Diver Detection Sonar System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Winds, Waves, and Bubbles at the Air-Sea Boundary
JEFFREY L. HANSON WINDS, WAVES, AND BUBBLES AT THE AIR-SEA BOUNDARY Subsurface bubbles are now recognized as a dominant acoustic scattering and reverberation mechanism in the upper ocean. A better understanding of the complex mechanisms responsible for subsurface bubbles should lead to an improved prediction capability for underwater sonar. The Applied Physics Laboratory recently conducted a unique experiment to investigate which air-sea descriptors are most important for subsurface bubbles and acoustic scatter. Initial analyses indicate that wind-history variables provide better predictors of subsurface bubble-cloud development than do wave-breaking estimates. The results suggest that a close coupling exists between the wind field and the upper-ocean mixing processes, such as Langmuir circulation, that distribute and organize the bubble populations. INTRODUCTION A multiyear series of experiments, conducted under the that, in the Gulf of Alaska wintertime environment, the auspices of the Navy-sponsored acoustic program, Crit amount of wave-breaking activity may not be an ideal ical Sea Test (CST), I has been under way since 1986 with indicator of deep bubble-cloud formation. Instead, the the charter to investigate environmental, scientific, and penetration of bubbles is more closely tied to short-term technical issues related to the performance of low-fre wind fluctuations, suggesting a close coupling between quency (100-1000 Hz) active acoustics. One key aspect the wind field and upper-ocean mixing processes that of CST is the investigation of acoustic backscatter and distribute and organize the bubble populations within the reverberation from upper-ocean features such as surface mixed layer. waves and bubble clouds. -
Wetsuits Raises the Bar Once Again, in Both Design and Technological Advances
Orca evokes the instinct and prowess of the powerful ruler of the seas. Like the Orca whale, our designs have always been organic, streamlined and in tune with nature. Our latest 2016 collection of wetsuits raises the bar once again, in both design and technological advances. With never before seen 0.88Free technology used on the Alpha, and the ultimate swim assistance WETSUITS provided by the Predator, to a more gender specific 3.8 to suit male and female needs, down to the latest evolution of the ever popular S-series entry-level wetsuit, Orca once again has something to suit every triathlete’s needs when it comes to the swim. 10 11 TRIATHLON Orca know triathletes and we’ve been helping them to conquer the WETSUITS seven seas now for more than twenty years.Our latest collection of wetsuits reflects this legacy of knowledge and offers something for RANGE every level and style of swimmer. Whether you’re a good swimmer looking for ultimate flexibility, a struggling swimmer who needs all the buoyancy they can get, or a weekend warrior just starting out, Orca has you covered. OPENWATER Swimming in the openwater is something that has always drawn those types of swimmers that find that the largest pool is too small for them. However open water swimming is not without it’s own challenges and Orca’s Openwater collection is designed to offer visibility, and so security, to those who want to take on this sport. 016 SWIMRUN The SwimRun endurance race is a growing sport and the wetsuit requirements for these competitors are unique. -
Fusion System Components
A Step Change in Military Autonomous Technology Introduction Commercial vs Military AUV operations Typical Military Operation (Man-Portable Class) Fusion System Components User Interface (HMI) Modes of Operation Typical Commercial vs Military AUV (UUV) operations (generalisation) Military Commercial • Intelligence gathering, area survey, reconnaissance, battlespace preparation • Long distance eg pipeline routes, pipeline surveys • Mine countermeasures (MCM), ASW, threat / UXO location and identification • Large areas eg seabed surveys / bathy • Less data, desire for in-mission target recognition and mission adjustment • Large amount of data collected for post-mission analysis • Desire for “hover” ability but often use COTS AUV or adaptations for specific • Predominantly torpedo shaped, require motion to manoeuvre tasks, including hull inspection, payload deployment, sacrificial vehicle • Errors or delays cost money • Errors or delays increase risk • Typical categories: man-portable, lightweight, heavy weight & large vehicle Image courtesy of Subsea Engineering Associates Typical Current Military Operation (Man-Portable Class) Assets Equipment Cost • Survey areas of interest using AUV & identify targets of interest: AUV & Operating Team USD 250k to USD millions • Deploy ROV to perform detailed survey of identified targets: ROV & Operating Team USD 200k to USD 450k • Deploy divers to deal with targets: Dive Team with Nav Aids & USD 25k – USD 100ks Diver Propulsion --------------------------------------------------------------------------------- -
Surface-Supplied Diver Training Manual
Surface-supplied Diver Training Manual Tennessee Aquarium Chattanooga, TN Published by the Diving Control Board Tennessee Aquarium Chattanooga, TN 1st Edition 2007 Purpose Surface-supplied diving is defined in the Tennessee Aquarium Diving Safety Manual (TADSM) as a diving mode in which the diver in the water is supplied from the dive location with compressed gas for breathing and is in voice communication with the tender on the surface. This definition is based upon the requirements outlined in the Occupational Safety and Health Administration’s Code of Federal Regulations. (29 CFR 1910 Subpart T) This federal law outlines the criteria for all commercial diving. The surface-supplied diving mode requires gear and techniques that are not introduced in recreational diver training. This text was designed by the Tennessee Aquarium Diving Control Board to introduce Aquarium divers to the fundamental principles associated with surface-supplied diving. This text should be accompanied by proper practical training, as outlined in Appendix A, to promote safe surface-supplied diving under the auspice of the Tennessee Aquarium. Figure 1 – Secret Reef Dive Show- A primary use of surface-supplied diving at the Tennessee Aquarium. i Introduction There are numerous advantages to surface-supplied diving that make it an excellent choice for many diving operations. First, the diver has the benefit of an unlimited air supply. With a surface-supplied diving system, a diver can theoretically stay underwater forever. Of course, in reality, there are comfort, thermal, and decompression limits. For deep technical diving, a surface-supplied rig relieves the diver of the need to carry numerous stage bottles. -
Low-Frequency Active Towed Sonar
LOW-FREQUENCY ACTIVE TOWED SONAR Full-feature, long-range, low-frequency active and passive variable depth sonar (VDS) The Low-Frequency Active Sonar (LFATS) system is used on ships to detect, track and engage all types of submarines. L3Harris specifically designed the system to perform at a lower operating frequency against modern diesel-electric submarine threats. FEATURES > Compact size - LFATS is a small, > Full 360° coverage - a dual parallel array lightweight, air-transportable, ruggedized configuration and advanced signal system processing achieve instantaneous, > Specifically designed for easy unambiguous left/right target installation on small vessels. discrimination. > Configurable - LFATS can operate in a > Space-saving transmitter tow-body stand-alone configuration or be easily configuration - innovative technology integrated into the ship’s combat system. achieves omnidirectional, large aperture acoustic performance in a compact, > Tactical bistatic and multistatic capability sleek tow-body assembly. - a robust infrastructure permits interoperability with the HELRAS > Reverberation suppression - the unique helicopter dipping sonar and all key transmitter design enables forward, aft, sonobuoys. port and starboard directional LFATS has been successfully deployed on transmission. This capability diverts ships as small as 100 tons. > Highly maneuverable - own-ship noise energy concentration away from reduction processing algorithms, coupled shorelines and landmasses, minimizing with compact twin-line receivers, enable reverb and optimizing target detection. short-scope towing for efficient maneuvering, fast deployment and > Sonar performance prediction - a unencumbered operation in shallow key ingredient to mission planning, water. LFATS computes and displays system detection capability based on modeled > Compact Winch and Handling System or measured environmental data. - an ultrastable structure assures safe, reliable operation in heavy seas and permits manual or console-controlled deployment, retrieval and depth- keeping. -
User Manual for Amron International, Inc. Model 2820A and 2825A Two
User Manual For Amron International, Inc. Model 2820A and 2825A Two Diver Communicator S/N ____________________ 1380 Aspen Way, Vista California 92081-8349 United States of America Phone: (760) 208-6500 Fax (760) 599-3857 Email: [email protected] Web: www.amronintl.com This manual and the information contained herein are provided for use as an operation and maintenance guide. No license or rights to manufacture, reproduce, or sell either the manual or articles described herein are given. Amron International, Inc. reserves the right to change specifications without notice. Copyright© 2017 Amron International, Inc. 2820A AND 2825A TWO DIVER COMMUNICATOR USER MANUAL TABLE OF CONTENTS 1 INTRODUCTION AND SPECIFICATIONS .......................................................................................... 1 1.1 INTRODUCTION ........................................................................................................................... 1 1.2 ELECTRICAL SPECIFICATIONS ................................................................................................ 1 1.3 MECHANICAL SPECIFICATIONS ............................................................................................... 2 1.4 AMCOM II MODEL 2820A DIVER COMMUNICATOR ................................................................ 3 1.5 AMCOM II MODEL 2825A DIVER COMMUNICATOR ................................................................ 4 2 LIMITED WARRANTY AND SERVICE POLICY ................................................................................. -
Sonar for Environmental Monitoring of Marine Renewable Energy Technologies
Sonar for environmental monitoring of marine renewable energy technologies FRANCISCO GEMO ALBINO FRANCISCO UURIE 350-16L ISSN 0349-8352 Division of Electricity Department of Engineering Sciences Licentiate Thesis Uppsala, 2016 Abstract Human exploration of the world oceans is ever increasing as conventional in- dustries grow and new industries emerge. A new emerging and fast-growing industry is the marine renewable energy. The last decades have been charac- terized by an accentuated development rate of technologies that can convert the energy contained in stream flows, waves, wind and tides. This growth ben- efits from the fact that society has become notably aware of the well-being of the environment we all live in. This brings a human desire to implement tech- nologies which cope better with the natural environment. Yet, this environ- mental awareness may also pose difficulties in approving new renewable en- ergy projects such as offshore wind, wave and tidal energy farms. Lessons that have been learned is that lack of consistent environmental data can become an impasse when consenting permits for testing and deployments marine renew- able energy technologies. An example is the European Union in which a ma- jority of the member states requires rigorous environmental monitoring pro- grams to be in place when marine renewable energy technologies are commis- sioned and decommissioned. To satisfy such high demands and to simultane- ously boost the marine renewable sector, long-term environmental monitoring framework that gathers multi-variable data are needed to keep providing data to technology developers, operators as well as to the general public. Technol- ogies based on active acoustics might be the most advanced tools to monitor the subsea environment around marine manmade structures especially in murky and deep waters where divining and conventional technologies are both costly and risky. -
Enabling Tracking & Diver Communications
Enabling Tracking & Diver Communications Ioseba Tena UDT 2019 Introduction to Sonardyne Leading independent provider of underwater acoustic, inertial, optical and sonar technology 70+ >275 >45 The number of Sonardyne The age of our 10,000 countries where employees worldwide company Transducer we operate manufactured each year 10mm 156,000 Positioning accuracy of 6G Total square footage acoustic of our facilities technology 500Mb/s 12,000m The speed we How deep our can transfer data equipment can operate subsea 100% 24/7 Deep water fields where 80% Support any Sonardyne technology is Percentage of time you need it used products we export Enabling Tracking and Diver Communication Over 45 years of experience Enabling Tracking and Diver Communication Dead-reckoning/DGPS (U.S. Navy photo by Mass Communication Specialist 2nd Class Tyler Thompson/Released) Enabling Tracking and Diver Communication Can we leverage commercial work? Enabling Tracking and Diver Communication Can we leverage commercial work? Enabling Tracking and Diver Communication How does USBL work? Ultra-Short BaseLine positioning systems We can track calculate the position of multiple targets subsea target by in sequence measuring the range and bearing of a transponder from the vessel Enabling Tracking and Diver Communication Can we leverage commercial work? Sonardyne Wideband® 2 Track Exchange Data USBL Enabling Tracking and Diver Communication Smaller foot print for divers Enabling Tracking and Diver Communication Smaller foot print for divers Battery: 95% Status: Green Mission: -
Doppler Sonar Current Indicator 8
DOPPLER SONAR CURRENT INDICATOR 8 Model High-performance current indicator displays accurate speed and current data at five depth layers on a 10.4" color TFT or virtually any VGA monitor utilizing a Black Box system www.furuno.com Obtain highly accurate water current measurements using FURUNO’s reliable acoustic technology. The FURUNO CI-68 is a Doppler Sonar Current The absolute movements of tide Indicator designed for various types of fish and measuring layers are displayed in colors. hydrographic survey vessels. The CI-68 displays tide speed and direction at five depth layers and ship’s speed on a high defi- nition 10.4” color LCD. Using this information, you can predict net shape and plan when to throw your net. Tide vector for Layer 1 The CI-68 has a triple-beam emission system for providing highly accurate current measurement. This system greatly reduces the effects of the Tide vector for Layer 2 rolling, pitching and heaving motions, providing a continuous display of tide information. When ground (bottom) reference is not available Tide vector for Layer 3 acoustically in deep water, the CI-68 can provide true tide current information by receiving position and speed data from a GPS navigator and head- ing data from the satellite (GPS) compass SC- 50/110 or gyrocompass. In addition, navigation Tide vector for Layer 4 information, including position, course and ship ’s track, can also be displayed The CI-68 consists of a display unit, processor Tide vector for Layer 5 unit and transducer. The control unit and display unit can be installed separately for flexible instal- lation. -
OCEANIC ·.ENGINEERING Sociel=Y
. : . ': R1..�t et',i.,.\ t< •. �IEEE OCEANIC ·.ENGINEERING SOCIEl=Y ""' 1'11*"* * ...* IEEE OCEANIC ENGINEERING SOCIETY President Vice President, East Coast Vice President, West Coast Treasurer Secretary STANLEY G. CHAMBERLAIN ANTHONY I. ELLER LLOYD Z. MAUDLIN EDWARD W. EARLY JOSEPH CZIKA Raytheon Co. Code 130 Lloyd Z. Maudlin Assoc. 4919 N.E. 93rd St. The Analytical Sciences Submarine Signal Division NORDA Liaison Office 5461 Toyon Rd. Seattle, WA 98115 Corp. Box 360 800 North Quincy St. San Diego, CA 92115 (206) 543-9825 1700 North Moore St. Portsmouth, RI 02871 Arlington, VA 22217 (619) 265-9292 (H) Suite 1220 (401) 847-8000Ext. 442' (202) 696-4951 (619) 474-2214 (0) Arlington, VA 22209 (703} 558-7400 Jr. Past President Membership Development Chapters Awards and Fellows Nominations DONALD M. BOLLE DA YID E. WEISSMAN ARTHUR S. WESTNEAT,JR. DONALD M. BOLLE DONALD M. BOLLE College of Eng. Phys. Sci. Dept.of Eng. & Computer Sci. Wadleigh Falls Rd. RD#! College of Eng. Phys. Sci. Packard Labs #19 123 Adams Hall Newmarket, NH 03857 Packard Labs #19 Lehigh Univ. Hofstra Univ. (603} 659-2195 Lehigh Univ. Bethlehem, PA 18105 Hempstead, NY 11550 Bethlehem, PA 18105 (215) 861-4025 (516) 560-5546 (215} 861-4025 Constitution and Bylaws Sr. Past President Meetings Committee LLOYD Z. MAUDLIN ANTHONY I. ELLER (East) JOSEPH CZIKA Lloyd Z. Maudlin Assoc. LLOYD Z. MAUDLIN (West} 5461 Toyon Rd. San Diego, CA 92115 (714) 265-9292 IEEE Oceanic Engineering Society News/el/er is published quarterly by the Oceanic Engineering Society of the Institute of Electrical and Electronics Engineers, Inc. -
SM2 DX300 Saturation Diving System
SM2 DX300 Saturation Diving System DESCRIPTION Year Built : 2010 Manufacturer : Divex Asia Pacific Classification Society : Lloyds Register Compliance Standards : IMCA D018 & D024 Rev.1 Design Standard : Lloyds Rules & Regulations for the Construction & Classification of Submersibles & Underwater systems, December 1989 Capacity : 12 man Depth Rating : 300msw Design Pressure : 30 bar Design Temperature : -18 to +66 deg C DIVE CONTROL SURFACE COMPRESSION CHAMBERS Housed within a purpose Built 7m x 3m x 3m insulated with air conditioned container • DDC 1 - 6 man Living Chamber (ML Volume : 20.7 m3) comprising of; • DDC 2 - 3 man Living Chamber (Volume : 20.9 m3) • Dive gas Supply Panel. • DDC 3 - 3 man Twin Lock Living Chamber (EL Volume : 8.3 m3, ML Volume : 12.7 m3) • Diver gas reclaim control panel. • Medical Locks and Bell clamp with mechanical interlock system. • Analox G22 O2 and G30 CO2 monitoring systems. • Chamber internal outfitted with BIBS, HCU, scrubbers and lighting. • Bell Control Systems. • Supplied with PPO2 meters and lung scrubbers. • Bell hot water monitoring system. • Bell and Diver Video & unscrambler communications systems. HYPERBARIC RESCUE CHAMBER • OTS Through Water Emergency communications systems. • Gantry launch and recovery system. • Bell and Diver audio/ video recording suite. • HRC internal volume : 16 m3 • Fixed and Portable Breathing Appratus. • Gas Distribution Control panel. • Equipped with Emergency Lights, Smoke/ Heat Detector & Portable Fire Extinguishers. • Onboard Emergency Gas Cylinders. • Safe-Ox oxygen monitoring system with audio visual alarm. • HRC Emergency Power Battery. • 3 KVA UPS Power Supply Units. • Chamber internal outfitted with BIBS, HCU, scrubbers and lighting. • Supplied with PPO2 meters, EPIRB, strobe lights, survival suits, lung scrubbers and food LIFE SUPPORT CONTROL ration. -
EPA National Dive Safety Program 2015 Annual Report
Environmental Protection Agency National Dive Safety Program 2015 Annual Report Jed Campbell, former Director, EPA National Diver Training Program May 30, 2016 Executive Summary The U.S. Environmental Protection Agency (EPA) conducts a wide range of diving activities for regional and national programs. Diving is conducted in rivers, lakes, harbors, and the open ocean to support monitoring, research, and emergency response efforts. The EPA administers diving activities under guidelines established through the EPA Diving Safety Management Program, and in compliance with the Occupational Safety and Health Administration (OSHA) regulations. This report has been developed in response to the requirements of EPA’s Diving Safety Policy. The EPA’s National Diving Safety Program conducted 959 scientific, training and proficiency dives in FY2015, involving nine EPA dive units and 64 divers. This report describes how the program is administered nationally, and what activities each EPA dive unit undertakes. Questions regarding this report or about the EPA Diving Safety Program should be directed to: Alan Humphrey, Chairman EPA Diving Safety Program Phone: (609) 865-4546 E-mail: [email protected] 2 Introduction This report is provided to the Environmental Protection Agency’s (EPA) Safety and Sustainability Division (formerly SHMED) in accordance with EPA’s Dive Safety Policy. This policy and EPA’s Diving Safety Manual (April, 2016 Version 1.3) can be viewed online at: https://www.epa.gov/sites/production/files/2016-04/documents/epa-diving-safety-manual- 2016.pdf This report is a summary of the EPA’s National Diving Safety Program (NDSP) activities from October 1, 2014, through September 30, 2015.