<<

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/249551833

Amphibian biostratigraphy of the European Permo-Carboniferous

Article in Geological Society London Special Publications · January 2006 DOI: 10.1144/GSL.SP.2006.265.01.09

CITATIONS READS 35 45

2 authors:

Ralf Werneburg Joerg W. Schneider Naturhistorisches Museum Schl… Technische Universität Bergaka…

65 PUBLICATIONS 504 CITATIONS 287 PUBLICATIONS 2,395 CITATIONS

SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Dynamics of Pennsylvanian basin margin to upland environments - a case study from Stephanian fluvial deposits of the Kyffhäuser Mountains (Saale basin, Central ) View project

Analysis of an Early Permian forest ecosystem preserved in situ by volcanism View project

All content following this page was uploaded by Ralf Werneburg on 27 March 2016.

The user has requested enhancement of the downloaded file. Amphibian biostratigraphy of the European Permo-Carboniferous

RALF WERNEBURG1 & JOERG W. SCHNEIDER2 1Naturhistorisches Museum Schloss Bertholdsburg, Burgstrasse 6, D-98553 Schleusingen, Germany (e-mail: [email protected]) 2TU Bergakademie Freiberg, Cottastrasse 2, D-09596 Freiberg, Germany (e-mail: [email protected])

Abstract: A revised amphibian zonation for the European Pennsylvanian and Cisuralian (Upper Carboniferous to Lower Permian) with nine amphibian zones is presented. The index fossils belong to species-chronoclines with two or three closely related species. The time resolution of these amphibian zones is about 1.5–3.0 Ma. Biostratigraphical correlations with amphibian zones are applicable to 16 basins in the Czech Republic, Poland, France, Italy and Germany. The biostratigraphical potential of other tetrapods is discussed.

Tetrapod biostratigraphy or biochronology of ideal index fossils for biostratigraphy. They the non-marine Permian and Carboniferous is are common and have a wide distribution an important and difficult task for palaeo- in space, but a narrow temporal range. Thou- herpetologists. Most of the tetrapod zonations sands of specimens are known of the branchio- for the Permian are reviewed by Lucas (1998, saurs Apateon dracyiensis (Fig. 1a, b), Apateon 2004). They were developed in North America flagrifer and Apateon pedestris, the discosau- for the Upper Carboniferous (Pennsylvanian) riscid Discosauriscus austriacus, as well as and Lower Permian (Cisuralian) as well as in hundreds of individuals of the branchiosaurs South Africa, Russia and China for the Middle Melanerpeton sembachense, M. tenerum and and Upper Permian (Guadalupian, Lopingian). Schoenfelderpeton prescheri. In the European In Europe, tetrapod biostratigraphy was Permo-Carboniferous, up to four genera are established for the Upper Carboniferous and now known with nearly 20 species and subspecies Permian with tetrapod footprints and amphi- of the Branchiosauridae, four genera with 10 bians. Tetrapod footprint zonations for several species of the Micromelerpetontidae and two basins in Europe were developed by Haubold genera with three species of the Discosauriscidae. (1980, 1984, 2000), Holub & Kozur (1981), Boy At least 10 species of these three families are & Fichter (1982, 1988), Gand & Haubold (1988) widespread and known from two or more basins and Kozur (1989). The general problem of tetra- in Europe. pod footprint biostratigraphy is that the tetrapod The history of research of these three amphi- ichnospecies normally correspond to families or, bian families spans as much as 130 years. in the best case, only genera in the osteological Depending on the facies architectures and the system. Therefore, tetrapod ichnospecies reflect degree of investigations, branchiosaurs can show larger steps in tetrapod phylogeny and conse- a high frequency of occurrences in vertical quently only represent longer time intervals sections. In the profile of the (Lucas 1998, 2002). Basin, for example, about 11 successive levels Biostratigraphical zonations using osteologi- with branchiosaurs are known, covering a time cal species of aquatic or semi-aquatic amphibians span from the Gzhelian up into Sakmarian, that were presented by Boy (1987) and Werneburg is, 12 Ma (Werneburg 1989a, 2001a). The family (1989a, b, 1996). These amphibians belong to Branchiosauridae exhibits a high rate of specia- the dissorophoid Branchiosauridae and Micro- tion with many short-lived species (but also with melerpetontidae, to the stem-stereospondyl some long-lived species, such as Apateon flagrifer Archegosauriformes and to the seymouriamorph or A. pedestris). Discosauriscidae. The taxonomic concept of the Branchiosauri- dae and Micromelerpetontidae (Boy 1972 ff.; Basics of amphibian zonation Werneburg 1986a ff.) as well as of the Disco- sauriscidae (Klembara & Meszároš 1992 ff.) has The newt-like families Branchiosauridae, been extensively discussed, and a relatively wide Micromelerpetontidae and Discosauriscidae are consensus has been achieved. It is necessary to

From: LUCAS, S. G., CASSINIS, G. & SCHNEIDER, J. W. (eds) 2006. Non-Marine Permian Biostratigraphy and Biochronology. Geological Society, London, Special Publications, 265, 201–215. 0305-8719/06/$15.00 © The Geological Society of London. 202 R. WERNEBURG & J. W. SCHNEIDER

Fig. 1(a) & (b) The branchiosaur Apateon dracyiensis from the Lower Goldlauter Formation (Lower Rotliegend, Asselian) of Cabarz/Tabarz in the Thuringian Forest Basin (skull length about 8mm). AMPHIBIAN BIOSTRATIGRAPHY 203

Fig. 1(b). 204 R. WERNEBURG & J. W. SCHNEIDER present some short remarks on the grammati- of species is determined by their more or less cally correct use of the Apateon species names. well-known First (FAD) and Last Appearance For a long time, the grammatical gender of the Dates (LAD). However, compared to marine genus was not clear. The type species is Apateon sections, the patchy, discontinuous fossil record pedestris Meyer, 1844. Werneburg (1988a ff.) in continental deposits prevents the exact deter- has used the feminine gender for several species mination of FADs and LADs. So, it is easier of Apateon (e.g. A. flagrifera, A. caduca and A. to apply the First Occurrence Date (FOD; lowest umbrosa). But, now it is clear that the genus occurrence) and the Last Occurrence Date Apateon has a masculine gender. Consequently, (LOD; highest occurrence) for definition of the the species of Apateon have the following amphibian zones. Nevertheless, the increasing amended endings: Apateon pedestris, A. caducus, discoveries of amphibian sites (e.g. Ronchi & A. flagrifer, A. kontheri, A. dracyiensis, A. Tintori 1997; Werneburg 2003) and the cross- intermedius and A. umbrosus. check with the insect zones (Schneider 1982; The palaeoecology of all three families is Schneider & Werneburg 1993) as well as isotopic well known (e.g. Boy 2003; Boy & Sues 2000; ages (Lützner et al. 2003) are leading to increased Werneburg 2001b, 2002). Nearly all of their improvements of the amphibian biostratigraphy. members are aquatic and neotenic. They lived in Most of the fossil taxa are a mixture of lakes of different sizes, and they are also known biospecies and chronospecies. In the case of from grey and red facies deposits. It was possible branchiosaurs we have some well-known com- to distinguish two ecomorphotypes, the pond- munities of one lake with three different species, type and the stream-type, which are based on such as, Apateon flagrifer, A. kontheri and well-known forms based on extant larval sala- Melanerpeton eisfeldi from the Gottlob Lake manders (Werneburg 2002). The best fossil in the Thuringian Forest Basin of Germany record is known from lacustrine deposits, but (Werneburg 1986b, 1988a). These are real fine clastic intercalations in fluvial coarse clastics biospecies with clear-cut features. Many of the could also contain remains of those amphibians. other branchiosaurs may be chronospecies. Both The phylogeny, especially of the branchio- kinds of species are used in the biostratigraphical saurs, is a more difficult problem. This amphi- concept of species chronoclines. bian family was able to adapt to the changing palaeogeographical and palaeoecological condi- Amphibian zonation tions in the European variscids through fast radiation and paedomorphosis (neoteny). The The first amphibian biostratigraphy was estab- result is a complicated mosaic-pattern in their lished by Boy (1987) for the Lower Permian evolution. It is difficult to find clear-cut, uniquely Rotliegend of the Saar–Nahe Basin. It is an derived characters for each species. A first draft assemblage zonation based on branchiosaurid of a phylogeny (Werneburg 1989a, b) was based and archegosauriform species known from this on a detailed list of constitutive and diagnostic basin only. Boy (1987) proposed an additional features as a basis for the definition for each biostratigraphic zonation for the middle taxon (Werneburg 1989a). Meanwhile, with European Rotliegend based on branchiosaurid more studies, this concept has been confirmed: relationship-groups: for discosauriscids (Klembara 1997), Microme- • Zone of Apateon pusillus group (with uncer- lerpeton (Boy 1995, 2000a, b) and Melanerpeton tain relationship) (Werneburg 1991). • Zone of Apateon caducus group (with A. The basic concepts of amphibian biostra- flagrifer) tigraphy presented here are lineages of two or • Zone of Apateon pedestris (oldest one from three chronologically successive species. This is Altenglan Formation). a pragmatic simplification for biostratigraphical application of the possibly more complicated This zonation is not really useful outside the phylogeny with assumed dichotomous and Saar–Nahe Basin, because Apateon pedestris trichotomous speciation patterns. The species and A. caducus are known only from the Saar– chronoclines consist of time-successive, closely Nahe Basin. Additionally, the basics of branch- related species of one evolutionary branch or iosaurid taxonomy were not well enough lineage. Sometimes these chronoclines are advanced at that time to provide a sound basis supplied with directed feature trends. for biostratigraphy. The chronological sequence of species is Between 1986 and 1989, many branchiosaurid often demonstrated by primary field data – by species were newly described or revised (Boy the successive occurrence of species in one 1986, 1987; Werneburg 1986a, b, 1987, 1988a, b, lithostratigraphic profile. The consecutive range c, 1989a, b, c). Most of these species are known AMPHIBIAN BIOSTRATIGRAPHY 205 from the Rotliegend section (uppermost Pennsyl- ? Accompanying species: Scincosaurus spinosus, vanian to lower Cisuralian) of the Thuringian Sauravus costei, both from the Stephanian B of Forest Basin in Germany (Werneburg 2001a). Montceau-les-Mines, Blanzy Basin. From each formation of this section, branchio- saurids, micromelerpetontids and/or discosauri- Remarks: The FAD of Branchiosaurus fayoli is scids are known; altogether, 13 of the 23 known theoretically possible in the Cantabrian and Thuringian amphibian species are present. The Stephanian A (Barruelian), if amphibians are Thuringian Forest profile thus has the most com- found in these beds. plete succession of amphibian species in Europe. It was established as a reference section for Apateon intermedius – Branchierpeton saalensis the amphibian zonation by Werneburg (1989a, b, zone 1996). The amphibian succession of this profile Apateon interme- covers the uppermost Stephanian C up to the Definition: From the FODs of uppermost Lower Rotliegend (upper Autunian dius and Branchierpeton saalensis up to the LAD or middle Sakmarian). It can be completed of A. intermedius, the FAD of Apateon drac- further down to Westphalian D time (Carbonif- yiensis and up to the FODs of Melanerpeton erous, uppermost Moscovian) and up to lower- sembachense and Limnogyrinus edani. most Upper Rotliegend time (Saxonian, Occurrences: Sakmarian/Artinskian) by amphibian horizons from other European basins (see below). Most of • Möhrenbach Formation (Stephanian C, the zone index fossils are not only recorded from Gzhelian) from Silbergrund and Moosbach, the Thuringian Forest Basin but also from other Thuringian Forest Basin; basins in France, Italy (Sardinia), the Czech • Wettin Member of the Siebigerode Formation Republic, Poland and Germany. The revised (Stephanian C, Gzhelian) from Löbejün near version of the amphibian zonation is illustrated Halle and the Halle Formation (lowermost in Figure 2 and defined in the following synopsis. Rotliegend, Gzhelian) from Petersberg near Halle, both Saale Basin; Revised amphibian zonation • Netzkater Formation (lowermost Rotliegend, Gzhelian) of Neustadt, Ilfeld Basin, all Branchiosaurus salamandroides – Limnogyrinus Germany; elegans zone • Líneh Formation (Stephanian C, Gzhelian) of Definition: From the FODs of Branchiosaurus Libechov, Roudnice Basin, Bohemia, Czech salamandroides and Limnogyrinus elegans up to Republic. the FOD of Branchiosaurus fayoli. Accompanying species: Onchiodon manebachen- Occurrences: Nýrhany Member, Kladno Forma- sis, Stephanian C of Moosbach, Thuringian tion, Westphalian D, Moskovian, of Nýrhany and Forest Basin. Tremošna, Plzenh Basin, Czech Republic. Remarks: The upper limit of this zone is well Accompanying species: Platyrhinops cf. P. lyelly, defined with the FAD of Apateon dracyiensis. Scincosaurus crassus et al., all from the Westphalian D of Nýrhany. Apateon dracyiensis – Melanerpeton sembachense zone Remarks: Some of the accompanying species, such as P. lyelly, are also known from the Definition: From the FAD of Apateon Westphalian D of Linton, Ohio, USA. This dracyiensis, the FODs of Melanerpeton amphibian zone also provisionally includes the sembachense and Limnogyrinus edani up to the Cantabrian and Stephanian A (Kasimovian). FODs of Branchierpeton reinholdi and Apateon flagrifer flagrifer. Branchiosaurus fayoli zone Occurrences: Definition: From the FOD of Branchiosaurus fayoli up to the FOD of Apateon intermedius and • Formation (earlier ‘Lower Mane- Branchierpeton saalensis. bach Fm.’, Lower Rotliegend, Gzhelian) from Sembachtal near Winterstein, Thurin- Occurrences: gian Forest Basin, Germany; • Stephanian B (Gzhelian) from Commentry, • ? Muse Formation (Lower Autunian or Commentry Basin, French Massif Central; Rotliegend, Gzhelian/Asselian) from Dracy- • ? Stephanian B (Gzhelian) from Montceau-les- St. Loup and Muse, Autun Basin, French Mines, Blanzy Basin, French Massif Central. Massif Central. 206 R. WERNEBURG & J. W. SCHNEIDER AMPHIBIAN BIOSTRATIGRAPHY 207

Accompanying species: Onchiodon langenhani Occurrences: from Sembachtal (Ilmenau Formation). • Upper Goldlauter Formation (Lower Rotlie- gend, Asselian) from Gottlob and Kessel- Remarks: The lower limit of this zone is well graben near Friedrichroda, Radelsgraben, defined with the FAD of Apateon dracyiensis. Grenzwiese-Cabarz road and Oberschönau, Apateon flagrifer flagrifer – Branchierpeton all Thuringian Forest Basin, Germany; • Rio su Luda-Formation (Asselian) from Is reinholdi zone Alinus, Perdasdefogu Basin, Sardinia, Italy. Definition: From the FODs of Apateon flagrifer Accompanying species: Apateon flagrifera flagri- flagrifer and Branchierpeton reinholdi up to the fera, Apateon kontheri, Onchiodon labyrinthicus, FOD of Melanerpeton eisfeldi. all from the Gottlob near Friedrichroda, Thuringian Forest Basin. Occurrences: • Lower Goldlauter Formation (Lower Rotlie- Remarks: The upper limit of this zone is well gend, Asselian) from Sperbersbach, Poch- defined with the FAD of Apateon flagrifer werksgrund, Untere Kniebreche and Cabarz/ oberhofensis. Tabarz, Thuringian Forest Basin, Germany; Apateon flagrifer oberhofensis – Melanerpeton • Börtewitz lake horizon, (Lower Rotliegend, arnhardti zone Asselian) from Clennen and Börtewitz, NW-Saxony Basin, Germany; Definition: From the FAD of Apateon flagrifer • ? Muse Formation (Autunian or Lower oberhofensis and the FOD of Melanerpeton Rotliegend, Gzhelian/Asselian) from Dracy- arnhardti up to the LAD of Melanerpeton St. Loup and Muse, Autun Basin, French arnhardti, the FAD of M. pusillum, and Massif Central. the FODs of M. gracile, Branchierpeton amblystomus and Discosauriscus pulcherrimus. Accompanying species: Melanerpeton tenerum, Schoenfelderpeton prescheri and Apateon drac- Occurrence: Lower Oberhof Formation (Lower yiensis from Börtewitz, Clennen, NW-Saxony Rotliegend, Asselian/Sakmarian) from Loch- brunnen near Oberhof, Thuringian Forest Basin, Basin; S. prescheri and A. dracyiensis from Germany. Cabarz/Tabarz, Thuringian Forest Basin, all Germany. Accompanying species: Onchiodon labyrinthicus from Lochbrunnen near Oberhof, Thuringian Remarks: The correlation of the occurrences Forest Basin. Börtewitz, Clennen and Cabarz/Tabarz is well founded on the common occurrence of Branchier- Remarks: The lower limit of this zone is well peton reinholdi, Schoenfelderpeton prescheri and defined by the FAD of Apateon flagrifer Apateon dracyiensis. Following insect biostrati- oberhofensis. graphy, the Cabarz lake horizon clearly belongs Melanerpeton pusillum – Melanerpeton gracile to the Lower Goldlauter Formation of the zone Thuringian Forest Basin, Germany (Schneider & Werneburg 1993). Definition: From the FAD of Melanerpeton pusillum, the FODs of Melanerpeton gracile, Melanerpeton eisfeldi – zone Branchierpeton amblystomus and Discosauriscus pulcherrimus up to the FOD of Discosauriscus Melanerpeton Definition: From the FOD of austriacus (Klembara 1997). eisfeldi up to the LAD of Apateon flagrifer flagrifer, the FAD of Apateon flagrifer Occurrences: oberhofensis and the FOD of Melanerpeton • Upper Oberhof Formation (Lower arnhardti. Rotliegend, Sakmarian) from Im Grunde near Friedrichroda, Wintersbrunnen near Finsterbergen and Mösewegswiese near Tambach-Dietharz, Thuringian Forest Basin, Germany; Fig. 2. Amphibian zonation for the European • Permo-Carboniferous using next related species of Upper Niederhäslich Formation (Lower species-chronorows from the aquatic families Rotliegend, Sakmarian) from Niederhäslich, Branchiosauridae, Micromelerpetontidae and Freital-Birkigt and Windberg near Freital, Discosauriscidae. Dresden, Döhlen Basin, Germany; 208 R. WERNEBURG & J. W. SCHNEIDER

• Olivehtín Member of the Broumov Formation Occurrences: h (Lower Rotliegend, Sakmarian) from Olivetín • Middle to upper Letovice Formation (upper and Ruprechtice near Broumov, Intra- Rotliegend, Sakmarian/Artinskian) from Sudetic Basin, Czech Republic; Bachov, Obora, Kochov, Drválovice et al. near • Upper S¢upiec Formation (Lower Rotliegend, Brno, Boscovice Graben, Czech Republic; Sakmarian) from Ratno Dolne, Intra-Sudetic • ? Usclas St. Privat Formation (? upper Basin, Poland; ‘Autunian’ or Rotliegend, Sakmarian/ • Upper Buxières Formation (Autunian or ?Artinskian) from Usclas-St. Privat, Lodève Lower Rotliegend, Sakmarian) from Buxières- Basin, southern French Massif Central. les-Mines and La Queue d’Etang, Bourbon l’Archambault Basin, French Massif Central; Accompanying species: Discosauriscus pulcher- • Beds of Bert ( Autunian or Lower Rotliegend, rimus, branchiosaurids and other amphibians Sakmarian) from Bert, Blanzy Basin, French from the Boskovice Graben. Massif Central; • Remarks: The upper limit of this zone is Uppermost Meisenheim Formation (L-0 unknown. 10, Lower Rotliegend, Sakmarian) from Humberg, Wörsbach or Lebach, Saar–Nahe Basin, Germany. Correlations Based on the occurrence of species, which typi- cally accompany the zone species (see below), the Most of the correlations are included under following levels could be assigned to this zone, ‘occurrences’ in the revised amphibian zonation too, even though the zonespecies are missing at and are illustrated in Figure 3. At this point a few this time. examples for the combined use of the amphibian • ? Leukersdorf Formation (Lower/Upper zonation together with other methods are given. Rotliegend, Sakmarian) from Chemnitz- The insect wings of blattid cockroaches can be Altendorf and Oberlungwitz, Erzgebirge especially useful to solve problems of biostra- Basin, Germany; tigraphical correlation. The insect zonation of • ? Millery Formation (Autunian or Lower the Late Carboniferous and the Early Permian Rotliegend, Sakmarian) from Le Telots of Europe, North America and North Africa is and Margenne, Autun Basin, French Massif based on species lineages with FADs (Schneider Central; 1982; Schneider & Werneburg 1993, 2006; • ? Usclas St. Privat Formation (Autunian or Schneider et al. 2003, 2004a,b). Other biostrati- Lower Rotliegend, Sakmarian) from Usclas- graphical methods are based on the teeth of St. Privat, Lodève Basin, southern French xenacanth sharks (e.g. Schneider 1996; Schneider Massif Central. & Zajic 1994; Schneider et al. 2000) or on conchostracans (Martens 1983a, b, 1984). How- Accompanying species: ever, both of the latter methods have some • Apateon flagrifer oberhofensis, Sclerocephalus limitations. The migration and distribution of jogischneideri and Onchiodon labyrinthicus xenacanth fishes is strongly restricted to inter- from the Thuringian Forest Basin; connections of drainage systems and integrated • Onchiodon labyrinthicus, Acanthostomatops lakes. Therefore, independent speciation pro- vorax, Phanerosaurus pugnax, Batropetes cesses could be contemporaneous in different, fritschia et al. from the Döhlen Basin; unconnected river and lake systems, producing • Apateon pedestris, A. caducus, Melanerpeton different patterns of teeth. Conchostracans have humbergense, Micromelerpeton credneri, a very high migration potential, because of wind ‘Cheliderpeton’ latirostre, Archegosaurus distribution of their minute, drought-resistant decheni and Batropetes fritschia from the eggs. Unfortunately, the distribution in time of Saar–Nahe Basin; the different species is not well enough known • Apateon umbrosus, Onchiodon labyrinthicus now for the deduction of certain FODs and and Cheliderpeton vranyi from the Czech LODs. Last, but not least, isotopic methods pro- Intra-Sudetic Basin. duce absolute age data of differing significance Remarks: The lower limit of this zone is well (cf. Lützner et al. 2003). defined by the FAD of Melanerpeton pusillum.

Discosauriscus austriacus zone Fig. 3. Biostratigraphical correlations of selected formations and basins from the Permo-Carboniferous Definition: From the FOD of Discosauriscus of Germany, the Czech Republic, Poland, France and austriacus up to its unknown LAD. Italy using the amphibian zonation. AMPHIBIAN BIOSTRATIGRAPHY 209 210 R. WERNEBURG & J. W. SCHNEIDER

Example 1: Ilfeld Basin, Germany All three independent methods come to the same result: the Upper Buxières Formation Two index fossils are known from the Netzkater correlates with the Upper Oberhof Formation/ Formation of the small Ilfeld Basin in the south basal Dissibodenberg Formation (Sakmarian/ of the Hercynian Mountain: Artinskian). The seymouriamorph Discosauri- scus pulcherrimus D. sacheti • Based on blattid wings, the Netzkater Forma- (= ) is accompanied by branchiosaurs and rare ‘Cheliderpeton’ in the tion belongs to the Sysciophlebia ilfeldensis paper slates of La Queue d’Etang near Bourbon zone (Schneider 1982), which ranges from l’Archambault. This occurrence clearly belongs the lowermost Rotliegend (comparable with to the Melanerpeton pusillum – M. gracile zone the early Halle or Ilmenau Formation) up to and could be correlated with the Upper Buxières the Manebach Formation. • Formation of the 15-km-distant Buxières-les- Additionally, the branchiosaur Apateon inter- Mines site. medius was found in the Netzkater For- mation, one of the zone species of the A. Example 3: Perdasdefogu Basin, Sardinia, intermedius – Branchierpeton saalensis zone, which starts in the Stephanian C (Möhren- Italy bach Formation) and goes up to the lower- The first record of branchiosaurs from Sardinia most Rotliegend (basal Ilmenau or Halle was very unexpected (Ronchi & Tintori 1997), Formation). though the taxonomy of the branchiosaurs from The combination of both independent methods the Is Alinus Lake of the Rio su Luda Formation gives an exact date for the Netzkater Formation is clear (Schneider et al. 2004a). of the Ilfeld Basin: Lowermost Rotliegend (com- • Three branchiosaurid species lived in the Is parable with the lower parts of the Ilmenau or Alinus-lake: Melanerpeton eisfeldi, Apateon Halle Formation; Gzhelian/Asselian transition). flagrifer and Apateon kontheri. M. eisfeldi is the index species of the M. eisfeldi zone and Example 2: Bourbon l’Archambault Basin, indicates the species lineage from Melaner- Massif Central, France peton sembachense up to M. gracile and thus a theoretical age from the Manebach up to Two excellent localities of fossil amphibians are the Lower Oberhof Formation in the refer- known from this basin: Buxières-les-Mines and ence section of the Thuringian Forest Basin. La Queue d’Etang near Bourbon l’Archambault. Apateon flagrifer is recorded from four From both occurrences we know index fossils: amphibian zones: the Apateon flagrifer flagrifer – Branchierpeton reihnholdi zone • The branchiosaur Melanerpeton gracile was (FOD in the Lower Goldlauter Formation) described from the Upper Buxières-les-Mines up to the Melanerpeton pusillum – M. gracile Formation (Werneburg 2003). Therefore, zone (extending up into the Upper Rotlie- these beds are part of the Melanerpeton gend). The coexistence of both species M. pusillum – M. gracile zone, which indicates eisfeldi and A. flagrifer gives an age from the the topmost Lower Rotliegend (Autunian) to Lower Goldlauter up to the Lower Oberhof basal Upper Rotliegend (Saxonian), correla- Formation for the Rio su Luda Formation of table with the Upper Oberhof Formation Sardinia. The third species, Apateon kontheri, up to Lower Letovice Formation. They are completes the branchiosaurid fauna of the accompanied by large amphibians such as Is Alinus-lake, which is exactly the same ‘Cheliderpeton’ and Onchiodon. fauna as the three species from the Gottlob • The insect wing of Sysciophlebia cf. S. alligans Lake in the Thuringian Forest Basin (Upper belongs to Sysciophlebia alligans and to Goldlauter Formation; Werneburg 1986b, the Sysciophlebia n. sp. B zone, which indi- 1988a). cates an uppermost Lower Rotliegend age • Insect wings are unknown from Sardinia up (‘Autunian’), comparable with the Upper to now. The teeth of the xenacanthid shark Oberhof Formation and basal Dissiboden- Bohemiacanthus from the neighbouring Ortu berg Formation (Saar–Nahe Basin). Mannu section show a time range from the • The isotopic age of 288P4 Ma (207Pb/206Pb Manebach up to the Upper Goldlauter single zircon-evaporitization, TU Bergaka- Formation (Schneider, in Freytet et al. 2002). demie Freiberg) of the tuff bed ‘Lien Vert’ However, in some French basins the biostrati- in the Buxieres Formation corresponds graphical correlations with xenacanthid shark to the 287P2 Ma (Ar/Ar) of the Oberhof teeth give slightly older ages than indicated Formation (Lützner et al. 2003). by amphibians and insects. AMPHIBIAN BIOSTRATIGRAPHY 211

Table 1. First Occurrence Date (FOD) of selected aquatic amphibians

Time levels (FOD) Genera Families

Middle Sakmarian Discosauriscus Discosauriscidae (Uppermost Lower Rotliegend, Upper Oberhof Formation Lower Asselian Melanerpeton – (Lowermost Lower Rotliegend, Ilmenau Formation) Upper Gzhelian Apateon, – (Stephanian C, Gehren Subgroup, Möhrenbach Formation) Branchierpeton Upper Moscovian Branchiosaurus, Branchiosauridae, (Westphalian D, Upper Kladno Formation) Limnogyrinus Micromelerpetontidae

Finally, it is possible to correlate the Rio su gives no precise correlations. The FOD and Luda Formation of the Perdasdefogu Basin in LOD of the species, Seymouria sanjuanensis, are Sardinia with the Goldlauter Formation (per- known from the early to mid-Wolfcampian haps up to the Lower Oberhof Formation) of the (Cutler Formation) of New Mexico (Berman Thuringian Forest Basin with high confidence. et al. 1987) and from the late Wolfcampian (basal Table 1 shows the prospects and limits for cor- Organ Rock Shale) of Utah (Vaughn 1966). The relations with the FODs of genera and families next related species, S. baylorensis, is recorded used in the aquatic amphibian zonation. from the late Wolfcampian (Nocona Formation, Admiral; Laurin 1996) or early Leonardian (Petrolia Formation, Belle Plains; Berman et al. Biostratigraphic potential of other tetrapods 1987) as well as from the mid-Leonardian (Lower Clear Fork Group, Arroyo; Berman et al. 1987; Some aquatic, amphibious or terrestrial amphi- Laurin 1996) of Texas. Both species could bian species and reptiles also have potential for belong to a short species chronocline in the biostratigraphical correlations. The species of the biostratigraphical sense. Therefore, the theo- micromelerpetontid Eimerisaurus (Boy 2002b), retical stratigraphical position of the Tambach Micromelerpeton with chrono-morphotypes Formation using Seymouria sanjuanensis reaches (Boy 1995, 2002a), and Archegosaurus from the from the early to the late Wolfcampian of the Rotliegend of the Saar–Nahe Basin (Germany) North American time scale and from the Asselian are very interesting, but they are known with up to the early Kungurian of the global time certainty from this basin only. The taxonomies scale. That is a very long range and it includes of ‘Cheliderpeton’, Sclerocephalus as well as the whole Lower Rotliegend and the early Upper Onchiodon are in a state of flux. Different species Rotliegend of the Thuringian Forest section, that of Eryops exist from the Upper Pennsylvanian up is, about 15 million years! to the Kungurian (A.R. Milner, pers. comm. The diadectids have no biostratigraphical 2004). These species will be very useful for the significance at present. Diadectes absitus and biostratigraphy of the North American red beds. Orobates pabsti from the Tambach Formation Onchiodon is very similar to Eryops, but it is not of the Thuringian Forest Basin show large dif- the same genus, which is necessary for biostrati- ferences from the North American diadectids graphical correlations. The biostratigraphical (Berman et al. 1998). The diadectids Phanero- potential of the lepospondyl Batropetes fritschia saurus naumanni from the Leukersdorf Forma- (Rotliegend of the Saar–Nahe and Döhlen tion of the Erzgebirge Basin, and Phanerosaurus basins) as well as of the various species of pugnax from the Niederhäslich Formation of the Osteocephalus, Scincosaurus and Sauravus Döhlen Basin, are little known and they are not (Carroll et al. 1998) is probably much greater yet revised. than based on current knowledge. Terrestrial reptiles are relatively rare in the Sumida et al. (1996) have correlated the European Permian. The pelycosaurs are occurrence of the terrestrial amphibian assem- recorded with a little higher frequency. Some blage with Seymouria sanjuanensis, Diadectes skeletons of Haptodus are known that belong and ‘cf. Anconastes’ (= Tambachia Sumida et al. together with the North American forms to 1998) from the Tambach Formation (Upper the unique species Haptodus baylei (after Currie Rotliegend) of the Thuringian Forest Basin with 1979). But this species has a range from the the ‘earliest Permian Wolfcampian’ of North lower Gzhelian up to the Sakmarian. If no America. However, the comparison of genera chronomorphical or specific differences exist, 212 R. WERNEBURG & J. W. SCHNEIDER

Haptodus has no biostratigraphical significance. index fossils are mostly short-lived species with A similar situation is known from Edaphosaurus a clear taxonomy and palaeoecology. In this (Gzhelian–Sakmarian). Dimetrodon is recorded way, detailed correlations are possible. with D. teutonis from the Tambach Formation Zone species are known from a number of of the Thuringian Forest Basin (Berman et al. basins in Europe. Thus far, correlations with 2001). The genus Dimetrodon shows a chrono- amphibian zones are applicable to basins in the morphologic trend towards an overall increase in Czech Republic, Poland, France, Italy and Ger- size in increasingly higher stratigraphic levels. many. The combination of amphibian zonation D. teutonis is probably as primitive as D. natalis, with insect zonation and isotopic ages promises with a similar small size from the Nocona the greatest success for biostratigraphical corre- Formation (late Wolfcampian, early Kungurian) lations in the European Permo-Carboniferous. of Texas (Berman et al. 2001). Up to now, D. Unfortunately, most of the amphibian species teutonis gives the best indication for a late from the Lower Permian of the Saar–Nahe Basin Wolfcampian to early Kungurian age of the in Germany are virtually endemic and they can Tambach Formation. be used only for biostratigraphy in a single basin. The caseid pelycosaurs are widespread in A better understanding of the taxonomy and North America but they are concentrated in the stratigraphical distribution of the Eryops the middle and upper Leonardian. Sigogneau- species could be very helpful for a biochronology Russell & Russell (1974) have described Casea of the North American red beds. All other rutena from the Upper Rotliegend (Saxonian) amphibians and reptiles of the European Permo- of the Rodez Basin in southern France. Sumida Carboniferous are not now very suitable for et al. (2001) have noted an undescribed caseid detailed biostratigraphical correlations. Either they are not closely related species in the sense of from the Tambach Formation of the Thuringian a species chronocline, their taxonomy is unclear Forest Basin. A second caseid skeleton from or the species has too great a stratigraphical Rodez is being published (R. Reisz, pers. comm. range. 2005). It is still uncertain whether or not the species C. rutena truly belongs to the genus Casea (large differences in skull features, robust pro- We thank the Deutsche Forschungsgemeinschaft portions of the manus digits are more similar to (DFG) for their support of this study (WE 2833/3-1, Cotylorhynchus). Bones from a large caseid were SCHN 408/12-1). We thank A. Hunt (Albuquerque), discovered recently by Schneider and Körner S. G. Lucas (Albuquerque) and S. S. Sumida (San in the Lodève Basin in the neighbourhood of Bernardino) for their instructive reviews and linguistic improvements of the text. Best thanks to R. Schoch Rodez. They are most comparable to Cotylor- (Stuttgart for helpful discussion and to M. Roscher hynchus. If the taxonomy of caseids is clarified, (Freiberg) for his support with computer graphics. this group will become very interesting for biostratigraphy. The araeoscelid Kadaliosaurus from the References Niederhäslich Formation (Sakmarian) of Nie- derhäslich in the Döhlen Basin is known from BERMAN, D. S., REISZ, R. R. & EBERTH, D. A. fragments. Thuringothyris from the Tambach 1987. Seymouria sanjuanensis (Amphibia, Batracho- Formation of the Thuringian Forest Basin is sauria) from the Lower Permian Cutler Formation of north-central New Mexico and the occurrence most closely related to Paleothyris from North of sexual dimorphism in that genus questioned. America (Boy & Martens 1991), but there is Canadian Journal of Earth Sciences, 24, 1769–1784. no basis for biostratigraphical correlation as BERMAN, D. S., SUMIDA, S. S. & MARTENS, T. 1998. they are different genera. The same problem Diadectes (Diadectomorpha: Diadectidae) from the exists with the bolosaurid Eudibamus from the Early Permian of central Germany, with description Tambach Formation (Berman et al. 2000). of a new species. Annals of Carnegie Museum, 67, 53–93. Conclusions BERMAN, D. S., REISZ, R. R., SCOTT, D., HENRICI, A. C., SUMIDA, S. S. & MARTENS, T. 2000. The amphibian zonation of the European Permo- Early Permian bipedal reptile. Science, 290(5493), 969–972. Carboniferous (Werneburg 1989a, b, 1996) is BERMAN, D. S., REISZ, R. R., MARTENS, T. & HENRICI, revised. The nine amphibian zones, together with A. C. 2001. A new species of Dimetrodon 18 species and subspecies, are newly defined with (Synapsida: Sphenacodontidae) from the Lower their FAD or FOD. Species chronoclines that Permian of Germany records first occurrence of consist of two or three closely related species genus outside of North America. Canadian Journal are the basic concept of this biochronology. These of Earth Sciences, 38, 803–812. AMPHIBIAN BIOSTRATIGRAPHY 213

BOY, J. A. 1972. Die Branchiosaurier (Amphibia) HAUBOLD, H. 1980. Die biostratigraphische Gliederung des saarpfälzischen Rotliegenden (Perm, SW- des Rotliegenden (Permosiles) im mittleren Deutschland). Hessisches Landesamt für Bodenfor- Thüringer Wald. Schriftenreihe Geologischer schung, 65, 1–137. Wissenschaften, 16, 331–356. BOY, J. A. 1986. Studien über die Branchiosauridae HAUBOLD, H. 1984. Zyklen in der Evolution (Amphibia: Temnospondyli). 1. Neue und wenig terrestrischer Vertebraten. Zeitschrift Geologischer bekannte Arten aus dem mitteleuropäischen Wissenschaften, 12, 119–130. Rotliegenden (? Oberstes Karbon bis unteres Perm). HAUBOLD, H. 2000. Tetrapodenfährten aus dem Paläontologische Zeitschrift, 60(1/2), 131–166. Perm: Kenntnisstand und Progress 2000. Hallesches BOY, J. A. 1987. Studien über die Branchiosauridae Jahrbuch der Geowissenschaften, Reihe B, 22, 1–16. (Amphibia: Temnospondyli; Ober-Karbon-Unter- HOLUB, V. & KOZUR, H. 1981. Revision einiger Perm). 2. Sytematische Übersicht. Neues Jahrbuch Tetrapodenfährten des Rotliegenden und für Geologie und Paläontologie, Abhandlungen, 174, biostratigraphische Auswertung. Geologische – 75–104. Paläontologische Mitteilungen, Innsbruck, 11(4), BOY, J. A. 1995. Über die Micromelerpetontidae 149–193. (Amphibia: Temnospondyli). 1. Morphologie und KLEMBARA, J. 1997. The cranial anatomy of Disco- Paläoökologie des Micromelerpeton credneri sauriscus Kuhn, a seymouriamorph tetrapod from (Unterperm; SW-Deutschland). Paläontologische the Lower Permian of the Boskovice Furrow (Czech Zeitschrift, 69, 429–457. Republic). Philosophical Transactions of the Royal BOY, J. A. 2002a. Über die Micromelerpetontidae Society of London, Series B, 352, 257–302. (Amphibia: Temnospondyli). 2. Micromelerpeton KLEMBARA, J. & MESZÁROŠ, Š. 1992. New finds of ulmetense n. sp. und Micromelerpeton(?) boyi Discosauriscus austriacus (Makowsky 1876) from HEYLER. Neues Jahrbuch für Geologie und the Lower Permian of Boskovice Furrow (Czecho- Paläontologie, Abhandlungen, 223, 241–274. Slovakia). Geologica Carpathica, 43, 305–312. BOY, J. A. 2002b. Über die Micromelerpetontidae KOZUR, H. 1989. Biostratigraphic zonation in the (Amphibia: Temnospondyli). 3. Eimerisaurus n. g. Rotliegendes and their correlations. Acta Musei Neues Jahrbuch für Geologie und Paläontologie, Reginaehradecensis, Serie Scientiae Naturales, 22, Abhandlungen, 225, 425–452. 15–30. BOY, J. A. 2003. Paläontologische Rekonstruktion LAURIN, M. 1996. A Redescription of the Cranial von Wirbeltieren: Möglichkeiten und Grenzen. Anatomy of Seymouria baylorensis, the best known Paläontologische Zeitschrift, 77, 123–152. Seymouriamorph (Vertebrata: Seymouriamorpha). BOY, J. A. & FICHTER, J. 1982. Zur Stratigraphie PaleoBios, 17, 1–16. des saarpfälzischen Rotliegenden (?Oberkarbon- LUCAS, S. G. 1998. Toward a tetrapod biochronology Unterperm; SW-Deutschland). Zeitscrift der of the Permian. In: LUCAS, S. G., ESTEP, J. W. & Deutschen Geologischen Gesellschaft, 133, 607–642. HOFFER, J. M. (eds) Permian Stratigraphy and Pale- BOY, J. A. & FICHTER, J. 1988. Zur Stratigraphie des ontology of the Robledo Mountains, New Mexico. höheren Rotliegend im Saar–Nahe–Becken (Unter- New Mexico Museum of Natural History and Perm; SW-Deutschland) und seiner Korrelation mit Science Bulletin, 12, 71–92. anderen Gebieten. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 176, 331–394. LUCAS, S. G. 2002. Global Permian tetrapod footprint biostratigraphy and biochronology. Permophiles, BOY, J. A. & MARTENS, T. 1991. A new captorhino- morph reptile from the Rotliegend of 41, 30–34. (Lower Permian; eastern Germany). Paläontolo- LUCAS, S. G. 2004. A global hiatus in the Middle gische Zeitschrift, 659(3/4), 363–389. Permian tetrapod fossil record. Stratigraphy, 1, BOY, J. A. & SUES, H. D. 2000. Branchiosaurs: larvae, 47–64. metamorphosis and heterochrony in temnospondyls LÜTZNER, H., MÄDLER, J., ROMER, R. L. & and seymouriamorphs. In: HEATWOLE, H. & SCHNEIDER, J. W. 2003. Improved stratigraphic and CARROLL, R. L. (eds) Amphibian Biology, Palaeont- radiometric age data for the continental Permo- ology: the Evolutionary History of Amphibians. Carboniferous reference-section Thüringer-Wald, Vol. 4. Surrey Beatty & Sons, Australia, 1150–1197. Germany. XVth International Congress on Carboni- CARROLL, R. L., BOSSY, K. A., MILNER, A. C., ferous and Permian Stratigraphy, Utrecht, 2003, ANDREWS, S. M. & WELLSTEAD, C. F. 1998. Abstracts, 338–341. Lepospondyli. Handbuch der Paläoherpetologie, 1. MARTENS, T. 1983a. Zur Taxonomie und Biostrati- CURRIE, P. J. 1979. The osteology of haptodontine graphie der Conchostraca (Phyllopoda, Crustacea) sphenacodonts (Reptilia: Pelycosauria). Palaeonto- des Jungpaläozoikums der DDR Teil I. Freiberger graphica, 4(163), 130–168. Forschungshefte, Hefte C, 382, 7–105. FREYTET, P., GALTIER, J., SCHNEIDER, J. W., RONCHI, MARTENS, T. 1983b. Zur Taxonomie und Biostrati- A., TINTORI, A. & WERNEBURG, R. 2002. Early Per- graphie der Conchostraca (Phyllopoda, Crustacea) mian biota from southeastern Sardinia (Ogliastra des Jungpaläozoikums der DDR. Teil II. Freiberger and Gerrei). Rendiconti della Società Paleontologica Forschungshefte, Hefte C, 384, 24–48. Italiana, 1, 169–176. MARTENS, T. 1984. Zur Taxonomie und Biostrati- GAND, G. & HAUBOLD, H. 1988, Permian tetrapod graphie der Conchostraca (Phyllopoda, Crustacea) footprints in central Europe, Stratigraphical and des Rotliegenden (oberstes Karbon bis Perm) im palaeontological aspects. Zeitschrift Geologischer Saar-Nahe-Gebiet (BRD). Freiberger Forschungshe- Wissenschaft 16, 885–894. fte, Hefte C, 391, 35–57. 214 R. WERNEBURG & J. W. SCHNEIDER

RONCHI, A. & TINTORI, A. 1997. First amphibian find SUMIDA, S. S., BERMAN, D. S. & MARTENS, T. 1998. in Early Permian from Sardinia (Italy). Rivista A new trematopid amphibian from the Lower Italiana di Paleontologia e Stratigrafia, 103, 29–38. Permian of Central Germany. Palaeontology, 41, SCHNEIDER, J. 1982. Entwurf einer Zonengliederung 605–629. für das euramerische Permokarbon mittels der SUMIDA, S. S., BERMAN, D. S., HENRICI, A. C. & Spiloblattinidae (Blattodea, Insecta). Freiberger MARTENS, T. 2001. The morphological diversi- Forschungshefte, Hefte C, 375, 27–47. fication of taxa near the amphibian to amniote SCHNEIDER, J. W. 1996. Xenacanth teeth: a key for transition: new data from remarkably preserved taxonomy and biostratigraphy. Modern Geology, fossils from the Lower Permian of central Germany. 20, 321–340. Journal of Morphology, 248, 289. SCHNEIDER, J. & WERNEBURG, R. 1993. Neue Spilo- VAUGHN, P. P. 1966. Seymouria from the Lower blattinidae (Insecta, Blattodea) aus dem Oberkar- Permian of southeastern Utah, and possible sexual bon und Unterperm von Mitteleuropa sowie die Biostratigraphie des Rotliegend. Naturhistorisches dimorphism in that genus. Journal of Paleontology, Museum Schloss Bertholdsburg, Schleusingen 40, 603–612. WERNEBURG, R. 1986a. Branchiosaurier aus dem Veröffentlichungen, 7/8, 31–52. h SCHNEIDER, J. W. & WERNEBURG, R. 2006. Insect bio- Rotliegenden (Unterperm) der CSSR. Zeitschrift stratigraphy of the Euramerican continental Late für Geologische Wissenschaften, 14, 673–686. Pennsylvanian and Early Permian. In: LUCAS, S. G., WERNEBURG, R. 1986b. Die Stegocephalen (Amphibia) CASSINIS, G. & SCHNEIDER, J. W. (eds) Non-Marine der Goldlauterer Schichten (Unterrotliegendes, Permian Biostratigraphy and Biochronology. Geo- Perm) des Thüringer Waldes. Teil I: Apateon flagri- logical Society, London, Special Publications, 265, fer (Whitt.). Freiberger Forschungsheft, Hefte C, 325–336. 410, 87–100. SCHNEIDER, J. W. & ZAJIC, J. 1994. Xenacanthiden WERNEBURG, R. 1987. Dissorophoiden (Amphibia, (Pisces, Chondrichthyes) des mitteleuropäischen Rhachitomi) aus dem Westfal D (Oberkarbon) der Oberkarbon und Perm. Revision der Originale ÈSSR. Branchiosaurus salamandroides Fritsch 1876. zu Goldfuss 1847, Beyrich 1848, Kner 1867 und Zeitschrift für Geologische Wissenschaften, 15, Fritsch 1879–1890. Freiberger Forschungshefte, 452, 681–690. 101–151. WERNEBURG, R. 1988a. Die Stegocephalen der Gold- SCHNEIDER, J. W., HAMPE, O. & SOLER-GIJÓN, R. 2000. lauterer Schichten (Unterrotliegendes, Unterperm) The Late Carboniferous and Permian: Aquatic des Thüringer Waldes, Teil II: Apateon kontheri vertebrate zonation in southern Spain and German n. sp., Melanerpeton eisfeldi n. sp. und andere. basins. In: BLIECK, A & TURNER, S. (eds) Palaeozoic Freiberger Forschungsheft, Hefte C, 427, 7–29. Vertebrate Chronology and Global Marine/Non- Marine Correlation. Courier Forschungsinstitut WERNEBURG, R. 1988b. Die Amphibienfauna der Senckenberg, 223, 543–561. Oberhöfer Schichten (Unterrotliegendes, Unter- SCHNEIDER, J. W., WERNEBURG, R., LUCAS, S. G. & perm) des Thüringer Waldes. Naturhistorisches BETHOUX, O. 2003. Insect biochronozones – a Museum Schloss Bertholdsburg, Schleusingen, powerful tool in the biostratigraphy of the Upper Veröffentlichungen, 3, 2–27. Carboniferous and the Permian. Permophiles, 42, WERNEBURG, R. 1988c. Die Stegocephalen (Amphibia) 11–13. der Goldlauterer Schichten (Unterrotliegendes, SCHNEIDER, J. W., EL WARTITI, M., HMICH, D., KERP, Unterperm) des Thüringer Waldes. Teil III: Apateon H., RONCHI, A., SABER, H. & WERNEBURG, R. dracyiensis (Boy), Branchierpeton reinholdi n. sp. 2004a. The continental Carboniferous and Permian und andere. Veröffentlichungen Naturkundemuseum of Morocco and Sardinia: links to south and Erfurt, 7, 80–96. north. 32nd International Geological Congress, WERNEBURG, R. 1989a. Labyrinthodontier (Amphibia) Florence, 2004, Abstracts, 748–749. aus dem Oberkarbon und Unterperm Mitteleuro- SCHNEIDER, J. W., LUCAS, S. G. & ROWLAND, J. M. pas: Systematik, Phylogenie und Biostratigraphie. 2004b. The Blattida (Insecta) fauna of Carrizo Freiberger Forschungshefte, Hefte C, 436, 7–57. Arroyo, New Mexico: biostratigraphic link between WERNEBURG, R. 1989b. Some notes to systematic, marine and non-marine Pennsylvanian/Permian phylogeny and biostratigraphy of labyrinthodont boundary profiles. In: LUCAS, S. G. & ZEIGLER, amphibians from the Upper Carboniferous and K. E. (eds) Carboniferous-Permian Transition at Carrizo Arroyo, Central New Mexico. New Mexico Lower Permian in Central Europe. Acta Musei Museum of Natural History and Science Bulletin, Reginaehradecensis, Serie A, Sciential Naturales, 25, 247–261. XXII (1989), 117–129. SIGOGNEAU-RUSSELL, D. & RUSSELL, D. E. 1974. WERNEBURG, R. 1989c. Die Amphibienfauna der Étude du premier Caséidé (Reptilia, Pelycosauria) Manebacher Schichten (Unterrotliegendes, Unter- d´Europe occidentale. Bulletin du Musee d’Histoire perm) des Thüringer Waldes. Naturhistorisches naturelle, Paris, 230, 145–214. Museum Schloss Bertholdsburg, Schleusingen, SUMIDA, S. S., BERMAN, D. S. & MARTENS, T. 1996. Veröffentlichungen, 4, 55–68. Biostratigraphic correlations between the Lower WERNEBURG, R. 1991. Die Branchiosaurier aus dem Permian of North America and Central Europe Unterrotliegend des Döhlener Beckens bei Dresden. using the first record of an assemblage of terrestrial Naturhistorisches Museum Schloss Bertholdsburg, tetrapods from Germany. PaleoBios, 17(2–4), 1–12. Schleusingen, Veröffentlichungen, 6, 75–99. AMPHIBIAN BIOSTRATIGRAPHY 215

WERNEBURG, R. 1996. Temnospondyle Amphibien aus Naturhistorisches Museum Schloss Bertholdsburg, dem Karbon Mitteldeutschlands. Naturhistorisches Schleusingen, Veröffentlichungen, 16, 17–36. Museum Schloss Bertholdsburg, Schleusingen, WERNEBURG, R. 2002. Apateon dracyiensis – eine frühe Veröffentlichungen, 11, 23–64. Pionierform der Branchiosaurier aus dem Europäischen Rotliegend, Teil 2: Paläoökologie. WERNEBURG, R. 2001a. Die Amphibien- und Reptilien- Naturhistorisches Museum Schloss Bertholdsburg, Faunen im Permokarbon des Thüringer Waldes. Schleusingen, Veröffentlichungen, 17, 17–32. Beiträge zur Geologie von Thüringen, Neue Folge, 8, WERNEBURG, R. 2003. The branchiosaurid amphibians 125–152. from the Lower Permian of Buxières-les-Mines, WERNEBURG, R. 2001b. Apateon dracyiensis – eine Bourbon I’Archambault Basin (Allier, France) and frühe Pionierform der Branchiosaurier aus dem its biostratigraphic significance. Bulletin de la Europäischen Rotliegend. Teil 1: Morphologie. Société Géologique de France, 174(4), 1–7.

View publication stats