Helgoland Und Die Erforschung Der Marinen Benthosalgen* D

Total Page:16

File Type:pdf, Size:1020Kb

Helgoland Und Die Erforschung Der Marinen Benthosalgen* D HELGOL,~NDER MEERESUNTERSUCHUNGEN Helgolander Meeresunters. 42, 385-425 (1988) Helgoland und die Erforschung der marinen Benthosalgen* D. Mollenhauer t & K. Lfining 2 1 Forschungsinstitut Senckenberg (Frankfurt am Main), Auflenstefle Lochmfihle; D - 64 65 Bie b ergem fin d 2 Biologische Anstalt Helgoland, Zentrale Hamburg; Notkestrafle 31, D-2000 Hamburg 52 ABSTRACT: Helgoland and the history of research on marine benthic algae. Early phycological research on the island of Helgoland was performed by amateur phycologists from the adjacent coastal regions of Germany (Bremen, Hamburg, Lower Saxony and Schleswig-Holstein). These pioneers were followed by professionals, and by collectors from the mainland universities, particu- larly from Berlin. This second phase group includes the naturalist Christian Gottfried Ehrenberg, the zoologists Johannes Mfiller, Ernst Haeckel and Anton Dohrn, and the botanists Alexander Braun, Nathanael Pringsheim, and Ferdinand Cohn. The leading marine phycologist in Germany, towards the end of the 19th century, was Johannes Reinke, who finally worked at the University of Kiel. Paul Kuckuck's doctoral thesis had been supervised by Reinke who recommended him for the post of the first curator of botany at the Biological Station of Helgoland, which was founded in 1892. Kuckuck worked on the island from 1892 to 1914. After World War I, and after Kuckuck's untimely death, Wilhelm Nienburg became the second curator of botany on Helgo~and, from 1921 to 1923. The next permanent phycologist on the island, from 1925 to 1936, was Ernst Schreiber. He was followed in 1936 by Peter Kornmann, who retired in 1972 but still continues as a research worker, together with Paul-Heinz Sahling, who started to work as a technical assistant under the guidance of Ernst Schreiber in 1927. EINLEITUNG Europ~ische Politik im neunzehnten Jahrhundert, Aufblfihen der Nordseeb~der sowie Industrialisierung der feinmechanischen und optischen Fertigung, sie alle haben sich auch auf die Erforschungsgeschichte der Helgol~nder Meeresalgen ausgewirkt. Die Kontinentalsperre Napoleons zwischen 1806 und 1813 brachte ffir Helgoland einen ungeahnten wirtschaftlichen Aufschwung. Die in der Deutschen Bucht vor dem Festland gelegene Insel war britische Kronkolonie und wurde zum Stapel- und Umschlagplatz ffir Schmuggelgut aller Art (Mohrhenn, 1928). Nach den Befreiungskriegen verdorrte die Scheinblfite, und auf der Insel herrschte bittere Not (Samhaber, 1951; Packrol~, 1952), Im Jahr 1826 grfindete der unternehmungs- tfichtige Helgol~nder Jacob Andresen S i e m e n s eine Seebadeanstalt und ffihrte den aufkeimenden Badebetrieb durch seine Beharrhchkeit zum Erfolg. Es kam dem Helgo- l~inder Seebad wie auch den verschiedenen Vorl~iufern an Ost- und Nordsee zugute, dal~ Reisen des gehobenen Bfirgertums zum Meet Mode geworden waren. Man sammelte * Herrn Dr. Dr. h. c. Peter Kornmann zum 80. Geburtstag gewidmet. Biologische Anstalt Helgoland, Hamburg 386 D. Mollenhauer & K. Lfining Naturobjekte, man malte und badete. Siemens' Vorhaben profitierte auch davon, dab die kleine Insel im deutschen Schrifttum reges Interesse gefunden hatte. Sie wird in Heinrich v o n K 1 e i s t s journalistischen Beitragen e rwahnt, ebenso im Hause yon G o e t h e in Weimar (Tischreden, 19. Februar 1891, nach Eckermann) und in Heinrich Heine s Schilderungen seiner Nordseefahrten. So konnte Helgoland sich schlieBlich als Nordsee- bad neben seinen alteren Konkurrenten behaupten (Heiligendamm-Doberan 1793/94, Norderney 1797, Travemfinde 1802, Cuxhaven 1816). Helgolandfahrten als besondere Attraktionen gab es seit 1822 von Cuxhaven, seit 1819 von Wyk auf F6hr und seit 1822 von Kiel. DIE ANFANGE DER ALGENFORSCHUNG: HELGOLANDFAHRTEN UND EXSIKKATENSAMMLER Wer als Naturfreund den Meeresstrand kennenlernt, ist vonder Vielfalt und Sch6n- heit der Flora und Fauna fiberrascht. Den Wunsch des interessierten Badegastes, sich eingehender darfiber unterrichten zu k6nnen, erffillte schon bald eine entsprechende populare Literatur. In anspruchsvolleren Werken sind auch Beschreibungen und Listen der Fauna und Flora Helgolands enthalten. Zu diesen Bfichern geh6ren die von Ernst H a 11 i e r verfaBten ,,Nordseestudien" (1863a). Hallier (1831-1904) war Professor der Botanik in Jena und stand im EinfluBbereich von Ernst Haeckel. Von Hallier stammt ferner ,,Die Vegetation auf Helgoland" (1863b) mit wertvollen Einzelbeobachtungen, etwa fiber Chorda ilium mit dem bevorzugten Standort auf den Dfinenklippen: ..... Noch mfissen wir des Seebindfadens, Scytosiphon Filum Ag., Erwahnung thun, den man sehr haufig an der Ostseite der Dfine sieht und zu dessen Beschreibung man eigentlich nichts weiter braucht als den Namen, denn in der That ist der Thallus ein langer (oft 20 FuB und dariiber), dfinner, schleimiger Faden" (Hallier, 1863b: pp. 41-42). Die ,,Nordseestudien" (HalIier, 1863a) enthalten auf 44 Seiten eine kommentierte Auf- zahlung von Helgolander Meeresalgen, darunter auch der damals auf der Westseite haufigen und warmeliebenden Dictyota dichotoma, die seit den 1950er Jahren bei Helgoland immer seltener gefunden wurde. Auf Helgoland stieg die Zahl der Badegaste an, zum Beispiel im Jahr 1887 auf 11 600 Kurgaste (davon 2000 ,,Passanten", also Tagesgaste), wie der Badearzt Emil L in d e- m a n n (1857-1923) in seinem Buch ,,Die Nordseeinsel Helgoland" berichtet (Linde- mann, 1889: p. I15). Hierin finden sich neben topographischen und historischen Einzel- heiten auch Darstellungen der Messungen des Pulsschlages vor und nach dem Gang zum Meeresstrand, wobei die Erh6hung der Zirkulation durch die Seeluft deutlich wird. Das Meet schlechthin land auch groBen Anklang in der Literatur, wie etwa Jakob Matthias S c h 1 e i d e n s groBes populares Buch ,,Das Meer" (1867) zeigt. Justus L i e - b i g, so berichtet Rudolf Sachtleben (I967: p. 220), hat sich als Junge in Captain Cooks Weltumseglungsberichte vertieft und war yon den Riesentangen besonders angetan. Ein Titel wie Carl C hu n s ,,Aus den Tiefen des Weltmeeres" (1903) ware wohl schon damals zugkraftig gewesen. Die Ozeane steckten voller Geheimnisse, und die engli- schen Naturalisten hatten die SchSnheit und das Bizarre der Meerestiere und -pflanzen entdeckt. Bald zeigte man solche ,,Sensationen" im Binnenland in Aquarien (London 1853, Hamburg 1864, Berlin 1867). Es war wichtig, das Interesse der Menschen im Binnenland zu wecken; man brauchte sie als Ffirsprecher, urn spater die Meeresfor- Helgoland und die Erforschung der marinen Benthosalgen 387 schung politisch durchzusetzen und ihr Subventionen zu sichern. Besonders das alte Berliner Aquarium ,,Unter den Linden" gewann unter der Leitung des popul~ren Alfred B r e h m {1829-1884; ,,Brehms Tiefleben'} den Wundern des Meeres viele Freunde. Zu den Badegfisten gesellten sich bald die Sammler, denen die pr~chtigen Algenbe- st~nde Helgolands ein lockendes Ziel waren. Sie versorgten die zahlreich aufblfihenden Tauschvereine ffir herbarisierte Pflanzen mit Material yon dem Felswatt, dem einzigen Felsenstrand vor den deutschen Kfisten. Die Steilufer der Rfigener Kreidefelsen liegen im Brackwasser und werden nur von einem kleinen Anteil der typischen nordatlantischen Meeresalgenflora besiedelt. Was damals alles an Funden zusammengekommen ist, laBt sich heute kaum feststellen. Wahrscheinlich wurde nicht sehr konsequent gesammelt. Man produzierte der Nachfrage gem~B eine ,,Ware", Sammlerobjekte ffir das Her- barium. Dabei hat wohl vorwiegend die Vorliebe der Kaufer darfiber entschieden, was in den Exsikkatenwerken angeboten wurde. Aus der Biedermeierzeit (1815-1848) gibt es sichere Nachweise fiber die ersten Algensammler mit wissenschaftlichem Anspruch, die Helgoland aufsuchten. Es war eine Epoche, in der bei allgemeiner nationaler Entt~iuschung nach den Befreiungskriegen in einer Art von Materialbesessenheit Natur und Geschichte erforscht wurden. Wiederum ist aber auch an den wirtschaftlichen Aufschwung zu erinnern, der vielen Naturliebha- bern erst in ausreichendem MaB Geld und Freizeit ffir ihre naturkundlichen IAebhabe- reien verschaffte. Nicht wenige der forschenden Dilettanten entwickelten sich zu weltbe- kannten Spezialisten. Der Advokat und Bfirgermeister von Jever, Georg Heinrich Bern- hard J fi r g e n s (1771-1846), war einer der ersten. Er war mehrfach auf Helgoland und sammelte dort die Algen ffir die Exsikkata in den ,,Decaden 4, 5, 12 und 16" (1817-1822) seiner bekannten ,Algae aquaticae quas et in littora marls Dynastiam Jeveranam et Frisiam orientalem alluentis rejectas et in harum terrarum aquis habitantes". Jfirgens begrfindete damit eine ostfriesische Naturkundlertradition, die lange angehalten hat. Ein spaterer Nachfahre der ostfriesischen Heimatforschergenerationen war Rudolf R a s s a u (1839-1930) aus Aurich, der noch 1904 seine Exsikkatensammlung ,,Die Algen der Deutschen Nordsee-Inseln" herausgebracht hat (vgl. Peter, i910: p. 3). Er gehSrte zum Kreis der Geobotaniker um Dr. h. c. Otto L e e g e {1862-1951}. Jfirgens korrespondierte auch mit Friedrich Traugott K fit z i n g in Nordhausen (1807-1893), der ihn 1839 besucht hat und bei dieser Gelegenheit auch von dem neuen Seebad Cuxhaven aus nach Helgoland gefahren ist, Auf der Insel hat Kfitzing den Hamburger Botaniker Johann Christian L e h m a n n (1792-1860) getroffen (vgl. Kies, 1987: p. 235), dem er die Bekanntschaft mit Senator Nikolaus B in d e r (1785-1865) verdankte. Dessen riesiges, allerdings zum grSBten Teil nicht selbst gesammeltes Algen- herbarium hat Kfitzing durchgesehen (Kies, 1987: p. 234 f.). Ober Helgoland berichtet
Recommended publications
  • RED ALGAE · RHODOPHYTA Rhodophyta Are Cosmopolitan, Found from the Artic to the Tropics
    RED ALGAE · RHODOPHYTA Rhodophyta are cosmopolitan, found from the artic to the tropics. Although they grow in both marine and fresh water, 98% of the 6,500 species of red algae are marine. Most of these species occur in the tropics and sub-tropics, though the greatest number of species is temperate. Along the California coast, the species of red algae far outnumber the species of green and brown algae. In temperate regions such as California, red algae are common in the intertidal zone. In the tropics, however, they are mostly subtidal, growing as epiphytes on seagrasses, within the crevices of rock and coral reefs, or occasionally on dead coral or sand. In some tropical waters, red algae can be found as deep as 200 meters. Because of their unique accessory pigments (phycobiliproteins), the red algae are able to harvest the blue light that reaches deeper waters. Red algae are important economically in many parts of the world. For example, in Japan, the cultivation of Pyropia is a multibillion-dollar industry, used for nori and other algal products. Rhodophyta also provide valuable “gums” or colloidal agents for industrial and food applications. Two extremely important phycocolloids are agar (and the derivative agarose) and carrageenan. The Rhodophyta are the only algae which have “pit plugs” between cells in multicellular thalli. Though their true function is debated, pit plugs are thought to provide stability to the thallus. Also, the red algae are unique in that they have no flagellated stages, which enhance reproduction in other algae. Instead, red algae has a complex life cycle, with three distinct stages.
    [Show full text]
  • Red Algae (Bangia Atropurpurea) Ecological Risk Screening Summary
    Red Algae (Bangia atropurpurea) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2014 Revised, March 2016, September 2017, October 2017 Web Version, 6/25/2018 1 Native Range and Status in the United States Native Range From NOAA and USGS (2016): “Bangia atropurpurea has a widespread amphi-Atlantic range, which includes the Atlantic coast of North America […]” Status in the United States From Mills et al. (1991): “This filamentous red alga native to the Atlantic Coast was observed in Lake Erie in 1964 (Lin and Blum 1977). After this sighting, records for Lake Ontario (Damann 1979), Lake Michigan (Weik 1977), Lake Simcoe (Jackson 1985) and Lake Huron (Sheath 1987) were reported. It has become a major species of the littoral flora of these lakes, generally occupying the littoral zone with Cladophora and Ulothrix (Blum 1982). Earliest records of this algae in the basin, however, go back to the 1940s when Smith and Moyle (1944) found the alga in Lake Superior tributaries. Matthews (1932) found the alga in Quaker Run in the Allegheny drainage basin. Smith and 1 Moyle’s records must have not resulted in spreading populations since the alga was not known in Lake Superior as of 1987. Kishler and Taft (1970) were the most recent workers to refer to the records of Smith and Moyle (1944) and Matthews (1932).” From NOAA and USGS (2016): “Established where recorded except in Lake Superior. The distribution in Lake Simcoe is limited (Jackson 1985).” From Kipp et al. (2017): “Bangia atropurpurea was first recorded from Lake Erie in 1964. During the 1960s–1980s, it was recorded from Lake Huron, Lake Michigan, Lake Ontario, and Lake Simcoe (part of the Lake Ontario drainage).
    [Show full text]
  • A REAPPRAISAL of PORPHYRA and BANGIA (BANGIOPHYCIDAE, RHODOPHYTA) in the NORTHEAST ATLANTIC BASED on the Rbcl–Rbcs INTERGENIC SPACER1
    J. Phycol. 34, 1069±1074 (1998) A REAPPRAISAL OF PORPHYRA AND BANGIA (BANGIOPHYCIDAE, RHODOPHYTA) IN THE NORTHEAST ATLANTIC BASED ON THE rbcL±rbcS INTERGENIC SPACER1 Juliet Brodie 2 Faculty of Applied Sciences, Bath Spa University College, Newton Park, Newton St. Loe, Bath BA2 9BN, United Kingdom Paul K. Hayes, Gary L. Barker School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom Linda M. Irvine Botany Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom and Inka Bartsch Biologische Anstalt Helgoland, Zentrale Hamburg, Notkestrasse 31, D22607 Hamburg, Germany ABSTRACT The red algal family Bangiaceae currently has two Sequence data of the rbcL±rbcS noncoding intergenic genera assigned to it, Porphyra and Bangia, but in spacer of the plastid genome for 47 specimens of Porphyra this paper we now have good evidence that the type and Bangia from the northeast Atlantic reveal that they species are congeneric. Species of Porphyra occur in fall into 11 distinct sequences: P. purpurea, P. dioica the intertidal and shallow subtidal zones in cool- to (includes a sample of P. ``ochotensis'' from Helgoland), warm-temperate regions of the world and at certain P. amplissima (includes P. thulaea and British records times of the year can be the dominant algae in some of P. ``miniata''), P. linearis, P. umbilicalis, P. ``min- shore regions. Some species are economically im- iata'', B. atropurpurea s.l. from Denmark and B. atro- portant, being harvested from the wild or grown purpurea s.l. from Wales, P. drachii, P. leucosticta (in- commercially as food; for example, laver and nori.
    [Show full text]
  • The Epic History of Biology20
    Lthrary of Congreea Catalogtng—ln—Publ cat ion Date IntO Anthon.,. The Cplc of b10109y Anthony Serefln*. p. Ca. Titciudet bibI referencea and 0-306-44511-5 1. Blology——P4scry. 2. liedtctne-—HIsto'y. 3. 8'olog'%ts. 4. Medical sclen'tstS. Titi,. 1993 93-27895 574 .09-—0c2) CIP 0-7382-0577-X tO987 6 5 4 01993Anthony Serafini Published by Perseus Publishing, A Member of the Perseus Books Group. All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying. microfilming, recording. or otherwise, without written permission from the Publisher Printedin the United States of America Contents CRAMER 1. THE BEGINNINGS I CHAP1ER2. MESOFUTAMIA 9 ClIAFTER3. GREEK MFDKINF CHAPTER4. ROME 45 CHAI1FER5. IFIE MIDDLE AGES 55 CHArFER 6. Fl IF 54 Cl IAVIER 7. PEST II ENCE IN THE RENAISSANCE 69 CHAPTER 8. TI-Ui AGE('IVESAIIIJS 75 CHAPTER 4 TIlE HARVEYt RA 89 Lx x Contents CHAPTER 10. THE AGE OF NEWTON 703 CHAPTER11. THE MICROSCOPE AND LEEUWENI-IOEIC 117 CHAPTER12. THE MEETING OF BEOWGY AND CHEMISTRY 177 CHAPTER 13. RAY AND THE EMERGENCE OF CELL ThEORY 125 CHAPTER THE AGE OF UNNAEUS AND 11IE ENLIGHTENMENT 139 CHAPTER15. LAMARCIC AND HIS SYSTEM 17! CHAPTER16. TI IF RiSE OF PALEONTOLOGY CHAPTER 17. BIOWGY IN THE VJCTORIAN ERA 195 CHAPTER 18. DARWIN AND HIS AGE 209 CHAPTER19. EMBRYOLOGY AND BIOCHEMISTRY IN THE DARWINIAN ERA 233 CHAPTER 20. THE AGE OF PASTEUR AND THE DEVELOPMENT OF THE MICROSCOPE 249 CHAPTER21. BIOLOGY IN THE TWENTIETH CENTURY 269 CHAE'TLR 22.
    [Show full text]
  • Advances in Photosynthesis and Respiration, Volume 23: Structure and Function of Plastids
    Photosynth Res (2006) 89:173–177 DOI 10.1007/s11120-006-9070-z ANNOUNCEMENT Advances in Photosynthesis and Respiration, Volume 23: Structure and Function of Plastids Govindjee Published online: 8 July 20061 Ó Springer Science+Business Media B.V. 2006 I am delighted to announce the publication, in Ad- Volume1: Molecular Biology of Cyanobacteria (28 vances in Photosynthesis and Respiration (AIPH) Chapters; 881 pages; 1994; edited by Donald A. Bryant, Series, of The Structure and Function of Plastids,a from USA; ISBN: 0-7923-3222-9); book covering the central role of plastids for life on Volume 2: Anoxygenic Photosynthetic Bacteria (62 earth. It deals with both the structure and the func- Chapters; 1331 pages; 1995; edited by Robert tion of these unique organelles, particularly of chlo- E. Blankenship, Michael T. Madigan, and Carl E. roplasts. Two distinguished authorities have edited Bauer, from USA; ISBN: 0-7923-3682-8); this volume: Robert R. Wise of the University of Volume 3: Biophysical Techniques in Photosynthesis Wisconsin at Oshkosh, Wisconsin, and J. Kenneth (24 Chapters; 411 pages; 1996; edited by the late Jan Hoober of the Arizona State University, Tempe, Amesz and the late Arnold J. Hoff, from The Arizona. Two of the earlier AIPH volumes have in- Netherlands; ISBN: 0-7923-3642-9); cluded descriptions of plastids: Volume 7 (The Volume 4: Oxygenic Photosynthesis: The Light Molecular Biology of Chloroplasts and Mitochondria Reactions (34 Chapters; 682 pages; 1996; edited by in Chlamydomonas, edited by Jean-David Rochaix, Donald R. Ort and Charles F. Yocum, from USA; Michel Goldschmidt-Clermont and Sabeeha Mer- ISBN: 0-7923-3683-6); chant); and Volume 14 (Photosynthesis in Algae, Volume 5: Photosynthesis and the Environment (20 edited by Anthony Larkum, Susan Douglas, and John Chapters; 491 pages; 1996; edited by Neil R.
    [Show full text]
  • "Phycology". In: Encyclopedia of Life Science
    Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition.
    [Show full text]
  • Marchantia References 1986-2006 Mp Cpgenome To
    Marchantia literature 1986-2006 Mp CpGenome to Genome Project Marchantia literature 1986-2006 Mp CpGenome to Genome Project Adam, K.-P., and H. Becker, 1993 A lectin from the liverwort Marchantia polymorpha L. Experimentia 49: 1098-1100. Adam, K.-P., R. Thiel, J. Zapp and H. Becker, 1998 Involvement of the Mevalonic Acid Pathway and the Glyceraldehyde–Pyruvate Pathway in Terpenoid Biosynthesis of the Liverworts Ricciocarpos natans and Conocephalum conicum. Archives of Biochemistry and Biophysics 354: 181-187. Adam, K. P., and H. Becker, 1994 Phenanthrenes and Other Phenolics from in-Vitro Cultures of Marchantia-Polymorpha. Phytochemistry 35: 139-143. Akashi, K., J. Hirayama, M. Takenaka, S. Yamaoka, Y. Suyama et al., 1997 Accumulation of nuclear- encoded tRNA(Thr)(AGU) in mitochondria of the liverwort Marchantia polymorpha. Biochimica Et Biophysica Acta-Gene Structure and Expression 1350: 262-266. Akashi, K., K. Sakurai, J. Hirayama, H. Fukuzawa and K. Ohyama, 1996 Occurrence of nuclear- encoded tRNA(IIe) in mitochondria of the liverwort Marchantia polymorpha. Current Genetics 30: 181-185. Akashi, K., M. Takenaka, S. Yamaoka, Y. Suyama, H. Fukuzawa et al., 1998 Coexistence of nuclear DNA-encoded tRNA(Val)(AAC) and mitochondrial DNA-encoded tRNA(Val)(UAC) in mitochondria of a liverwort Marchantia polymorpha. Nucleic Acids Research 26: 2168-2172. Akiyama, H., and T. Hiraoka, 1994 Allozyme variability within and divergence among populations of the liverwort Conocephalum conicum (Marchantiales- Hepaticae) in Japan. Journal of Plant Research 107: 307-320. Alfano, F., A. Russell, R. Gambardella and J. G. Duckett, 1993 The actin cytoskeleton of the liverwort Riccia Fluitans-Effects of cytochalasin B and aluminium ions on rhizoid tip growth.
    [Show full text]
  • New England Seaweed Culture Handbook Sarah Redmond University of Connecticut - Stamford, [email protected]
    University of Connecticut OpenCommons@UConn Seaweed Cultivation University of Connecticut Sea Grant 2-10-2014 New England Seaweed Culture Handbook Sarah Redmond University of Connecticut - Stamford, [email protected] Lindsay Green University of New Hampshire - Main Campus, [email protected] Charles Yarish University of Connecticut - Stamford, [email protected] Jang Kim University of Connecticut, [email protected] Christopher Neefus University of New Hampshire, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/seagrant_weedcult Part of the Agribusiness Commons, and the Life Sciences Commons Recommended Citation Redmond, Sarah; Green, Lindsay; Yarish, Charles; Kim, Jang; and Neefus, Christopher, "New England Seaweed Culture Handbook" (2014). Seaweed Cultivation. 1. https://opencommons.uconn.edu/seagrant_weedcult/1 New England Seaweed Culture Handbook Nursery Systems Sarah Redmond, Lindsay Green Charles Yarish, Jang Kim, Christopher Neefus University of Connecticut & University of New Hampshire New England Seaweed Culture Handbook To cite this publication: Redmond, S., L. Green, C. Yarish, , J. Kim, and C. Neefus. 2014. New England Seaweed Culture Handbook-Nursery Systems. Connecticut Sea Grant CTSG‐14‐01. 92 pp. PDF file. URL: http://seagrant.uconn.edu/publications/aquaculture/handbook.pdf. 92 pp. Contacts: Dr. Charles Yarish, University of Connecticut. [email protected] Dr. Christopher D. Neefus, University of New Hampshire. [email protected] For companion video series on YouTube,
    [Show full text]
  • Genetic and Morphological Differentiation of Porphyra And
    Genetic and morphological differentiation of Porphyra and Pyropia species (Bangiales, Rhodophyta) coexisting in a rocky intertidal in Central Chile Andrés Meynard, Javier Zapata, Nicolás Salas, Claudia Betancourtt, Gabriel Pérez-lara, Francisco Castañeda, María Eliana Ramírez, Cristian Bulboa Contador, Marie-laure Guillemin, Loretto Contreras-porcia To cite this version: Andrés Meynard, Javier Zapata, Nicolás Salas, Claudia Betancourtt, Gabriel Pérez-lara, et al.. Ge- netic and morphological differentiation of Porphyra and Pyropia species (Bangiales, Rhodophyta) coexisting in a rocky intertidal in Central Chile. Journal of Phycology, Wiley, 2019, 55 (2), pp.297- 313. 10.1111/jpy.12829. hal-02147670 HAL Id: hal-02147670 https://hal.sorbonne-universite.fr/hal-02147670 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Phycology Genetic and morphological differentiation of Porphyra and Pyropia species (Bangiales, Rhodophyta) coexisting in a rocky intertidal in Central Chile Journal: Journal of Phycology Manuscript ID
    [Show full text]
  • A Unique Life Cycle Transition in the Red Seaweed Pyropia Yezoensis Depends on Apospory
    ARTICLE https://doi.org/10.1038/s42003-019-0549-5 OPEN A unique life cycle transition in the red seaweed Pyropia yezoensis depends on apospory Koji Mikami 1,4, Chengze Li 2,4, Ryunosuke Irie 2 & Yoichiro Hama 3 1234567890():,; Plant life cycles consist of two temporally separated stages: a haploid gametophyte and a diploid sporophyte. In plants employing a haploid–diploid sexual life cycle, the transition from sporophyte to gametophyte generally depends on meiosis. However, previous work has shown that in the red seaweed Pyropia yezoensis, this transition is independent of meiosis, though how and when it occurs is unknown. Here, we explored this question using transcriptomic profiling of P. yezoensis gametophytes, sporophytes, and conchosporangia parasitically produced on sporophytes. We identify a knotted-like homeobox gene that is predominately expressed in the conchosporangium and may determine its identity. We also find that spore-like single cells isolated from the conchosporangium develop directly into gametophytes, indicating that the gametophyte identity is established before the release of conchospores and prior to the onset of meiosis. Based on our findings, we propose a triphasic life cycle for P. yezoensis involving production of gametophytes by apospory. 1 Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan. 2 Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan. 3 Faculty of Agriculture, Saga University, 1 Honjo, Saga 840-8502, Japan.
    [Show full text]
  • Ob Dir Es Sauer Wird Mit Deiner Nahrung Und Ackerwerk, Das Laß Dich Nicht Verdrießen, Denn Gott Hat Es Also Geschaffen“
    er aus Westfalen stammende Gottfried Dietrich Wilhelm Berthold (1854- Katharina Ruttig, Thomas Friedl, 1937) ist als Botaniker des 19. und beginnenden 20. Jahrhunderts eng mit Dder Geschichte der Georgia Augusta in Göttingen verwoben. Er hatte sich be- Volker Wissemann reits als Student an der Universität Göttingen mit Algen beschäftigt und sei- ne Dissertation dieser Thematik gewidmet. Nach Forschungsaufenthalten an der Zoologischen Station in Neapel, wo er intensiv Untersuchungen an Algen „Ob Dir es sauer wird mit durchführte, habilitierte er sich 1881 in Göttingen bei Johannes Reinke. Spä- ter übernahm er dessen Professur für Botanik sowie dessen Direktorat am Deiner Nahrung und Ackerwerk, Pflanzenphysiologischen Institut und widmete sich entwicklungsmechanischen das laß Dich nicht verdrießen, bzw. physiologischen Fragen bei höheren Pflanzen. Die vorliegende Mono- grafie untersucht erstmalig anhand der gegenwärtigen Forschungslage Leben denn Gott hat es also geschaffen“ und Wirken Bertholds. Bertholds Lebensgeschichte wird chronologisch und in größtmöglicher Vollständigkeit dargestellt. Bildungsgeschichtliche Akzente, der personelle Konnex zu Johannes Reinke und der Einfluss der Zoologischen Gottfried Dietrich Wilhelm Berthold (1854-1937) Station Neapel finden hier ebenso Platz wie die Rekonstruktion der Lehr- und Forschungstätigkeiten und der familiären Verhältnisse. Da Berthold vorrangig Ein Beitrag zur Geschichte der Biologie als Phykologe, also Algenkundler anzusehen ist, widmet sich der zweite Teil an der Georgia Augusta Göttingen
    [Show full text]
  • Cumulative Bibliography on the History of Oceanography, 1987
    CUMULATIVE BIBLIOGRAPHY ON THE HISTORY OF OCEANOGRAPHY, 1987- The Cumulative Bibliography on the History of Oceanography (CBHO) was published annually in the History of Oceanography Newsletter beginning in 1987 and through 1997, in order to gather in one place the scattered literature on the history of oceanography. CBHO strives to list all works on the history of oceanography. Biographical items like biographies and obituaries are compiled separately. CBHO was compiled from 1987 to 1997 by Jacqueline Carpine-Lancre, Librarian of the Musee Oceanographique in Monaco and Secretary of the Commission of Oceanography of the International Union of the History and Philosophy of Science, Division of History of Science. More recent citations are being compiled by Deborah Day, Scripps Institution of Oceanography Archivist, and are listed at the end of this bibliography (not interspersed throughout the initial alphabetical arrangement.) CBHO includes all works on the history of oceanography, except biographical items like biographies and obituaries. There is no comprehensive bibliography on the history of oceanography before 1987. CBHO was compiled from many sources including: • Oceanographic Literature Review (part B of Deep-Sea Research), Section F.330: History of Science (especially Oceanography); • Aquatic Sciences and Fisheries Abstracts, Section: History and Development; • Bulletin Signaletique, 522: Histoire des Sciences et des Techniques, V.B.: Geophysique, Oceanographie; • Isis (critical bibliography), Section HS.23c: Oceanography. • documents received in the libraries of the Musee Oceanographique de Monaco & of the International Hydrographic Bureau, as well as SIO Archives • items sent to Jacqueline Carpine-Lancre and Deborah Day by authors, librarians & book reviewers throughout the world. The format has been changed to the style cited in The Chicago Manual of Style (14th ed., 1993).
    [Show full text]