTRINGININ OF SAPERAVI GRAPE VARIETY (VITIS VINIFERA L.) AND WINE M. Bezhuashvili* and M. Surguladze Viticulture and Oenology Institute, Georgian Agrarian University, Tbilisi 0159, Kakha Bendukidze University Campus, David Aghmashenebeli Alley 240, Georgia. Abstract It was identified and determined the stilbenoids – trans-astringinin (piceatannol) and its glucoside trans- astringin in the Saperavi grape variety and dry wine. The study shows that the grape juice is reach with trans-astringin and from the solid parts of grapes (skins, seeds and stems) - grape skin. Trans-astringin and trans-astringinin found in the Saperavi grapes and wine approved their biological activity: they possess the antiradical activity manifested to inhibit the 2, 2-diphenyl-picryl- hydrazyl. From the studied stilbenoids -stilbene tetramers were the most active. Trans-astringin and other stilbenoids do not inhibit the activity of lactobacteria during the process of malolactic fermentation in Saperavi wine. The identification of trans- astringin and trans-astringinin is a novelty for the stilbene profile of Saperavi grapes and wine and important data for substantiating the functional (therapeutic-preventive) purpose of the Saperavi wine. Key words: stilbenoids; grape; wine Introduction Labanda et al., 2004; Guebailia et al., 2006; Phenolic substances of the red varieties grapes and Baderschneider et al., 2000; He et al., 2009; Nougler et the wines made of them are presented with the flavonoids al., 2007). The concentration of stilbenoids in wines (anthocyans, procyanidins – oligomers and polymers, depends on many factors: varietal features of grapes, a flavonols, flavanols, etc.) and nonflavonoids (stilbenoids, place of vine propagation – climatic conditions, vineyard phenolic aldehydes, phenolic acids, etc.) ( Valuiko et al., location, wine production process, etc.
    [Show full text]
  • Land Use and Planning Review 2021 Texts: City of Helsinki Urban Environment Division ([email protected])
    Land use and planning review 2021 Texts: City of Helsinki Urban Environment Division ([email protected]) Graphic design: Aste Helsinki Oy Brochures of the Urban Environment Division 2021:5 Cover image: Illustrative image of the Puhos Park planned for Itäkeskus.© Architects K2S and Playa Architects Contents New Helsinki developed in hubs ................................... 4 Participate and make a difference .................................7 Levels of planning ......................................................... 8 Current traffic projects .............................................. 16 Plans by district .........................................................20 New Helsinki developed in hubs n the future, Helsinki will become a more densely In the 2020s, the planning of construction and built city of distinctive districts, which also treas- traffic investments is focused particularly on the ures its valuable natural environments. In this former Malmi airport, Tuusulanväylä, Vihdintie, Jok- publication, we present current urban environ- eri Light Rail and Laajasalo. This has been decid- Iment planning projects and major construction pro- ed on in the city plan implementation programme, jects the City will launch in 2021. which will be updated in autumn 2021. Active zoning and housing production play a key The goal set by the City Council is that at least role in Helsinki’s recovery from the economic ef- 7,000 homes will be built in Helsinki every year. fects of the coronavirus pandemic. As part of the re- From 2023 onwards, this number will rise to at least covery, the city has identified and implemented more 8,000 homes. Housing production must be sustain- agile use of public space, for example for café and able and diverse and preserve nature and green ar- restaurant operations, and experiments will be con- eas as well as possible.
    [Show full text]
  • Wine and Grape Polyphenols — a Chemical Perspective
    Wine and grape polyphenols — A chemical perspective Jorge Garrido , Fernanda Borges abstract Phenolic compounds constitute a diverse group of secondary metabolites which are present in both grapes and wine. The phenolic content and composition of grape processed products (wine) are greatly influenced by the technological practice to which grapes are exposed. During the handling and maturation of the grapes several chemical changes may occur with the appearance of new compounds and/or disappearance of others, and con- sequent modification of the characteristic ratios of the total phenolic content as well as of their qualitative and quantitative profile. The non-volatile phenolic qualitative composition of grapes and wines, the biosynthetic relationships between these compounds, and the most relevant chemical changes occurring during processing and storage will be highlighted in this review. 1. Introduction Non-volatile phenolic compounds and derivatives are intrinsic com-ponents of grapes and related products, particularly wine. They constitute a heterogeneous family of chemical compounds with several compo-nents: phenolic acids, flavonoids, tannins, stilbenes, coumarins, lignans and phenylethanol analogs (Linskens & Jackson, 1988; Scalbert, 1993). Phenolic compounds play an important role on the sensorial characteris-tics of both grapes and wine because they are responsible for some of organoleptic properties: aroma, color, flavor, bitterness and astringency (Linskens & Jackson, 1988; Scalbert, 1993). The knowledge of the relationship between the quality of a particu-lar wine and its phenolic composition is, at present, one of the major challenges in Enology research. Anthocyanin fingerprints of varietal wines, for instance, have been proposed as an analytical tool for authen-ticity certification (Kennedy, 2008; Kontoudakis et al., 2011).
    [Show full text]
  • Oxyresveratrol의 기원, 생합성, 생물학적 활성 및 약물동력학
    KOREAN J. FOOD SCI. TECHNOL. Vol. 47, No. 5, pp. 545~555 (2015) http://dx.doi.org/10.9721/KJFST.2015.47.5.545 총설 ©The Korean Society of Food Science and Technology Oxyresveratrol의 기원, 생합성, 생물학적 활성 및 약물동력학 임영희·김기현 1·김정근 1,* 고려대학교 보건과학대학 바이오시스템의과학부, 1한국산업기술대학교 생명화학공학과 Source, Biosynthesis, Biological Activities and Pharmacokinetics of Oxyresveratrol 1 1, Young-Hee Lim, Ki-Hyun Kim , and Jeong-Keun Kim * School of Biosystem and Biomedical Science, Korea University 1Department of Chemical Engineering and Biotechnology, Korea Polytechnic University Abstract Oxyresveratrol (trans-2,3',4,5'-tetrahydroxystilbene) has been receiving increasing attention because of its astonishing biological activities, including antihyperlipidemic, neuroprotection, antidiabetic, anticancer, antiinflammation, immunomodulation, antiaging, and antioxidant activities. Oxyresveratrol is a stilbenoid, a type of natural phenol and a phytoalexin produced in the roots, stems, leaves, and fruits of several plants. It was first isolated from the heartwood of Artocarpus lakoocha, and has also been found in various plants, including Smilax china, Morus alba, Varatrum nigrum, Scirpus maritinus, and Maclura pomifera. Oxyresveratrol, an aglycone of mulberroside A, has been produced by microbial biotransformation or enzymatic hydrolysis of a glycosylated stilbene mulberroside A, which is one of the major compounds of the roots of M. alba. Oxyresveratrol shows less cytotoxicity, better antioxidant activity and polarity, and higher cell permeability and bioavailability than resveratrol (trans-3,5,4'-trihydroxystilbene), a well-known antioxidant, suggesting that oxyresveratrol might be a potential candidate for use in health functional food and medicine. This review focuses on the plant sources, chemical characteristics, analysis, biosynthesis, and biological activities of oxyresveratrol as well as describes the perspectives on further exploration of oxyresveratrol.
    [Show full text]
  • WO 2011/123236 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 6 October 2011 (06.10.2011) WO 2011/123236 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A01N 43/04 (2006.01) A61K 31/70 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) Number: International Application CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/028305 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 14 March 201 1 (14.03.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/320,1 36 1 April 2010 (01 .04.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): BIO- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, SPHERICS, INC. [US/US]; 6430 Rockledge Drive, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, #503, Westmoreland Building, Bethesda, Maryland TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 2081 7 (US).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0209617 A1 Lobisser Et Al
    US 20130209.617A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0209617 A1 Lobisser et al. (43) Pub. Date: Aug. 15, 2013 (54) COMPOSITIONS AND METHODS FOR USE Publication Classification IN PROMOTING PRODUCE HEALTH (51) Int. Cl. (75) Inventors: George Lobisser, Bainbridge Island, A23B 7/16 (2006.01) WA (US); Jason Alexander, Yakima, (52) U.S. Cl. WA (US); Matt Weaver, Selah, WA CPC ........................................ A23B 7/16 (2013.01) (US) USPC ........... 426/102: 426/654; 426/573; 426/601; 426/321 (73) Assignee: PACE INTERNATIONAL, LLC, Seattle, WA (US) (57) ABSTRACT (21) Appl. No.: 13/571,513 Provided herein are compositions comprising one or more of (22) Filed: Aug. 10, 2012 a stilbenoid, stilbenoid derivative, stilbene, or stilbene deriva tive and a produce coating. The resulting compositions are Related U.S. Application Data coatings which promote the health of fruit, vegetables, and/or (60) Provisional application No. 61/522,061, filed on Aug. other plant parts, and/or mitigate decay of post-harvest fruit, 10, 2011. Vegetables, and/or other plant parts. Patent Application Publication Aug. 15, 2013 Sheet 1 of 10 US 2013/0209.617 A1 | s N i has() 3 S s c e (9) SSouffley Patent Application Publication Aug. 15, 2013 Sheet 2 of 10 US 2013/0209.617 A1 so in a N s H N S N N. sr N re C c g o c (saulu) dae. Patent Application Publication Aug. 15, 2013 Sheet 3 of 10 US 2013/0209.617 A1 N Y & | N Y m N 8 Š 8 S.
    [Show full text]
  • Biotechnological Advances in Resveratrol Production and Its Chemical Diversity
    Review Biotechnological Advances in Resveratrol Production and its Chemical Diversity Samir Bahadur Thapa 1,†, Ramesh Prasad Pandey 1,2,†, Yong Il Park 3 and Jae Kyung Sohng 1,2,* 1 Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam 31460, Korea 2 Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Chungnam 31460, Korea 3 Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea * Correspondence: [email protected] † Contributed equally to prepare this review article. Received: 3 June 2019; Accepted: 1 July 2019; Published: 15 July 2019 Abstract The very well-known bioactive natural product, resveratrol (3,5,4′-trihydroxystilbene), is a highly studied secondary metabolite produced by several plants, particularly grapes, passion fruit, white tea, and berries. It is in high demand not only because of its wide range of biological activities against various kinds of cardiovascular and nerve-related diseases, but also as important ingredients in pharmaceuticals and nutritional supplements. Due to its very low content in plants, multi-step isolation and purification processes, and environmental and chemical hazards issues, resveratrol extraction from plants is difficult, time consuming, impracticable, and unsustainable. Therefore, microbial hosts, such as Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum, are commonly used as an alternative production source by improvising resveratrol biosynthetic genes in them. The biosynthesis genes are rewired applying combinatorial biosynthetic systems, including metabolic engineering and synthetic biology, while optimizing the various production processes. The native biosynthesis of resveratrol is not present in microbes, which are easy to manipulate genetically, so the use of microbial hosts is increasing these days.
    [Show full text]
  • This Document Has Been Downloaded from Tampub – the Institutional Repository of University of Tampere
    This document has been downloaded from Tampub – The Institutional Repository of University of Tampere Publisher's version Einarsdottir Elisabet, Koskinen Lotta LE, Dukes Emma, Kurppa Authors: Kalle (Tay), Kaukinen Katri (Tay), Mäki Markku (Tay) IL23R in the Swedish, Finnish, Hungarian and Italian populations: Name of article: association with IBD and psoriasis, and linkage to celiac disease Year of 2009 publication: Name of BMC Medical Genetics journal: Volume: 10 Number of 8 issue: Pages: 1-10 ISSN: 1471-2350 Discipline: Medical and Health sciences / Internal Medicine Language: en School/Other School of Medicine Unit: URL: http://www.biomedcentral.com/1471-2350/10/8 URN: http://urn.fi/urn:nbn:uta-3-559 DOI: http://dx.doi.org/10.1186/1471-2350-10-8 All material supplied via TamPub is protected by copyright and other intellectual property rights, and duplication or sale of all part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorized user. BMC Medical Genetics BioMed Central Research article Open Access IL23R in the Swedish, Finnish, Hungarian and Italian populations: association with IBD and psoriasis, and linkage to celiac disease Elisabet Einarsdottir1,2, Lotta LE Koskinen1,2, Emma Dukes1,2, Kati Kainu3, Sari Suomela3, Maarit Lappalainen2,4, Fabiana Ziberna5,
    [Show full text]
  • Lataa Tappara Kausijulkaisu 2020-2021 Tästä
    Kausijulkaisu 2020-2021 TAPPARA Siperiasta palasi tyytyväinen Peltola s. 14 Domi on taas kotona ja kaikki hyvin s. 18 Hakametsän huima historia s. 4 Tshekkikolmikko on Tapparassa kuin kotonaan s. 20 2 Tappara Kausijulkaisu 2020–2021 PÄÄKIRJOITUS Hakametsä – Meidän Koti vuodesta 1965 ampereen kaupungin vanhempi tapparalainen meisien hetkien voittomaalil- kossa ja Erkki Lehtosessa, tulevaisuudesta. Tässä vai- Tpäättäjät ovat vuosikym- muistaa Tapparan nousun ta- laan Tapparalle mestaruu- maalintekotaito Jukka Alku- heessa on jo selvää, että Ha- menten saatossa osanneet kaisin jääkiekon huipulle kol- den. lassa ja Timo Sudessa, voitta- kametsä säilyy rakennuksena, katsoa pitkälle tulevaisuu- mine Suomen mestaruuksi- Tapparan perinteet erityi- misen taito Pekka Marjamä- päinvastoin kuin muutamalle teen ja tehdä päätöksiä, ny- neen 1970-luvun puolen välin sesti 2000-luvulla palaut- essä ja Janne Ojasessa. Ja jääkiekkopyhätölle on käynyt kytermein sanottuna, ”isosti”. jälkeen ja SM-liigan perusta- taneen Jukka Rautakorven niin monessa nyt mainitsemat- jääkiekkoilun emämaassa Ka- Yksi tällainen päätös teh- misen ensimmäisine play offs valmennuksessa Tappara ta jäävässä muussa Tapparan nadassa. tiin aikoinaan 1960-luvulla, -otteluineen. voitti pitkän odotuksen jäl- Hakametsän ajan menestystä Tapparalaiset kiittävät voi- kun kaupunki rohkeasti otti keen mestaruuden 2003. Sa- luomassa olleessa pelaajassa. dessaan tulla muistelemaan järjestääkseen jääkiekkoilun alevi ”Kallu” Nummi- moin teki Jussi ”Jupe” Ta- Olkaa ylpeitä. Olette teh- menneitä vanhaan Kotiimme MM-kisat vuonna 1965 ja ra- Knen pääsi nostamaan Ka- pola kausilla 2016 ja 2017, neet historiaa Hakametsässä. vielä senkin jälkeen, kun siir- kennutti Hakametsään pika- nada-maljaa vihdoin kohti Ha- joista ensimmäisen Hakamet- Tappara kiittää! rymme Areena-aikaan. Mutta vauhdilla silloisessa mittakaa- kametsänkin kattoa keväällä sässä, kuten me kaikki hyvin sitä ennen, me tapparalaiset vassa eurooppalaisittainkin 1977.
    [Show full text]