Drifting Hydrophones As an Ecologically Meaningful Approach to Underwater Soundscape Measurement in Coastal Benthic Habitats
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soundscape Ecology
Soundscape Ecology “Over increasingly large areas of the United States, spring now comes unheralded by the return of the birds, and the early mornings are strangely silent where once they were filled with the beauty of bird song.” Rachel Carson – The Silent Spring 1962 Dr. Bryan Pijanowski Department of Forestry & Natural Resources Overview 1. What is a soundscape? 2. Play example soundscapes (5-8 recordings) 3. Describe how we measure soundscapes 4. Summarize some of our research surrounding Purdue University 5. Describe the role of engineers in research like this 1. WHAT IS A SOUNDSCAPE? Biophony – sounds created by biological Soundscapes organisms, mostly insects, amphibians, birds and mammals. Signals carry information and are thus complex. Geophony – sounds from the movement of wind and water. Driven mostly by climate. Running streams, rain and wind. Anthrophony – sounds by human-made objects such as machines, friction from road noise, bells, sirens. Definitions of Soundscapes • R. Murray Schafer (1994): “the soundscape is any acoustic field of study… We can isolate an acoustic environment as a field of study just as we can study the characteristics of a given landscape. However, it is less easy to formulate an exact impression of a soundscape than of a landscape” (p. 7). • Bernie Krause (1987, 2002): all of the sounds (biophony, geophony and anthrophony) present in an environment at a given time, soundscape as a finite resource-competing for spectral space (acoustic niche hypothesis). What it is not • Bioacoustics: traditionally focused on species specific traits or a single group of organisms – this is a 70 year old field of study • Noise research: examining how noise is created in human-dominated areas 2. -
The Psychophysiological Implications of Soundscape: a Systematic Review of Empirical Literature and a Research Agenda
International Journal of Environmental Research and Public Health Review The Psychophysiological Implications of Soundscape: A Systematic Review of Empirical Literature and a Research Agenda Mercede Erfanian * , Andrew J. Mitchell , Jian Kang * and Francesco Aletta UCL Institute for Environmental Design and Engineering, The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London WC1H 0NN, UK; [email protected] (A.J.M.); [email protected] (F.A.) * Correspondence: [email protected] (M.E.); [email protected] (J.K.); Tel.: +44-(0)20-3108-7338 (J.K.) Received: 16 September 2019; Accepted: 19 September 2019; Published: 21 September 2019 Abstract: The soundscape is defined by the International Standard Organization (ISO) 12913-1 as the human’s perception of the acoustic environment, in context, accompanying physiological and psychological responses. Previous research is synthesized with studies designed to investigate soundscape at the ‘unconscious’ level in an effort to more specifically conceptualize biomarkers of the soundscape. This review aims firstly, to investigate the consistency of methodologies applied for the investigation of physiological aspects of soundscape; secondly, to underline the feasibility of physiological markers as biomarkers of soundscape; and finally, to explore the association between the physiological responses and the well-founded psychological components of the soundscape which are continually advancing. For this review, Web of Science, PubMed, Scopus, and -
Interface Design for Sonobuoy Systems
Interface Design for Sonobuoy Systems by Huei-Yen Winnie Chen A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Systems Design Engineering Waterloo, Ontario, Canada, 2007 ©Huei-Yen Winnie Chen 2007 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Modern sonar systems have greatly improved their sensor technology and processing techniques, but little effort has been put into display design for sonar data. The enormous amount of acoustic data presented by the traditional frequency versus time display can be overwhelming for a sonar operator to monitor and analyze. The recent emphasis placed on networked underwater warfare also requires the operator to create and maintain awareness of the overall tactical picture in order to improve overall effectiveness in communication and sharing of critical data. In addition to regular sonar tasks, sonobuoy system operators must manage the deployment of sonobuoys and ensure proper functioning of deployed sonobuoys. This thesis examines an application of the Ecological Interface Design framework in the interface design of a sonobuoy system on board a maritime patrol aircraft. Background research for this thesis includes a literature review, interviews with subject matter experts, and an analysis of the decision making process of sonar operators from an information processing perspective. A work domain analysis was carried out, which yielded a dual domain model: the domain of sonobuoy management and the domain of tactical situation awareness address the two different aspects of the operator's work. -
An Educational Guide to :Nature's Orchestra
An Educational Guide to: Generously supported by: Sounds in Nature Sound is a dynamic and ever-present component of all 1 landscapes . The sounds found in natural ecosystems have been linked to the health and environmental quality of those ecosystems since the publication of Rachel Carson’s 1 pioneering work Silent Spring in 1962 . What is a Soundscape? A “soundscape” is made up of all the sounds found 2 "Every soundscape we hear in a in a particular environment . wild habitat generates its own Those sounds are divided into three major 1 unique signature" - Bernie Krause categories : Biophany - sounds made by living things Check Out: Geophany - nonbiological sounds made by things like wind, rain and thunder The Center for Global Soundscapes www.centerforglobalsoundscapes.org Anthrophony - sounds caused by humans What is Soundscape Ecology? Soundscape ecology can be described as the combination of all sounds (including the biophany, geophany and anthropony) made within a specified landscape that together create sound patterns 1 unique to the time and place . What Can We Learn From Soundscape Ecology? 3 The structure of a landscape, is intricately connected to the soundscape it produces . That soundscape can help indicate not only the types of species present and their population sizes, but can also illustrate the impacts of human-produced sounds on the ecosystem3 . The monitoring of a specific soundscape over time can indicate ecosystem changes such as biodiversity loss, the introduction of new and invasive species, as well as changes in animal behaviours3 . References: 1. Pijanowski, B. C., & Farina, A. (2011). Introduction to the special issue on soundscape ecology. -
A Comparative Study of Restored Seabird Island Soundscapes
Title: Do soundscape indices predict landscape scale restoration outcomes? A comparative study of restored seabird island soundscapes. Running Head: Soundscapes of restored seabird islands Authors and Addresses: Abraham L. Borker Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Center for Ocean Health, 115 McAllister Way, Santa Cruz, CA 95060, USA, [email protected] *corresponding author Rachel T. Buxton Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA, [email protected] Ian L. Jones Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada, [email protected] Heather L. Major Department of Biological Sciences, University of New Brunswick, P.O Box 5050, Saint John NB E2L 4L5, Canada, [email protected] Jeffrey C. Williams Alaska Maritime NWR, 95 Sterling Highway, Suite 1, Homer, Alaska 99603, USA, [email protected] Bernie R. Tershy Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Center for Ocean Health, 115 McAllister Way, Santa Cruz, CA 95060, USA, [email protected] This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/rec.13038 This article is protected by copyright. All rights reserved. Donald A. Croll Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Center for Ocean Health, 115 McAllister Way, Santa Cruz, CA 95060, USA, [email protected] Author Contributions: AB, RB conceived the idea of a soundscape analysis of existing recordings. -
A Synthesis of Health Benefits of Natural Sounds and Their Distribution in National Parks
A synthesis of health benefits of natural sounds and their distribution in national parks Rachel T. Buxtona,1,2, Amber L. Pearsonb,c,1, Claudia Alloud, Kurt Fristrupe, and George Wittemyerf aDepartment of Biology, Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6 Canada; bDepartment of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, MI 48823; cDepartment of Public Health, University of Otago, 6242 Wellington, New Zealand; dJames Madison College, Michigan State University, East Lansing, MI 48823; eNatural Sounds and Night Skies Division, National Park Service, Fort Collins, CO 80525; and fDepartment of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523 Edited by Arun Agrawal, University of Michigan, Ann Arbor, MI, and approved February 5, 2021 (received for review June 24, 2020) Parks are important places to listen to natural sounds and avoid including hearing loss, nonauditory physiological effects, increased human-related noise, an increasingly rare combination. We first occurrence of hypertension and cardiovascular disease, and high explore whether and to what degree natural sounds influence levels of annoyance (7). Noise is present even in remote pro- health outcomes using a systematic literature review and meta- tected areas in the United States, and soundscape conservation is analysis. We identified 36 publications examining the health ben- a burgeoning priority (8). efits of natural sound. Meta-analyses of 18 of these publications The health benefits of exposure to nature are well docu- revealed aggregate evidence for decreased stress and annoyance mented (for a recent overview, see ref. 9). Here, we define hu- (g = −0.60, 95% CI = −0.97, −0.23) and improved health and pos- man health broadly, encompassing physiological outcomes (e.g., itive affective outcomes (g = 1.63, 95% CI = 0.09, 3.16). -
Appendix A: Navy Activities Descriptions
Appendix A: Navy Activities Descriptions NORTHWEST TRAINING AND TESTING FINAL EIS/OEIS OCTOBER 2015 TABLE OF CONTENTS APPENDIX A NAVY ACTIVITIES DESCRIPTIONS .............................................................................. A-1 A.1 TRAINING ACTIVITIES ................................................................................................................. A-1 A.1.1 ANTI-AIR WARFARE TRAINING ............................................................................................................ A-1 A.1.1.1 Air Combat Maneuver ............................................................................................................... A-2 A.1.1.2 Missile Exercise (Air-to-Air) ....................................................................................................... A-3 A.1.1.3 Gunnery Exercise (Surface-to-Air) ............................................................................................. A-4 A.1.1.4 Missile Exercise (Surface-to-Air) ................................................................................................ A-5 A.1.2 ANTI-SURFACE WARFARE TRAINING ..................................................................................................... A-6 A.1.2.1 Gunnery Exercise Surface-to-Surface (Ship) .............................................................................. A-7 A.1.2.2 Missile Exercise Air-to-Surface .................................................................................................. A-8 A.1.2.3 High-speed Anti-Radiation Missile -
Displaying Bioacoustic Directional Information from Sonobuoys Using “Azigrams”
Displaying bioacoustic directional information from sonobuoys using “azigrams” Aaron M. Thode,1,a) Taiki Sakai,2,b) Jeffrey Michalec,3 Shannon Rankin,3 Melissa S. Soldevilla,4 Bruce Martin,5 and Katherine H. Kim6 1Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0238, USA 2Lynker Technologies, LLC, under contract to the Southwest Fisheries Science Center, NMFS/NOAA, La Jolla, California 92037, USA 3Southwest Fisheries Science Center, NMFS/NOAA, La Jolla, California 92037, USA 4Southeast Fisheries Science Center, NMFS/NOAA, 75 Virginia Beach Drive, Miami, Florida 33149, USA 5JASCO Applied Sciences, 32 Troop Avenue, Suite 202, Dartmouth, Nova Scotia, B3B 1Z1, Canada 6Greeneridge Sciences, Inc., 90 Arnold Place, Suite D, Santa Barbara, California 93117, USA (Received 16 November 2018; revised 22 May 2019; accepted 5 June 2019; published online 10 July 2019) The AN/SSQ-53 Directional Frequency Analysis and Recording (DIFAR) sonobuoy is an expend- able device that can derive acoustic particle velocity along two orthogonal horizontal axes, along with acoustic pressure. This information enables computation of azimuths of low-frequency acous- tic sources from a single compact sensor. The standard approach for estimating azimuth from these sensors is by conventional beamforming (i.e., adding weighted time series), but the resulting “cardioid” beampattern is imprecise, computationally expensive, and vulnerable to directional noise contamination for weak signals. Demonstrated here is an alternative multiplicative processing scheme that computes the “active intensity” of an acoustic signal to obtain the dominant direction- ality of a noise field as a function of time and frequency. This information is conveniently displayed as an “azigram,” which is analogous to a spectrogram, but uses color to indicate azimuth instead of intensity. -
Soundscape Ecology
Soundscape Ecology Almo Farina Soundscape Ecology Principles, Patterns, Methods and Applications Almo Farina Department of Basic Sciences and Foundations Urbino University Urbino, Pesaro-Urbino Italy ISBN 978-94-007-7373-8 ISBN 978-94-007-7374-5 (eBook) DOI 10.1007/978-94-007-7374-5 Springer Dordrecht Heidelberg New York London © Springer Science+Business Media Dordrecht 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Miksisolds Et Al 2018Exploring-The-Ocean
Exploring the Ocean Through Soundscapes Jennifer L. Miksis-Olds Listening to underwater soundscapes helps us understand how Postal: ocean physics and the biology of marine communities are responding School of Marine Science to a dynamically changing ocean. and Ocean Engineering It is a clear afternoon, and you are looking out at the skyline from the highest University of New Hampshire point within 100 km. From this vantage point, you can see for “miles and miles,” 24 Colovos Road but the only sounds you can hear are the people with you, a few birds, insects, Durham, New Hampshire 03824 and the wind. Now, if you went to an equivalent point in the ocean to stand on USA the mid-Atlantic ridge overlooking the ocean’s abyssal plain, you would still have Email: 1,200 m of inky black water above and around you. Listening through a hydro- [email protected] phone, the sounds you hear would be extraordinarily rich. Crustaceans would be heard scratching at the rock and deepwater corals. Sperm, beaked, and pilot whales would be searching for food using echolocating click trains. Blue and fin Bruce Martin whale calls, trapped in the deep sound channel, would arrive from thousands Postal: of kilometers away. Every few seconds, the sound channel would also bring you JASCO Applied Sciences energy pulses from oil and gas seismic surveys arriving from Brazil, Africa, the 32 Troop Avenue - Suite 32 North Sea, and Newfoundland. Dartmouth, Nova Scotia B3B 1Z1 Underwater acoustic research has revealed the amazing physics of how sound Canada propagates in the ocean, primarily motivated by using sound to detect oil and gas Email: under the Earth’s crust or for naval applications. -
Exploring the Ocean Through Sound
Exploring the Ocean through Sound Jennifer L. Miksis-Olds School of Marine Science & Ocean Engineering, University of New Hampshire Bruce Martin Department of Oceanography, Dalhousie University Abstract Sound is an important sensory modality in the lives of many marine organisms, as sound travels faster and farther than any other sensory signal. Consequently, marine animals ranging from the smallest larvae to the largest whales have evolved mechanisms for both producing and receiving acoustic signals. Innovation in underwater recording technology now permits the remote monitoring of vocalizing animals and the environment without the need to rely on human observers, the physical presence of an ocean observation vessel, or adequate visibility and sampling conditions. Passive acoustic monitoring is an efficient, non- invasive, and relatively low-cost alternative to hands-on exploration that is providing a wealth of information on regional sound sources (biologic, anthropogenic, geophysical), animal behavior, ecosystem dynamics, biodiversity, and impacts of human activity Key Words Soundscape, ambient sound, soundscape ecology, orientation, biodiversity The average depth of the ocean is 4000 m. Light only penetrates the first 100 m, yet life abounds below this photic zone. Marine life establish homes, find food, socialize, mate, and raise young while avoiding predators, all without light. Ocean water is approximately 1000 times denser than air resulting in ocean sound speeds that are approximately five times 1 higher than in air with much -
SOCAL 2011-2012 Aerial Surveys
Performed and submitted for the U.S. Navy's Southern California Range Complex 2012 Annual Monitoring Report AERIAL SURVEYS CONDUCTED IN THE SOCAL OPAREA FROM 01 AUGUST 2011 TO 31 JULY 2012 Photo by B. Würsig, taken under NMFS permit 14451 Prepared for Commander, U.S. Pacific Fleet, Pearl Harbor, Hawaii Submitted to Naval Facilities Engineering Command Southwest (NAVFAC SW), EV5 Environmental, San Diego, CA, 92132 Contract # N62470-10-D-3011 Prepared by HDR Inc. San Diego, California 1 August 2012 Performed and submitted for the U.S. Navy's Southern California Range Complex 2012 Annual Monitoring Report Citation for this report is as follows: Smultea, M.A., C. Bacon, T.F. Norris, and D. Steckler. 2012. Aerial surveys conducted in the SOCAL OPAREA from 01 August 2011 to 31 July 2012. Prepared for Commander, U.S. Pacific Fleet, Pearl Harbor, HI. Submitted to Naval Facilities Engineering Command Southwest (NAVFAC SW), EV5 Environmental, San Diego, 92132 under Contract No. N62470-10-D-3011 issued to HDR, Inc., San Diego, CA. Submitted August 2012. Cover Photo: Gray whales (Eschrichtius robustus), photographed with a telephoto lens from the Partenavia fixed-wing aircraft during a winter 2012 SOCAL aerial monitoring survey. Photo by B. Würsig under NMFS permit 14451. Performed and submitted for the U.S. Navy's Southern California Range Complex 2012 Annual Monitoring Report Aerial Surveys Conducted from 01 August 2011 to 31 July 2012 Final Technical Report Table of Contents ACRONYMS AND ABBREVIATIONS ....................................................................................