SAESSOLUTIONS DEFENCE & SECURITY Electronica-Submarina.Com SPECIALISTS in UNDERWATER ACOUSTICS and ELECTRONICS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 10Th EAA International Symposium on Hydroacoustics Jastrzębia Góra, Poland, May 17 – 20, 2016
ARCHIVES OF ACOUSTICS Copyright c 2016 by PAN – IPPT Vol. 41, No. 2, pp. 355–373 (2016) DOI: 10.1515/aoa-2016-0038 The 10th EAA International Symposium on Hydroacoustics Jastrzębia Góra, Poland, May 17 – 20, 2016 The 10th EAA International Symposium on Hy- Dr. Christopher Jenkins: Backscatter from In- droacoustics, which is also the 33rd Symposium on • tensely Biological Seabeds – Benthos Simulation Hydroacoustics in memory of Prof. Leif Børnø orga- Approaches; nized in Poland, will take place from May 17 to 20, Prof. Eugeniusz Kozaczka: Technical Support for 2016, in Jastrzębia Góra. It will be a forum for re- • National Border Protection on Vistula Lagoon and searchers, who are developing hydroacoustics and re- Vistula Spit; lated issues. The Symposium is organized by the Prof. Andrzej Nowicki et al.: Estimation of Ra- Gdańsk University of Technology and the Polish Naval • dial Artery Reactive Response using 20 MHz Ul- Academy. trasound; The Scientific Committee comprises of the world – Prof. Jerzy Wiciak: Advances in Structural Noise class experts in this field, coming from, among others, • Germany, UK, USA, Taiwan, Norway, Greece, Russia, Reduction in Fluid. Turkey and Poland. The chairman of Scientific Com- All accepted papers will be published in the periodical mittee is Prof. Eugeniusz Kozaczka, who is the Pres- “Hydroacoustics”. ident of Committee on Acoustics Polish Academy of Sciences and Chairman of Technical Committee Hy- droacoustics of European Acoustics Association. Abstracts The Symposium will include invited lectures, struc- -
Appendix A. Navy Activity Descriptions
Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 APPENDIX A Navy Activity Descriptions Appendix A Navy Activity Descriptions Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 This page intentionally left blank. Appendix A Navy Activity Descriptions Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 Draft Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing TABLE OF CONTENTS A. NAVY ACTIVITY DESCRIPTIONS ................................................................................................ A-1 A.1 Description of Sonar, Munitions, Targets, and Other Systems Employed in Atlantic Fleet Training and Testing Events .................................................................. A-1 A.1.1 Sonar Systems and Other Acoustic Sources ......................................................... A-1 A.1.2 Munitions .............................................................................................................. A-7 A.1.3 Targets ................................................................................................................ A-11 A.1.4 Defensive Countermeasures ............................................................................... A-13 A.1.5 Mine Warfare Systems ........................................................................................ A-13 A.1.6 Military Expended Materials ............................................................................... A-16 A.2 Training Activities .................................................................................................. -
Interface Design for Sonobuoy Systems
Interface Design for Sonobuoy Systems by Huei-Yen Winnie Chen A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Systems Design Engineering Waterloo, Ontario, Canada, 2007 ©Huei-Yen Winnie Chen 2007 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Modern sonar systems have greatly improved their sensor technology and processing techniques, but little effort has been put into display design for sonar data. The enormous amount of acoustic data presented by the traditional frequency versus time display can be overwhelming for a sonar operator to monitor and analyze. The recent emphasis placed on networked underwater warfare also requires the operator to create and maintain awareness of the overall tactical picture in order to improve overall effectiveness in communication and sharing of critical data. In addition to regular sonar tasks, sonobuoy system operators must manage the deployment of sonobuoys and ensure proper functioning of deployed sonobuoys. This thesis examines an application of the Ecological Interface Design framework in the interface design of a sonobuoy system on board a maritime patrol aircraft. Background research for this thesis includes a literature review, interviews with subject matter experts, and an analysis of the decision making process of sonar operators from an information processing perspective. A work domain analysis was carried out, which yielded a dual domain model: the domain of sonobuoy management and the domain of tactical situation awareness address the two different aspects of the operator's work. -
Fixed Sonar Systems the History and Future of The
THE SUBMARINE REVIEW FIXED SONAR SYSTEMS THE HISTORY AND FUTURE OF THE UNDEWATER SILENT SENTINEL by LT John Howard, United States Navy Naval Postgraduate School, Monterey, California Undersea Warfare Department Executive Summary One of the most challenging aspects of Anti-Submarine War- fare (ASW) has been the detection and tracking of submerged contacts. One of the most successful means of achieving this goal was the Sound Surveillance System (SOSUS) developed by the United States Navy in the early 1950's. It was designed using breakthrough discoveries of the propagation paths of sound through water and intended to monitor the growing submarine threat of the Soviet Union. SOSUS provided cueing of transiting Soviet submarines to allow for optimal positioning of U.S. ASW forces for tracking and prosecution of these underwater threats. SOSUS took on an even greater national security role with the advent of submarine launched ballistic missiles, ensuring that U.S. forces were aware of these strategic liabilities in case hostilities were ever to erupt between the two superpowers. With the end of the Cold War, SOSUS has undergone a number of changes in its utilization, but is finding itself no less relevant as an asset against the growing number of modern quiet submarines proliferating around the world. Introduction For millennia, humans seeking to better defend themselves have set up observation posts along the ingress routes to their key strongholds. This could consist of something as simple as a person hidden in a tree, to extensive networks of towers communicating 1 APRIL 2011 THE SUBMARINE REVIEW with signal fires. -
Appendix A: Navy Activities Descriptions
Appendix A: Navy Activities Descriptions NORTHWEST TRAINING AND TESTING FINAL EIS/OEIS OCTOBER 2015 TABLE OF CONTENTS APPENDIX A NAVY ACTIVITIES DESCRIPTIONS .............................................................................. A-1 A.1 TRAINING ACTIVITIES ................................................................................................................. A-1 A.1.1 ANTI-AIR WARFARE TRAINING ............................................................................................................ A-1 A.1.1.1 Air Combat Maneuver ............................................................................................................... A-2 A.1.1.2 Missile Exercise (Air-to-Air) ....................................................................................................... A-3 A.1.1.3 Gunnery Exercise (Surface-to-Air) ............................................................................................. A-4 A.1.1.4 Missile Exercise (Surface-to-Air) ................................................................................................ A-5 A.1.2 ANTI-SURFACE WARFARE TRAINING ..................................................................................................... A-6 A.1.2.1 Gunnery Exercise Surface-to-Surface (Ship) .............................................................................. A-7 A.1.2.2 Missile Exercise Air-to-Surface .................................................................................................. A-8 A.1.2.3 High-speed Anti-Radiation Missile -
On the Sea Trial Test for Validation of Autonomous Collision Avoidance
OCEANS 2018 MTS/IEEE Charleston Charleston, South Carolina, USA 22-25 October 2018 Pages 1-667 IEEE Catalog Number: CFP18OCE-POD ISBN: 978-1-5386-4815-5 1/4 Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. *** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP18OCE-POD ISBN (Print-On-Demand): 978-1-5386-4815-5 ISBN (Online): 978-1-5386-4814-8 ISSN: 0197-7385 Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: [email protected] Web: www.proceedings.com TABLE OF CONTENTS ON THE SEA TRIAL TEST FOR THE VALIDATION OF AN AUTONOMOUS COLLISION AVOIDANCE SYSTEM OF UNMANNED SURFACE VEHICLE, ARAGON ..................................................................................................................1 -
Diver Detection Sonar System
Diver Detection Sonar System Product Code: 5510-01 Key Features Track & classify Single or multi-head networked systems Low false alarm rate Integration 3rd party security systems Fixed, temporary or expeditionary deployment Easy to use Overview The Diver Detection Sonar System is a single or multi-head active sonar Features system designed to automatically detect and track underwater and surface threats, principally divers, scuba or closed circuit, with or Identifies & classifies targets without propulsion aids, surface swimmers and unmanned underwater vehicles. Single or multi-head systems It will identify targets at ranges of up to 1,200 metres, depending on environmental conditions and product variant. 900 metres range for divers. Low power consumption 70 watts per sonar head It is small and lightweight so is quick to deploy from a boat, install in a port or fix along a coastline - providing you with an instant underwater security shield. Low false alarm rate Easy to use, security personnel do not need to be sonar experts to use it Maximum depth rating 50 metres once it is set up, it can be left to run autonomously. Can be Integrated with other It can be configured to meet the needs of commercial and infrastructure security systems facility protection projects as a standalone security sensor or integrated with third party C2 (Command and Control) security systems. It can be networked sonar, allowing entire waterfronts can be protected using a single operator station [email protected] | www.wg-plc.com | +44 1295 756300 1 Westminster Group Plc, Westminster House, Blacklocks Hill, Banbury, Oxfordshire, OX17 2BS, United Kingdom Diver Detection Sonar System Applications The practicality of the Diver Detection Sonar makes the system a realistic option for protecting a wide range of maritime assets: - Expeditionary - Warfare units in overseas ports are widely recognised as the most visible and vulnerable of targets. -
MARITIME Security &Defence M
June MARITIME 2021 a7.50 Security D 14974 E &Defence MSD From the Sea and Beyond ISSN 1617-7983 • Key Developments in... • Amphibious Warfare www.maritime-security-defence.com • • Asia‘s Power Balance MITTLER • European Submarines June 2021 • Port Security REPORT NAVAL GROUP DESIGNS, BUILDS AND MAINTAINS SUBMARINES AND SURFACE SHIPS ALL AROUND THE WORLD. Leveraging this unique expertise and our proven track-record in international cooperation, we are ready to build and foster partnerships with navies, industry and knowledge partners. Sovereignty, Innovation, Operational excellence : our common future will be made of challenges, passion & engagement. POWER AT SEA WWW.NAVAL-GROUP.COM - Design : Seenk Naval Group - Crédit photo : ©Naval Group, ©Marine Nationale, © Ewan Lebourdais NAVAL_GROUP_AP_2020_dual-GB_210x297.indd 1 28/05/2021 11:49 Editorial Hard Choices in the New Cold War Era The last decade has seen many of the foundations on which post-Cold War navies were constructed start to become eroded. The victory of the United States and its Western Allies in the unfought war with the Soviet Union heralded a new era in which navies could forsake many of the demands of Photo: author preparing for high intensity warfare. Helping to ensure the security of the maritime shipping networks that continue to dominate global trade and the vast resources of emerging EEZs from asymmetric challenges arguably became many navies’ primary raison d’être. Fleets became focused on collabora- tive global stabilisation far from home and structured their assets accordingly. Perhaps the most extreme example of this trend has been the German Navy’s F125 BADEN-WÜRTTEMBERG class frig- ates – hugely sophisticated and expensive ships designed to prevail only in lower threat environments. -
Displaying Bioacoustic Directional Information from Sonobuoys Using “Azigrams”
Displaying bioacoustic directional information from sonobuoys using “azigrams” Aaron M. Thode,1,a) Taiki Sakai,2,b) Jeffrey Michalec,3 Shannon Rankin,3 Melissa S. Soldevilla,4 Bruce Martin,5 and Katherine H. Kim6 1Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0238, USA 2Lynker Technologies, LLC, under contract to the Southwest Fisheries Science Center, NMFS/NOAA, La Jolla, California 92037, USA 3Southwest Fisheries Science Center, NMFS/NOAA, La Jolla, California 92037, USA 4Southeast Fisheries Science Center, NMFS/NOAA, 75 Virginia Beach Drive, Miami, Florida 33149, USA 5JASCO Applied Sciences, 32 Troop Avenue, Suite 202, Dartmouth, Nova Scotia, B3B 1Z1, Canada 6Greeneridge Sciences, Inc., 90 Arnold Place, Suite D, Santa Barbara, California 93117, USA (Received 16 November 2018; revised 22 May 2019; accepted 5 June 2019; published online 10 July 2019) The AN/SSQ-53 Directional Frequency Analysis and Recording (DIFAR) sonobuoy is an expend- able device that can derive acoustic particle velocity along two orthogonal horizontal axes, along with acoustic pressure. This information enables computation of azimuths of low-frequency acous- tic sources from a single compact sensor. The standard approach for estimating azimuth from these sensors is by conventional beamforming (i.e., adding weighted time series), but the resulting “cardioid” beampattern is imprecise, computationally expensive, and vulnerable to directional noise contamination for weak signals. Demonstrated here is an alternative multiplicative processing scheme that computes the “active intensity” of an acoustic signal to obtain the dominant direction- ality of a noise field as a function of time and frequency. This information is conveniently displayed as an “azigram,” which is analogous to a spectrogram, but uses color to indicate azimuth instead of intensity. -
Underwater Mines - Past, Present and Future
UNDERWATER MINES - PAST, PRESENT AND FUTURE Prof. S.Veerabhadraiah1, Dr. M.Purnachandra Rao2 1Department of Electronics and Communication Engineering, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, (India) 2Professor of Physics, Head, Department of Systems Design, Andhra University, Visakhapatnam, Andhra Pradesh, (India) ABSTRACT Some examples of past, present and future mines available in the world are initially covered in this paper. This paper makes an assessment of present day underwater Mines technology for various applications in the area of defensive as well as offensive mining. The capabilities of underwater mines namely, operating as automatic sentinels in deep waters and easy deployment for offensive applications as well, meeting the future needs of naval task forces have also been covered in this paper. Finally the limitations of past and present mines are identified and the solutions to overcome these limitations so as to develop a state of the art mine are suggested towards the end of this paper. Keywords: Automatic Sentinels, Contact Mines, Influence Mines, Underwater Mine, World War I. I. INTRODUCTION A naval mine is a self-contained explosive device placed in water to damage or destroy surface ships or submarines. Unlike depth charges, mines are deposited and left to wait until they are triggered by the approach of, or contact with, an enemy vessel. Naval mines can be used offensively—to hamper enemy shipping movements or lock vessels into a harbour; or defensively—to protect friendly vessels and create "safe" zones. The Sea Mine which was earlier thought to be a poor nation‘s weapon has attained a position of prime importance in the armories of many navies of the world. -
Dynamic Towed Array Models and State Estimation for Underwater Target Tracking
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2013-09 Dynamic towed array models and state estimation for underwater target tracking Stiles, Zachariah H. Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/37725 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DYNAMIC TOWED ARRAY MODELS AND STATE ESTIMATION FOR UNDERWATER TARGET TRACKING by Zachariah H. Stiles September 2013 Thesis Co-Advisors: Robert G. Hutchins Xiaoping Yun Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 2013 Master’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS DYNAMIC TOWED ARRAY MODELS AND STATE ESTIMATION FOR UNDERWATER TARGET TRACKING N/A 6. AUTHOR(S) Zachariah H. Stiles 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. -
Baseline Issue 16
04 06 20 24 Kit News Construction Survey Training Underwater technology to Who’s been investing in Planning your next Discover why investing help you track, log, release Sonardyne to support their metrology? Save time in training is your key to and send your data marine operations? with Connect success offshore THE CUSTOMER MAGAZINE FROM SONARDYNE ISSUE 16 Baseline 14 Ocean Science Your data,whereyou want it, when you want it HERE’SADISTINCT theme running throughout this Baseline » Issue 16 issue of Baseline – Front Cover The U.S Navy’s new research vessel, R/V Neil subsea technology for Armstrong, meets the range, endurance, and technical requirements to support advanced oceanography. Whilst the oceanographic research in tropical and global offshore energy temperate oceans around the world. market continues to prove challenging for the entire Image Bay Aerial, ©Woods Hole Oceanographic Institution supply and contracting chain, there’s been Tno shortage of good news stories emerging from the global science community. So much so, our News section beginning In this issue... on page 6 has been extended to bring you the highlights of recent major orders. These 04 Kit There’s now more ways to send data underwater as our popular data logger gets upgraded include ‘all-in-one’ navigation for Schmidt’s to 6G and Modem Micro offers you a ‘link in a box.’ SuBastian ROV, Syrinx DVL for Canada’s free flying vehicle ROPOS, and Ranger 2 USBL for 06 News A roundup of major orders from the ocean the US Navy’s new vessel Neil Armstrong – science community, Ranger 2 for Brazil’s new IRM vessel, surveying the Red Sea, navigating a safe route with NOAS the subject of our front cover.