New Methods of Marine Surveying.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

New Methods of Marine Surveying.Pdf New Methods of Marine Surveying Author(s): G. T. Rudé Source: Proceedings of the American Philosophical Society , Apr. 21, 1938, Vol. 79, No. 1, Symposium on the Geophysical Exploration of the Ocean Bottom Arranged by the American Geophysical Union (Apr. 21, 1938), pp. 9-25 Published by: American Philosophical Society Stable URL: https://www.jstor.org/stable/984675 JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms American Philosophical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Philosophical Society This content downloaded from 86.59.13.237 on Thu, 08 Jul 2021 13:20:35 UTC All use subject to https://about.jstor.org/terms NEW METHODS OF MARINE SURVEYING CAPTAIN G. T. RUDt Chief, Division of Hydrography and Topography U. S. Coast and Geodetic Survey It gives me pleasure to accept the invitation of your society to describe briefly the methods used for the offshore hydrographic surveys which the Coast and Geodetic Survey has been making in recent years. The officers of the Coast and Geodetic Survey rightly consider the hydrographic sur- veys conducted for making nautical charts as the routine and immediately practical work of the Bureau and regard the nautical charts themselves as paramount to the safety of life and property at sea. It is fortunate, however, that these surveys, required for a utilitarian purpose, do have scientific value in themselves in addition to the contributions which come from the development and use of scientific methods in the work, which from time to time bring unexpected additions to scientific knowledge. The areas dealt with embrace in general the continental platforms, submerged mountains, and submarine valleys. Although the regions include only a small portion of the great ocean basins, they do represent a relatively large share of the oceanographic problems. The deep ocean basins now appear to have had a similar geologic history to the surfaces of the continents above the sea. The beginning of the period of enlightenment, I believe, can be attributed to the application of sonic methods to hydrographic surveys. The development of echo sounding, for instance, has been not only a great aid to navigation, but it has in turn made it possible to survey many hundreds of square miles in less time than required to take a few scattered deep soundings by old methods in use when I joined the Survey thirty-five years ago. The other important factor is PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY, VOL. 79, NO. 1, APRIL, 1938 9 This content downloaded from 86.59.13.237 on Thu, 08 Jul 2021 13:20:35 UTC All use subject to https://about.jstor.org/terms 10 G. T. RUDE the development of radio acoustic ranging for controlling hydrographic surveys well out to sea. At sea beyond the range of visual positions which can be obtained from sextant angles on shore triangulation stations, positions of the survey ship have heretofore been subject to considerable uncertainty, this uncertainty naturally increasing with the distance beyond the limits of the shore control. Various methods were attempted and utilized for controlling hydrographic surveys out of sight of land, but none of these gave satisfactory accuracy of position until radio acoustic ranging was developed. Soundings made by wire and sinker are quite accurate as to depth when taken under good con- ditions of weather and sea, but the uncertainty of the actual offshore positions until recent years often led to erroneous deductions from the soundings. For example, the few sound- ings made in the vicinity of the Hudson Submarine Valley prior to the work of the past year (1936) indicated an S-shaped outer valley. This was due in part to the inaccuracies of position in some of the earlier soundings and also to the scarcity of soundings in the region. The work of 1936 has proved that the few deep soundings from which the erroneous inference was made were taken in an entirely different submarine valley to the northeast of the main Hudson valley. Many other examples could be cited. Echo sounding instruments now have been developed to such a degree that practically a continuous accurate profile of the sea bottom under the surveying vessel's course can be obtained. The number of soundings to be recorded depends almost wholly upon the facility with which they may be written down in the record. Some forms of echo sounding instruments actually record the profile of the vessel's course on a graph. It is interesting to contrast this modern ease of sounding with that of the Challenger Expedition, which on the notable cruise between the years of 1873 and 1876 made a total of 504 deep-sea soundings, or with the record of the Blake between 1874 and 1879 when the then remarkable number of 3,195 deep-sea soundings was achieved. Now in This content downloaded from 86.59.13.237 on Thu, 08 Jul 2021 13:20:35 UTC All use subject to https://about.jstor.org/terms NEW METHODS OF MARINE SURVEYING 11 contrast, in fifteen working days in the month of July 1937, the party on the Coast and Geodetic Survey Ship Lydonia recorded 12,498 soundings on the continental slope and covered an area of 1,764 square statute miles extending more than 150 miles offshore, all of which was precisely controlled by radio acoustic ranging and taut wire traverses tied in to the shore triangulation net on North American 1927 Datum. This included the time required for two trips to port for supplies. During five months in the summer of 1937 the party on the Coast and Geodetic Survey Ship Hydrographer covered an area in the Gulf of Mexico of 6,513 square miles off the Texas coast, recording 82,986 soundings. Similar results have been accomplished on the Pacific coasts of the United States and Alaska. Within the past six years, 285,000 square statute miles of marine surveys have been made of the coastal waters of the United States and possessions. This is no inconsiderable portion of the earth's surface. While the greatest contribution to science repre- sented by these surveys probably is the physiographic detail mapped in the course of the surveys, there are other results valuable to science. Bottom specimens have been taken and temperature and salinity observations have been made. The determination of the characteristics of the ray paths of sound waves in sea water, resulting from the experiments made in the Santa Barbara Basin off the coast of Southern California in 1935 and 1936 by the Coast and Geodetic Survey Ship Pioneer, is a contribution of fundamental importance. These experiments were made primarily to establish the soundness of our ray-path theories for further increasing the accuracy of radio acoustic ranging and to learn something of the anomalies to be encountered in practical sonic work utilizing the velocity of sound in sea water. Briefly, the results of these experiments confirmed the relation between the apparent horizontal velocity of sound and the theoretical velocity corrected for bottom temperatures and salinities in shoal water. This relation has been known for some time, and This content downloaded from 86.59.13.237 on Thu, 08 Jul 2021 13:20:35 UTC All use subject to https://about.jstor.org/terms 12 G. T. RUDE although empirical it has provided a very convenient method for use in practical radio-acoustic ranging. It was definitely established that the sound travels in a series of reflections and refractions, with some diffraction for short distances, and that the path is materially affected by the even or uneven character of the bottom or steep slopes near the receiving hydrophone. It was found that the apparent horizontal velocity of sound in the open sea is a discontinuous function of the dis- tance, the magnitude of the discontinuities depending on the bottom profile, depth and size of the bombs, and sensitivity of the hydrophone. With decreasing depth of bottom, or increasing bomb-size, the magnitude of the discontinuities decreases and may become negligible under certain conditions. Many other interesting and valuable facts were disclosed by these experiments, a study of which is now being made and which it is believed will materially add to the accuracy and efficiency of radio-acoustic ranging methods. The British Admiralty Tables of theoretical velocities of sound in water were verified within two-tenths of one per cent. With these valuable tables confirmed by actual comprehensive tests, one can see that the velocity of sound anywhere in the ocean may be obtained by temperature and salinity observations, and this makes easily available a length or base for any desired explorations of limited areas at sea. Another important contribution comes from the discovery of numerous submarine valleys indenting the edges of the continental shelves and the establishment of the apparent stream-erosion nature of the valleys. A few of the more prominent ones are illustrated in the accompanying figures. The discovery of well dissected submarine regions indicates the desirability of further exploration of some of these features in other parts of the earth by the methods now at our disposal. A better conception of the nature of these surveys and the practicability of application to studies of the ocean basins can be had when the methods are understood.
Recommended publications
  • Annual Report for Fiscal Year 1934
    TWENTY SECOND ANNUAL REPORT OF THE SI CRETARY OF COMMERCE 1934 t to sea1gtat Petletlie UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON 1934 Fo sale by the Superintendent of Documents Washington D C Price 20 cents paper cover ORGANIZATION OF THE DEPARTMENT Secretary of Commerce DANIEr C ROPER Assistant Secretary of Commerce JOHN DICKINSON Assistant Secretary of Commerce EwINO Y MITCHELL Solicitor SOUTH TRIMBLE JR Administrative Assistant to the Secretary MALCOLM KERmx Chief Clerk and Superintendent EDWARD W LIBBEY Director Bureau of Air Commerce EUGENE L VIDAL Director of the Census WILLIAM L AUSTIN Director Bureau of Foreign and Domestic Commerce C T MURCHHISON Director National Bureau of Standards LYnIAN J BRIGGS Commissioner of Fisheries Fnnxrc T BELL Commissioner of Lighthouses GEORGE R PUTNAM Director Coast and Geodetic Survey R 5 PATTON Director Bureau of Navigation and Steamboat Inspection JosERLL B WEAVER Commissioner of Patents CONWAY P COE Director United States Shipping Board Bureau J 0 PEACOCK Director Federal Employment Stabilization Office D II SAWYER n CONTENTS Page Expenditures vii Public works allotments xix Changes in organization VIII Discussion of functions of the Department LX Economic review Ix Reciprocal trade program xix Foreign and domestic commerce xix Air commerce XxI Lighthouse Service xxn Enforcement of navigation and steamboat inspection laws xxiv Surveying and mapping xxiv Fisheries xxvt National standards xxvxt Census activities xxrx Patents xxix Merchant marine xxx Foreigntrade zones xxxii Street and
    [Show full text]
  • World War Ii History of the Department of Commerce
    WORLD WAR II HISTORY OF THE DEPARTMENT OF COMMERCE PART 5 US COAST AND GEODETIC SURVEY UNITED STATES DEPARTMENT OF COMMERCE CHARLES SAWYER, Secretary COAST AND GEODETIC SURVEY ROBERT F.A. STUDDS, Director WORLD WAR II HISTORY Of the COAST AND GEODETIC SURVEY UNITED STATES GOERNMENT PRINTING OFFICE – WASHINGTON: 1951 INTRODUCTION 1 LEGISLATION AND REGULATIONS GOVERNING WAR DUTIES 2 TRANSFERS, RECRUITING, AND TRAINING OF PERSONNEL 3 WORLD WAR II HISTORY OF THE COAST AND GEODETIC SURVEY INTRODUCTION The normal work of the Coast and Geodetic Survey, carried on throughout the United States and its possessions, includes (1) surveys of the coastal waters and adjoining land areas; (2) observation, study, and prediction of ocean tides and currents, and of the earth’s magnetic elements; (3) geodetic control surveys and related gravity and astronomical observations; (4) production of nautical and aeronautical charts; and (5) seismological observations and investigations. These activities provide information essential for water and air navigation, for mapping, and for many other strategic purposes, and thus assume vital importance in time of war. Personnel engaged in this work acquire training and experience invaluable in many phases of military activities. Beginning during the period when preparations were being made for national defense and continuing throughout the war the Coast and Geodetic Survey was called upon to furnish, in increasing volume, a great variety of products and services which were required for virtually all classes of war operations. Activities of the Bureau carried on for these purposes were principally in the following three categories: 1. Transfer of personnel, ships, and equipment to the Army, Navy, and Marine Corps.
    [Show full text]
  • General Index 1923 - 1990
    INTERNATIONAL HYDROGRAPHIC ORGANIZATION THE INTERNATIONAL HYDROGRAPHIC REVIEW GENERAL INDEX 1923 - 1990 to papers published from 1923 to 1990 by alphabetical order of authors Published by the INTERNATIONAL HYDROGRAPHIC BUREAU MONACO - October 1993 500X-1993 P-2 INTERNATIONAL HYDROGRAPHIC ORGANIZATION THE INTERNATIONAL HYDROGRAPHIC REVIEW GENERAL INDEX 1923 - 1990 to papers published from 1923 to 1990 by alphabetical order of authors Published by the INTERNATIONAL HYDROGRAPHIC BUREAU MONACO - October 1993 PREFACE By Rear Admiral Christian Andreasen President of the Directing Committee Throughout the history of the International Hydrographic Organization one of the important functions of the organization has been to foster the transfer of information between Member States. The publication of professional papers in the INTERNATIONAL HYDROGRAPHIC REVIEW concerning hydrography and topics related thereto has provided hydrographers throughout the world with information of great significance for the advancement of mapping and charting. We hydrographers can be proud of the quality products that have resulted which, in turn, have fostered the safety of navigation, advanced the scientific knowledge of the oceans and served to protect our marine environment. This GENERAL INDEX 1923-1990 of the INTERNATIONAL HYDROGRAPHIC REVIEW is published to provide ready access to this important series of articles which document the history not only of the International Hydrographic Organization, but also that of hydrography itself. TABLE OF CONTENTS Number Item Page I Aids and Radio Aids to Navigation 1 II Astronomy and Navigation 13 III Automated systems - data logging and processing 24 IV Cartography 29 V Data Management of Swath Sounding Systems - Monograph 1988 39 VI Engraving and reproduction of charts 40 VII Geodesy 44 VIII Geographical positions 55 IX Historical, personal and obituary notices 58 X Hydrographic Training and Technical Assistance 69 XI Hydrographic work.
    [Show full text]
  • Memorial to Paul Albert Smith 1901-1978 M
    Memorial to Paul Albert Smith 1901-1978 M. KING HUBBERT 5208 Westwood Drive, Washington, D.C. 20016 Paul Albert Smith had a long and productive career in public service. A native of Iowa, Smith was born on January 9, 1901. He received his professional education at the University of Michigan, earning the Bachelor of Science degree in engineering in 1924. It was there also that he met and married Sylvia Ralston in 1923. She and their two children, Paul Albert, Jr., and Kathryn Caro­ line (Mrs. Robert H. Gifford), are his survivors. Following his graduation from the University of Michigan, Smith joined the U.S. Coast and Geodetic Survey where he served for twenty-two years as an engi­ neer and commissioned officer with successive ranks from ensign to commander. From 1926 to 1939 he was a hydrographic and geodetic engineer, conducting surveys in several states, and in the coastal waters of the United States, the Philippine Islands, and Alaska. From 1939 to 1946 he was Chief of the Aeronauti­ cal Chart Branch of the Coast and Geodetic Survey, supervising the design and production of aeronautical charts for the United States and Allied forces. The standards thus established were subsequently adopted, with minor amendments, as the International Civil Aviation Organization (ICAO) World Aeronautical Charts. In 1946 Smith was transferred to the State Department as Alternate U.S. Representa­ tive on the Interim Council of the newly established Provisional Internationa! Civil Aviation Agency. From 1947 to 1953, with the rank of Minister, and temporary rank of rear admiral, he was the U.S.
    [Show full text]
  • Scripps and NOAA- 90 Years of Intertwining Efforts
    Scripps and NOAA- 90 Years of Intertwining Efforts By Captain Albert E. Theberge NOAA Corps (ret.) Acting Head of Reference NOAA Central Library Presented at: GEBCO Science Days October 4, 2011 Scripps Institution of Oceanography – Highlighted in the Hydrographic Bulletin of Japan in 1950. This underscores that the mapping of the Pacific Ocean has been an international and inter-organizational effort involving representatives from many nations including the United States, Japan, Australia, New Zealand, Germany, Russia, Peru, Chile, Mexico and others. Besides academic and hydrographic agencies of many nations, the United States Navy, the USGS, and other organizations have been involved. The first bathymetric map of the Pacific Ocean -1877 by Augustus Petermann showing tracks of the CHALLENGER, GAZELLE, and TUSCARORA George Davidson’s map of the Monterey submerged valley, published in: Davidson, George, 1897. The submerged valleys of the coast of California, U. S. A., and of Lower California, Mexico. Proceedings of the California Academy of Sciences, pp. 73-103. First 3-D image of part of continental shelf and slope in Pacific Ocean. Sent to American Geographical Society on May 24, 1887. Note highs to west of Cape Mendocino, Monterey Canyon and borderlands. Also escarpments off Oregon coast. Produced by Isaac Winston of the Coast and Geodetic Survey. 1924 C&GS Ships GUIDE , DISCOVER, and PIONEER proceed to West Coast – conduct oceanographic work for Scripps during San Diego inport s- conduct radio-acoustic ranging experiments– George McEwen of Scripps analyzes water samples for salinity helping develop first velocity tables- install automatic tide gauge and RAR station on Scripps Pier Francis Parker Shepard 1897-1985 .
    [Show full text]
  • The Dorsey Fathometer. Sono-Radio-Buoy. Radio Acoustic Ranging
    THE DORSEY FATHOMETER. SONO-RADIO-BUOY. RADIO ACOUSTIC RANGING- (Lecture delivered by Captain G.T. RUDE, U.S. Coast and Geodetic Survey, before the Fourth International Hydrographic Conference, Monaco, 20th April, 1937). I. THE DORSEY FATHOMETER. The past ten years have marked the beginning in the United States of a new era in hydrographic surveying methods. This has been due mainly to the development and modification of echo sounding equipment and, too, to more accurate methods of offshore horizontal control. The adoption of echo sounding equipment by commercial and naval vessels has brought about a real need for detailed surveys of coastal areas which otherwise might never have developed. In the progress of these surveys many submarine features have been found off the coasts of the United States of America which make navigation by means of these features one of the most reliable and desirable of all methods. In the absence of a suitable commercial instrument in the U, S. for shoal water, it was found necessary to develop the Dorsey Fathometer, described in a recent issue of the Hydrographic Review. * This instrument was developed by the U. S. Coast and Geodetic Survey strictly as a precision depth-measuring device and its performance has more than met all expectations. To insure that the speed of the indicator is absolutely correct at all times, it is driven by a synchronous motor, the source of current for which is derived from a tuning fork. The fork obviates the use of a governor and therefore there is no possibility of the speed being just an average of upper and lower limits.
    [Show full text]
  • Instruments Radio Acoustic Ranging Circuits
    INSTRUMENTS RADIO ACOUSTIC RANGING CIRCUITS by D r. H erbert Grove DORSEY, Principal E lectrical E ngineer, U. S. Coast and Geodetic Survey. (Extract from the Field Engineers Bulletin N° 11, published by the U.S. Coast and Geodetic Survey, Washington, D.C., Dec. 1937, p. 99). The accompanying circuit diagrams were drawn primarily for a revised edition of the RAR Manual now in progress. They represent what are believed to be ideal circuits rather than what are used by any one hydrographic surveying party. If entirely new equipment was to be built, these drawings would serve as a guide on how to start operations. Some portions of the circuits are taken from Pacific Coast procedure and others from Atlantic Coast practice, and the ensem­ ble was made up of the best of each, with an attempt to bring everything up to date using the latest types of tubes and equipment. For the benefit of those who are interested only in the general procedure and as a guide to the other more detailed wiring diagrams, Plate I Was made to show the outline of the entire process. The upper portion shows the surveying ship equipment necessary for RAR. When the bomb explodes in the water, a hydrophone conveys the impulse to the bomb amplifier which makes it strong enough to operate a chronograph (See Plate II). A chronometer marks second intervals on the chronograph tape and immediately after the bomb signal is recorded, a switch is changed to connect the chronograph to the radio receiver so that the return radio signal may be recorded on the same chronograph tape.
    [Show full text]
  • The Discovery of Long- Distance Sound Transmission in the Ocean
    ARTICLE THE DEEP SOUND CHANNEL The Discovery of Long- Distance Sound Transmission in the Ocean The existence of the SOFAR Channel has been known for many years. In the American geophysicist Maurice Ewing’s authorised biographical memoir The Floor of the Sea, the following passage occurs: “The first time Ewing’s seismic gear was tried at a thousand fathoms, all the shots exploded and were received…. Ewing had gone to Atlantis’s hold to see if, with his ear against her plates, he could hear the shots going off. They were loud and distinct, and he listened for close to five minutes to the echoes that bounced off the surface to the bottom and back. There were eight round trips in all, each over seven miles. This was man’s first experience of long-range sound transmission in the ocean.” The author claims that Ewing had reviewed the book for accuracy so the obvious errors in both distance and time are inexplicable. A similar story is told by Columbus Iselin (in a preliminary draft of a speech dated 2 November 1967), a long-time director of Woods Hole Oceanographic Institution, who recalled standing next to Ewing right after exploding a small charge in 3,000 fathoms of water south of Woods Hole. Ewing “reached over and put his fingers on the steel just outside the nice teak rail of the Atlantis. He detected six round trips of the signal. Almost instantly, he turned to me and said that he could transmit and detect sound anywhere in the ocean, provided a continent was not in the way.” Other variations of this story are found throughout many documents touching on oceanographic and historical research.
    [Show full text]
  • Smooth Sheet Bathymetry of the Aleutian Islands
    NOAA Technical Memorandum NMFS-AFSC-250 Smooth Sheet Bathymetry of the Aleutian Islands by M. Zimmermann, M. M. Prescott, and C. N. Rooper U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center May 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Zimmermann, M., M. M. Prescott, and C. N. Rooper. 2013. Smooth sheet bathymetry of the Aleutian Islands. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-250, 43 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-250 Smooth Sheet Bathymetry of the Aleutian Islands by M. Zimmermann, M. M. Prescott, and C. N. Rooper Alaska Fisheries Science Center 7600 Sand Point Way NE Seattle WA 98115 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Rebecca M. Blank, Acting Secretary National Oceanic and Atmospheric Administration Kathryn D. Sullivan, Acting Under Secretary and Administrator National Marine Fisheries Service Samuel D.
    [Show full text]
  • Bathymetry: History of Seafloor Mapping 3 4 Heidi M
    1 2 Bathymetry: History of Seafloor Mapping 3 4 Heidi M. Dierssen 5 Department of Marine Sciences/Geography, University of Connecticut, Groton, Connecticut, U.S.A. 6 Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway 7 8 Albert E. Theberge Jr. 9 Captain, NOAA Corps, NOAA Central Library, Silver Spring, Maryland, U.S.A. 10 11 12 13 Abstract 14 Terrestrial geography, including the outline of continents, islands, mountain chains, and great plains, was clearly known by the mid-19th century. However, the confi guration of the seafl oor was unknown and, even if 15 there had been need, no technology was capable of accurately and quickly measuring the depths of the sea. 16 This situation began changing in the 1840s, as both scientifi c and commercial interests began investigating 17 the sea. Depth measuring technology progressed from point sounding line-and-sinker methods to primitive 18 acoustic methods in the early 20th century. Line-and-sinker technology was capable of discovering most 19 of the large features of the seafl oor. Acoustic methods, by virtue of continual profi ling with single-beam 20 systems and with 100% bottom coverage capability with multibeam swath-mapping systems, have fi lled 21 in the blanks of much of the detail of the world ocean. Our present world view and understanding of earth 22 processes is a direct result of the mapping and understanding of the nature of the seafl oor. 23 24 25 26 27 EARLY EFFORTS additional soundings made by British vessels and those of 28 the United States and other nations[1] (Fig.
    [Show full text]
  • Canadian Hydrographic Service
    CANADIAN SPECIAL PUBLICATION OF FISHERIES AND AQUATIC SCIENCES 67 Proceedings Centennial Conference Canadian Hydrographic Service FI 1983 DFO - Library MPO - Bibliothéque 1 1 11 1 11 11101,18 ,110 11111 1 OTTAWA APRIL 5-8 AVRIL. 1983 Comptes rendus Conférence du Centenaire Service hydrographique du Canada 1983 PUBLICATION SPECIALE CANADIENNE DES SCIENCES HALIEUTIQUES ET AQUATIQUES 67 a " CANADIAN SPECIAL PUBLICATION OF FISHERIES AND AQUATIC SCIENCES 67 Centennial Conference of the Canadian Hydrographic Service "FROM LEADLINE TO LASER" April 5-8, 1983 Government Conference Centre LIBRARY Ottawa, Canada FISHERIES AND OCEANS 1 Q1U Sponsors 13IIILIOT ET OCÉANS, Canadian Hydrographic Service pîoiES Canadian Hydrographers Association Conférence du Centenaire du Service hydrographique du Canada "DE LA LIGNE DE SONDE AU LASER" 5-8 avril, 1983 Centre de Conférences du Gouvernement Ottawa, Canada Responsables Service hydrographique du Canada Association des hydrographes canadiens PUBLICATION SPÉCIALE CANADIENNE DES SCIENCES HALIEUTIQUES ET AQUATIQUES 67 Minister of Supply and 'Services >Canada 1983 © Ministre des Approvisionnements et Services Canada 1983 Availàble En vente par la poste: Canadian Government Publishing Centre Centre d'édition du gouvernement du Canada . Supply and Service's Canada Approvisionnements et Services Canada 'Ottàwà, Ont. K I A 059 Ottawa (Ontario) Canada KIA 0S9 or through your bookselier ou chez votre libraire or from ou au Hydrographie Chart Distribution Office Department of Fisheries and Oceans Bureau de distribution des cartes marines P.O. Box 8080, 1675 Russell Rd. Ministère des Pêches et des Océans Ottawa, Ont. C.P. 8080, 1675, chemin Russell Canada K I G 31-16 Ottawa (Ontario) Canada K1G 3H6 Catalogue No. Fs 41-31/67 ISBN 0-660-52374-4 N° de catalogue Fs 41-31/67 ISSN 0706-6481 ISBN 0-660-52374-4 Ottawa, 1983 ISSN 0706-6481 Ottawa, 1983 Canada: $12.00 Other countries: $14.40 Canada : 12 $ Autres pays : 14.40$ Price subject to change without notice.
    [Show full text]
  • WHOI-74-6 an ACOUSTIC NAVIGATION SYSTEM by Mary M
    __D________ WHOI-74-6 AN ACOUSTIC NAVIGATION SYSTEM By Mary M. Hunt, William M. Marquet, Donald A. Moller Kenneth R. Peal, Woollcott .K. Smith, and Robert C. Spindel WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543 December 1974 TECHNICAL REPORT Prepared for the Office of Naval Research under Contracts N00014-71-C0284; NR 293-008 N00014-70-C0205; NR 263-103 and the National Science Foundation/International Decade of Ocean Exploration Grant GX-36024 and the Applied Phyaics Laboratory of The Johns Hopkins University Contract 372111, Reproduction in whole or in part is permitted m for any puryose of the United States Government. In citing’ this manuscript in a bib liography, the D reference should be followed by the phrase: UNPUBLISHED MANUSCRIPT. Approved for public release; distribution unlimited. Approved for Distribution Earl E. Hay, Chairman Department of Ocean Engineering CONTENTS page 1. INTRODUCTION - M. Hunt i 2. BRIEF HISTORY OF ACOUSTIC NAVIGATION - D. Moller 3 3. SYSTEM DESCRIPTION - K. Peal 8 3.1 Ship Cycle 12 3.2 Fish Cycle 12 3.3 Submarine Cycle 15 3.4 Sonobuoy Cycle 15 4. MATHEMATICAL ANALYSIS - W. Smith 18 4.1 Ray Tracing 18 4.2 Survey Analysis and Design 23 4.3 Least Squares Estimates 24 4.4 Error Covariance Matrix for Beacon Estimates 27 4.5 Survey Design 30 5. SHIP SURVEYS OF A THREE-TRANSPONDER NET - W. Marquet and 31 W. Smith 5.1 Slant Ranges 31 5.2 Survey Geometry 32 5.3 Survey Examples 32 6. PROGRAMS - M. Hunt 45 6.1 Program SETUP 45 6.2 Survey Programs 47 6.3 Program ACNAV 47 7.
    [Show full text]