WHOI-74-6 an ACOUSTIC NAVIGATION SYSTEM by Mary M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Report for Fiscal Year 1934
TWENTY SECOND ANNUAL REPORT OF THE SI CRETARY OF COMMERCE 1934 t to sea1gtat Petletlie UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON 1934 Fo sale by the Superintendent of Documents Washington D C Price 20 cents paper cover ORGANIZATION OF THE DEPARTMENT Secretary of Commerce DANIEr C ROPER Assistant Secretary of Commerce JOHN DICKINSON Assistant Secretary of Commerce EwINO Y MITCHELL Solicitor SOUTH TRIMBLE JR Administrative Assistant to the Secretary MALCOLM KERmx Chief Clerk and Superintendent EDWARD W LIBBEY Director Bureau of Air Commerce EUGENE L VIDAL Director of the Census WILLIAM L AUSTIN Director Bureau of Foreign and Domestic Commerce C T MURCHHISON Director National Bureau of Standards LYnIAN J BRIGGS Commissioner of Fisheries Fnnxrc T BELL Commissioner of Lighthouses GEORGE R PUTNAM Director Coast and Geodetic Survey R 5 PATTON Director Bureau of Navigation and Steamboat Inspection JosERLL B WEAVER Commissioner of Patents CONWAY P COE Director United States Shipping Board Bureau J 0 PEACOCK Director Federal Employment Stabilization Office D II SAWYER n CONTENTS Page Expenditures vii Public works allotments xix Changes in organization VIII Discussion of functions of the Department LX Economic review Ix Reciprocal trade program xix Foreign and domestic commerce xix Air commerce XxI Lighthouse Service xxn Enforcement of navigation and steamboat inspection laws xxiv Surveying and mapping xxiv Fisheries xxvt National standards xxvxt Census activities xxrx Patents xxix Merchant marine xxx Foreigntrade zones xxxii Street and -
Interface Design for Sonobuoy Systems
Interface Design for Sonobuoy Systems by Huei-Yen Winnie Chen A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Systems Design Engineering Waterloo, Ontario, Canada, 2007 ©Huei-Yen Winnie Chen 2007 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Modern sonar systems have greatly improved their sensor technology and processing techniques, but little effort has been put into display design for sonar data. The enormous amount of acoustic data presented by the traditional frequency versus time display can be overwhelming for a sonar operator to monitor and analyze. The recent emphasis placed on networked underwater warfare also requires the operator to create and maintain awareness of the overall tactical picture in order to improve overall effectiveness in communication and sharing of critical data. In addition to regular sonar tasks, sonobuoy system operators must manage the deployment of sonobuoys and ensure proper functioning of deployed sonobuoys. This thesis examines an application of the Ecological Interface Design framework in the interface design of a sonobuoy system on board a maritime patrol aircraft. Background research for this thesis includes a literature review, interviews with subject matter experts, and an analysis of the decision making process of sonar operators from an information processing perspective. A work domain analysis was carried out, which yielded a dual domain model: the domain of sonobuoy management and the domain of tactical situation awareness address the two different aspects of the operator's work. -
World War Ii History of the Department of Commerce
WORLD WAR II HISTORY OF THE DEPARTMENT OF COMMERCE PART 5 US COAST AND GEODETIC SURVEY UNITED STATES DEPARTMENT OF COMMERCE CHARLES SAWYER, Secretary COAST AND GEODETIC SURVEY ROBERT F.A. STUDDS, Director WORLD WAR II HISTORY Of the COAST AND GEODETIC SURVEY UNITED STATES GOERNMENT PRINTING OFFICE – WASHINGTON: 1951 INTRODUCTION 1 LEGISLATION AND REGULATIONS GOVERNING WAR DUTIES 2 TRANSFERS, RECRUITING, AND TRAINING OF PERSONNEL 3 WORLD WAR II HISTORY OF THE COAST AND GEODETIC SURVEY INTRODUCTION The normal work of the Coast and Geodetic Survey, carried on throughout the United States and its possessions, includes (1) surveys of the coastal waters and adjoining land areas; (2) observation, study, and prediction of ocean tides and currents, and of the earth’s magnetic elements; (3) geodetic control surveys and related gravity and astronomical observations; (4) production of nautical and aeronautical charts; and (5) seismological observations and investigations. These activities provide information essential for water and air navigation, for mapping, and for many other strategic purposes, and thus assume vital importance in time of war. Personnel engaged in this work acquire training and experience invaluable in many phases of military activities. Beginning during the period when preparations were being made for national defense and continuing throughout the war the Coast and Geodetic Survey was called upon to furnish, in increasing volume, a great variety of products and services which were required for virtually all classes of war operations. Activities of the Bureau carried on for these purposes were principally in the following three categories: 1. Transfer of personnel, ships, and equipment to the Army, Navy, and Marine Corps. -
General Index 1923 - 1990
INTERNATIONAL HYDROGRAPHIC ORGANIZATION THE INTERNATIONAL HYDROGRAPHIC REVIEW GENERAL INDEX 1923 - 1990 to papers published from 1923 to 1990 by alphabetical order of authors Published by the INTERNATIONAL HYDROGRAPHIC BUREAU MONACO - October 1993 500X-1993 P-2 INTERNATIONAL HYDROGRAPHIC ORGANIZATION THE INTERNATIONAL HYDROGRAPHIC REVIEW GENERAL INDEX 1923 - 1990 to papers published from 1923 to 1990 by alphabetical order of authors Published by the INTERNATIONAL HYDROGRAPHIC BUREAU MONACO - October 1993 PREFACE By Rear Admiral Christian Andreasen President of the Directing Committee Throughout the history of the International Hydrographic Organization one of the important functions of the organization has been to foster the transfer of information between Member States. The publication of professional papers in the INTERNATIONAL HYDROGRAPHIC REVIEW concerning hydrography and topics related thereto has provided hydrographers throughout the world with information of great significance for the advancement of mapping and charting. We hydrographers can be proud of the quality products that have resulted which, in turn, have fostered the safety of navigation, advanced the scientific knowledge of the oceans and served to protect our marine environment. This GENERAL INDEX 1923-1990 of the INTERNATIONAL HYDROGRAPHIC REVIEW is published to provide ready access to this important series of articles which document the history not only of the International Hydrographic Organization, but also that of hydrography itself. TABLE OF CONTENTS Number Item Page I Aids and Radio Aids to Navigation 1 II Astronomy and Navigation 13 III Automated systems - data logging and processing 24 IV Cartography 29 V Data Management of Swath Sounding Systems - Monograph 1988 39 VI Engraving and reproduction of charts 40 VII Geodesy 44 VIII Geographical positions 55 IX Historical, personal and obituary notices 58 X Hydrographic Training and Technical Assistance 69 XI Hydrographic work. -
Appendix A: Navy Activities Descriptions
Appendix A: Navy Activities Descriptions NORTHWEST TRAINING AND TESTING FINAL EIS/OEIS OCTOBER 2015 TABLE OF CONTENTS APPENDIX A NAVY ACTIVITIES DESCRIPTIONS .............................................................................. A-1 A.1 TRAINING ACTIVITIES ................................................................................................................. A-1 A.1.1 ANTI-AIR WARFARE TRAINING ............................................................................................................ A-1 A.1.1.1 Air Combat Maneuver ............................................................................................................... A-2 A.1.1.2 Missile Exercise (Air-to-Air) ....................................................................................................... A-3 A.1.1.3 Gunnery Exercise (Surface-to-Air) ............................................................................................. A-4 A.1.1.4 Missile Exercise (Surface-to-Air) ................................................................................................ A-5 A.1.2 ANTI-SURFACE WARFARE TRAINING ..................................................................................................... A-6 A.1.2.1 Gunnery Exercise Surface-to-Surface (Ship) .............................................................................. A-7 A.1.2.2 Missile Exercise Air-to-Surface .................................................................................................. A-8 A.1.2.3 High-speed Anti-Radiation Missile -
Memorial to Paul Albert Smith 1901-1978 M
Memorial to Paul Albert Smith 1901-1978 M. KING HUBBERT 5208 Westwood Drive, Washington, D.C. 20016 Paul Albert Smith had a long and productive career in public service. A native of Iowa, Smith was born on January 9, 1901. He received his professional education at the University of Michigan, earning the Bachelor of Science degree in engineering in 1924. It was there also that he met and married Sylvia Ralston in 1923. She and their two children, Paul Albert, Jr., and Kathryn Caro line (Mrs. Robert H. Gifford), are his survivors. Following his graduation from the University of Michigan, Smith joined the U.S. Coast and Geodetic Survey where he served for twenty-two years as an engi neer and commissioned officer with successive ranks from ensign to commander. From 1926 to 1939 he was a hydrographic and geodetic engineer, conducting surveys in several states, and in the coastal waters of the United States, the Philippine Islands, and Alaska. From 1939 to 1946 he was Chief of the Aeronauti cal Chart Branch of the Coast and Geodetic Survey, supervising the design and production of aeronautical charts for the United States and Allied forces. The standards thus established were subsequently adopted, with minor amendments, as the International Civil Aviation Organization (ICAO) World Aeronautical Charts. In 1946 Smith was transferred to the State Department as Alternate U.S. Representa tive on the Interim Council of the newly established Provisional Internationa! Civil Aviation Agency. From 1947 to 1953, with the rank of Minister, and temporary rank of rear admiral, he was the U.S. -
Displaying Bioacoustic Directional Information from Sonobuoys Using “Azigrams”
Displaying bioacoustic directional information from sonobuoys using “azigrams” Aaron M. Thode,1,a) Taiki Sakai,2,b) Jeffrey Michalec,3 Shannon Rankin,3 Melissa S. Soldevilla,4 Bruce Martin,5 and Katherine H. Kim6 1Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0238, USA 2Lynker Technologies, LLC, under contract to the Southwest Fisheries Science Center, NMFS/NOAA, La Jolla, California 92037, USA 3Southwest Fisheries Science Center, NMFS/NOAA, La Jolla, California 92037, USA 4Southeast Fisheries Science Center, NMFS/NOAA, 75 Virginia Beach Drive, Miami, Florida 33149, USA 5JASCO Applied Sciences, 32 Troop Avenue, Suite 202, Dartmouth, Nova Scotia, B3B 1Z1, Canada 6Greeneridge Sciences, Inc., 90 Arnold Place, Suite D, Santa Barbara, California 93117, USA (Received 16 November 2018; revised 22 May 2019; accepted 5 June 2019; published online 10 July 2019) The AN/SSQ-53 Directional Frequency Analysis and Recording (DIFAR) sonobuoy is an expend- able device that can derive acoustic particle velocity along two orthogonal horizontal axes, along with acoustic pressure. This information enables computation of azimuths of low-frequency acous- tic sources from a single compact sensor. The standard approach for estimating azimuth from these sensors is by conventional beamforming (i.e., adding weighted time series), but the resulting “cardioid” beampattern is imprecise, computationally expensive, and vulnerable to directional noise contamination for weak signals. Demonstrated here is an alternative multiplicative processing scheme that computes the “active intensity” of an acoustic signal to obtain the dominant direction- ality of a noise field as a function of time and frequency. This information is conveniently displayed as an “azigram,” which is analogous to a spectrogram, but uses color to indicate azimuth instead of intensity. -
Scripps and NOAA- 90 Years of Intertwining Efforts
Scripps and NOAA- 90 Years of Intertwining Efforts By Captain Albert E. Theberge NOAA Corps (ret.) Acting Head of Reference NOAA Central Library Presented at: GEBCO Science Days October 4, 2011 Scripps Institution of Oceanography – Highlighted in the Hydrographic Bulletin of Japan in 1950. This underscores that the mapping of the Pacific Ocean has been an international and inter-organizational effort involving representatives from many nations including the United States, Japan, Australia, New Zealand, Germany, Russia, Peru, Chile, Mexico and others. Besides academic and hydrographic agencies of many nations, the United States Navy, the USGS, and other organizations have been involved. The first bathymetric map of the Pacific Ocean -1877 by Augustus Petermann showing tracks of the CHALLENGER, GAZELLE, and TUSCARORA George Davidson’s map of the Monterey submerged valley, published in: Davidson, George, 1897. The submerged valleys of the coast of California, U. S. A., and of Lower California, Mexico. Proceedings of the California Academy of Sciences, pp. 73-103. First 3-D image of part of continental shelf and slope in Pacific Ocean. Sent to American Geographical Society on May 24, 1887. Note highs to west of Cape Mendocino, Monterey Canyon and borderlands. Also escarpments off Oregon coast. Produced by Isaac Winston of the Coast and Geodetic Survey. 1924 C&GS Ships GUIDE , DISCOVER, and PIONEER proceed to West Coast – conduct oceanographic work for Scripps during San Diego inport s- conduct radio-acoustic ranging experiments– George McEwen of Scripps analyzes water samples for salinity helping develop first velocity tables- install automatic tide gauge and RAR station on Scripps Pier Francis Parker Shepard 1897-1985 . -
The Dorsey Fathometer. Sono-Radio-Buoy. Radio Acoustic Ranging
THE DORSEY FATHOMETER. SONO-RADIO-BUOY. RADIO ACOUSTIC RANGING- (Lecture delivered by Captain G.T. RUDE, U.S. Coast and Geodetic Survey, before the Fourth International Hydrographic Conference, Monaco, 20th April, 1937). I. THE DORSEY FATHOMETER. The past ten years have marked the beginning in the United States of a new era in hydrographic surveying methods. This has been due mainly to the development and modification of echo sounding equipment and, too, to more accurate methods of offshore horizontal control. The adoption of echo sounding equipment by commercial and naval vessels has brought about a real need for detailed surveys of coastal areas which otherwise might never have developed. In the progress of these surveys many submarine features have been found off the coasts of the United States of America which make navigation by means of these features one of the most reliable and desirable of all methods. In the absence of a suitable commercial instrument in the U, S. for shoal water, it was found necessary to develop the Dorsey Fathometer, described in a recent issue of the Hydrographic Review. * This instrument was developed by the U. S. Coast and Geodetic Survey strictly as a precision depth-measuring device and its performance has more than met all expectations. To insure that the speed of the indicator is absolutely correct at all times, it is driven by a synchronous motor, the source of current for which is derived from a tuning fork. The fork obviates the use of a governor and therefore there is no possibility of the speed being just an average of upper and lower limits. -
SOCAL 2011-2012 Aerial Surveys
Performed and submitted for the U.S. Navy's Southern California Range Complex 2012 Annual Monitoring Report AERIAL SURVEYS CONDUCTED IN THE SOCAL OPAREA FROM 01 AUGUST 2011 TO 31 JULY 2012 Photo by B. Würsig, taken under NMFS permit 14451 Prepared for Commander, U.S. Pacific Fleet, Pearl Harbor, Hawaii Submitted to Naval Facilities Engineering Command Southwest (NAVFAC SW), EV5 Environmental, San Diego, CA, 92132 Contract # N62470-10-D-3011 Prepared by HDR Inc. San Diego, California 1 August 2012 Performed and submitted for the U.S. Navy's Southern California Range Complex 2012 Annual Monitoring Report Citation for this report is as follows: Smultea, M.A., C. Bacon, T.F. Norris, and D. Steckler. 2012. Aerial surveys conducted in the SOCAL OPAREA from 01 August 2011 to 31 July 2012. Prepared for Commander, U.S. Pacific Fleet, Pearl Harbor, HI. Submitted to Naval Facilities Engineering Command Southwest (NAVFAC SW), EV5 Environmental, San Diego, 92132 under Contract No. N62470-10-D-3011 issued to HDR, Inc., San Diego, CA. Submitted August 2012. Cover Photo: Gray whales (Eschrichtius robustus), photographed with a telephoto lens from the Partenavia fixed-wing aircraft during a winter 2012 SOCAL aerial monitoring survey. Photo by B. Würsig under NMFS permit 14451. Performed and submitted for the U.S. Navy's Southern California Range Complex 2012 Annual Monitoring Report Aerial Surveys Conducted from 01 August 2011 to 31 July 2012 Final Technical Report Table of Contents ACRONYMS AND ABBREVIATIONS .................................................................................... -
Bistatic Sonobuoy Deployment Strategies for Detecting Stationary and Mobile Underwater Targets
Bistatic Sonobuoy Deployment Strategies for Detecting Stationary and Mobile Underwater Targets Mumtaz Karatas Emily Craparo (1) Industrial Engineering Department Department of Operations Research Naval Academy, National Defense University Naval Postgraduate School Istanbul, 34940, TURKEY Monterey, CA 93943, USA [email protected] [email protected] (2) Bahcesehir University Istanbul, 34353, TURKEY Gülşen Akman Industrial Engineering Department Kocaeli University Kocaeli, 41380, TURKEY [email protected] ABSTRACT The problem of determining effective allocation schemes of underwater sensors for surveillance, search, detection, and tracking purposes is a fundamental research area in military OR. Among the various sensor types, multistatic sonobuoy systems are a promising development in submerged target detection systems. These systems consist of sources (active sensors) and receivers (passive sensors), which need not be collocated. A multistatic sonobuoy system consisting of a single source and receiver is called a bistatic system. The sensing zone of this fundamental system is defined by Cassini ovals. The unique properties and unusual geometrical profile of these ovals distinguish the bistatic sensor allocation problem from conventional sonar placement problems. This study is aimed at supporting decision makers in making the best use of bistatic sonobuoys to detect stationary and mobile targets transiting through an area of interest. We use integral geometry and geometric probability concepts to derive analytic expressions for the optimal source and receiver separation distances to maximize the detection probability of a submerged target. We corroborate our analytic results using Monte Carlo simulation. Our approach constitutes a valuable “back of the envelope” method for the important and difficult problem of analyzing bistatic sonar performance. -
2 Description of Proposed Action and Alternatives
2 Description of Proposed Action and Alternatives NORTHWEST TRAINING AND TESTING FINAL EIS/OEIS OCTOBER 2015 TABLE OF CONTENTS 2 DESCRIPTION OF PROPOSED ACTION AND ALTERNATIVES ..........................................................2-1 2.1 DESCRIPTION OF THE NORTHWEST TRAINING AND TESTING STUDY AREA ..................................................2-2 2.1.1 DESCRIPTION OF THE OFFSHORE AREA ................................................................................................... 2-5 2.1.1.1 Air Space ..................................................................................................................................... 2-5 2.1.1.2 Sea and Undersea Space ............................................................................................................. 2-5 2.1.2 DESCRIPTION OF THE INLAND WATERS ................................................................................................... 2-7 2.1.2.1 Air Space ..................................................................................................................................... 2-7 2.1.2.2 Sea and Undersea Space ............................................................................................................. 2-7 2.1.3 DESCRIPTION OF THE WESTERN BEHM CANAL, ALASKA............................................................................. 2-9 2.2 PRIMARY MISSION AREAS .......................................................................................................... 2-12 2.2.1 ANTI-AIR WARFARE .........................................................................................................................