<<

Lucas, S.G. and Zeigler, K.E., eds., 2005, The Nonmarine , Museum of Natural History and Science Bulletin No. 30. 282 AN ANNOTATED CORRELATION CHART FOR CONTINENTAL LATE AND PERMIAN BASINS AND THE MARINE SCALE

MARCO ROSCHER AND JÖRG W. SCHNEIDER

TU Bergakademie Freiberg, Cottastraße 2, D-09596 Freiberg, ; [email protected]

Abstract—Late Pennsylvanian and Permian continental deposits of 20 basins in a west-east traverse from via France, Germany, Czech Republic, Italy, Morocco and the Ukraina are correlated by a com- pilation of biostratigraphic data and isotopic ages. Included is the correlation to the Karoo Basin in southern . The is based mostly on and biozones, which give the most reliable data up to now. Additionally, information from macro- and microfloristic investigations have been used for some basins. Reliable biostratigraphic data, derived from bio(chrono)species, are well accessible in most of the ba- sins, particularly in the Pennsylvanian and lower half of the . For this part a time resolution down to 0.5 Ma is obtained from morphogenetic lineages of blattid and evolutionary lineages of aquatic amphib- ians. Late Cisuralian, and sediments are mostly discontinuously developed in the over- whelming number of basins. Terrestrially-adapted and became more important for this time span. Correlations to the global marine standard scale are based on isotopic ages from volcanites of the conti- nental basins. But, they are not unambiguous, because tectonic reactivations in the European Variscides and multiple Mesozoic thermal events have upset the geochronologic systems. Only cross correlation in conjunction with biostratigraphic data enable the best fitting of isotopic ages for the time being. To overcome these prob- lems, future investigations should focus on the Permian mixed marine/continental deposits of the North Ameri- can Midcontinent Basin and of the Volga-Kama region of Tatarstan in Eastern .

INTRODUCTION river systems, whereas semi-aquatic amphibians could migrate between different drainage systems as “pond-hoppers.” Very wide rivers and The stratigraphic correlation of Late Pennsylvanian and Permian high mountain ranges could form barriers for terrestrially-adapted am- continental basins is confronted with a of methodical problems phibians and reptiles. In contrast, actively flying insects and the minute (Schneider, 1998, 2001). The often limited extent of most basins, and eggs of conchostracans could be widely distributed by air currents, pro- the influence of tectonic and volcanic processes as well as climatic viding the base for inter-regional, high-resolution biostratigraphy. Tet- fluctuations results in irregular lithofacies patterns and prevented the rapod tracks are most common in red beds. Since footprints deposition of regionally extensive key beds. Although lithostratigraphic reflect evolutionary changes in taxonomic levels above genera and fami- correlation of local sections provides a useful tool for intra-basinal cor- lies only, the time resolution of footprint associations is generally low relations, simple lithostratigraphic comparisons generally fail to corre- (Lucas, 1998; Voigt, 2005). late the sections between basins. To cope with these changing environ- The most intricate problems are correlations between pure con- ments, different biostratigraphic tools are used for diverse environments tinental profiles or basins with the marine standard scale (e.g., Schneider and different litho- and biofacies patterns as well. The classical macro- et al., 1995b). Up to now, such correlations are based nearly exclu- and microfloristic methods are basically ecostratigraphy, because the sively on isotopic ages (Schneider et al., 1995a; Menning 1995; Menning distribution of plants in space and time is primarily governed by cli- et al., 2000, 2003; Lützner et al., 2003). Attempts for direct nonma- mate and the resulting environments of different extent – interregional rine-marine biostratigraphic correlations have been made in the last to local. Plant biostratigraphy works well inside climatic belts or biomes several years (Schneider et al., 1991, 1995b), but real progress has that display large-scale, balanced biotopes. This is the case during the been at the horizon only recently, when nearshore marine profiles have late Palaeozoic and partly the Pennsylvanian up to the delivered conodonts and insect remains together (Schneider et al., 2004). end of the Moscovian. From the Moscovian onward into the Permian, In the following, the actual state of the art for continental-continental interference between the vanishing late Palaeozoic glacial ages, the and continental-marine correlations will be demonstrated for the most decreasing marine transgressions, the general warming and possibly important and best investigated European basins in relation to two mixed the phases of enhanced volcanism (Schneider et al. 1995a, 2006, in marine/continental basins (Lucero Basin, New Mexico; Donetsk Ba- press) generate strong differentiation of the vegetation on regional to sin, Ukraine) and to the Karoo Basin in southern Africa. local scales, which restrict the application of plant biostratigraphy (Broutin et al., 1990; DiMichele et al., 1996; Kerp, 1996). Because of EXPLANATIONS OF THE CORRELATION CHART these problems, additional biostratigraphic methods have been devel- The correlations in Figures 1 and 2 are based mainly on tetrapod oped: zonations based on amphibians (e.g. Boy, 1987; Werneburg, 1996, 1999; Werneburg and Schneider, 2006, in press), conchostracans (Mar- and insect bio-zones or lineage-zones (e.g. Werneburg, 1996; Werneburg and Schneider, 2006, in press; Schneider, 1982; Schneider et al., 2003), tens, 1983 ff.), blattid insects (cockroaches) (Schneider, 1982; Schneider et al., 2003), freshwater shark teeth (e.g., Schneider et al., 2000) and because of the above discussed constraints and limitations in the appli- cations of nonmarine biostratigraphic methods. The relatively closely on tetrapod footprint associations (e.g. Haubold, 1973; Boy and Fichter, 1982; Gand, 1985; Lucas, 1998). The application of these tools, how- spaced sequence of amphian and insect bearing horizons in the Basin has been used for the development of these ever, is constrained by biological and physiogeographical factors, too (Schneider, 1989; Boy and Schindler, 2000), because different groups methods as well as for cross checking these methods against each other and additionally against isotopic ages (Lützner et al. 2003; Lützner et of organisms have distinct migration potentials. For instance, the dis- persal of exclusively aquatic , such as fishes, is restricted to al. 2005, in press.). Because of the comparatively large amount of bio- stratigraphic data and isotopic ages, the profile of the Thuringian For- 283

FIGURE 1. Correlation chart of late Late Pennsylvanian and Permian continental basins - New Mexico, France, Germany. est Basin acts together with the profiles of the Saale Basin, the Saar Desmoinesian, fusulinids (Wengerd, 1959b, 1959a) Nahe Basin, the North German Basin and (newly) the Lodève Basin as reference sections for the continental European late Pennsylvanian and · (upper part): late Desmoinesian, Permian. In contrast to most of the European basins, the macro- and fusulinids (Wengerd, 1959b, 1959a) microflora is consequently investigated and revised only in the Czech basins during the last decades. Therefore, paleobotanical data nearly · : Missourian, fusulinids (Wengerd, exclusively from there were partially considered for correlations. For 1959b, 1959a; Martin, 1971) numerical ages of the global scale we use the data published by Menning and the German Stratigraphic Commission (2002); for the Carbonifer- · : Virgilian to Wolfcampian (Krainer ous/Permian boundary the 299 Ma age given by Ramezani et al. (2003) et al., 2001; Lucas and Krainer, 2004); Virgilian, conodonts is adopted. (Orchard et al., 2004); Stephanian C to Lower , The French terms Autunian, Saxonian and Thuringian, often used blattid insects (Schneider et al., 2004), as well as based in Europe to designate so called West European chronostratigraphic on spiloblattinid fragments latest /Early stages, are in reality lithostratigraphic units only (e.g. Schneider, 2001; (Schneider, herein); ?latest Pennsylvanian to Early Per- comp. Broutin et al., 1999). They are equivalents of German mian, tetrapod skeleton remains, sp., lithostratigraphic units as follow (table 1 and 2, left columns): Autunian Trimerorachis sp., Edaphosaurus sp., Sphenacodon sp., is equivalent to the German Lower Rotliegend, Saxonian (type area cf. milleri, caseids (Harris et al., 2004) Sachsen(=)-Anhalt in Germany) is equivalent to the Upper Rotliegend, Thuringian (type area in Germany) is equiva- lent to the . French Massif Central The following compilation is based on the direct knowledge of Lodève Basin the basins by the senior author, J.W.S. as well as the cooperation of the “Freiberg team” of biostratigraphers, especially R. Werneburg, and data · Graissesac Formation: 295.5 ± 5.1 Ma (U/Pb) from the cited literature as well. (Bruguier et al., 2003); Stephanian C macroflora (Galtier United States in Lopez et al., 2005)

New Mexico-Lucero Uplift · Usclas-St. Privat Formation: Melanerpeton pusillum - Melanerpeton gracile or Discosauriscus austriacus-zone · : upper Atokan, fusulinids (Martin, (Werneburg, 1996; Werneburg and Schneider, 2006, in 1971) press)

· Gray Mesa Formation (lower part): early · Viala Formation: 289.3 ± 6.7 Ma (U/Pb) (Schneider et 284

FIGURE 2. Correlation chart of late Late Pennsylvanian and Permian continental basins - Czech Republic, Italy, Morocco, Ukraine, Southern Africa.

al., 2006, in press.) (Schneider et al., 2006, in press); Melanerpeton pusillum – M. gracile-zone (Werneburg and Schneider, 2006, in · Salagou Formation (Octon Member): 284 ± 4 Ma (U/ press) Pb) (Schneider et al., 2006, in press); insects,

conchostracans / (Gand et al., 1997; Bourbon l’Archambault Basin Bethoux et al., 2002) · Buxières Formation: Bohemiacanthus type Buxières; · La Lieude Formation: base close to IR (Bachtadse pers. 289 ± 4 Ma (Pb/Pb) (Schneider et al., 2006, in press); comm. 2004); this is supported by a drastically short Melanerpeton pusillum – M. gracile-zone (Werneburg, termed change from playa deposits to alluvial plain de- 2003); Sysciophlebia alligans-zone, uppermost Lower posits at the base of the La Lieude Formation, linked to a Rotliegend or Autunian respectively (Schneider, herein) fast climatic change – possibly caused by the onset of the Upper Permian (Lopingian) Zechstein and Bellerophon Blanzy-Montceau Basin transgressions (Schneider et al., 2006, in press.; Legler et al. 2005, in press) · Montceau Formation: Syscioblatta lawrenceana-zone Autun Basin / Sysciophlebia grata- to S. rubida-zone, Stephanian B/C transition (Schneider, herein) · Muse Formation: Melanerpeton sembachense - Apateon dracyiensis or Apateon flagrifer flagrifer - Branchierpeton reinholdi-zone (Werneburg, 1996; Werneburg and Germany Schneider, 2006, in press); Syscioblatta dohrni to Sysciophlebia balteata-zone, lowermost Rotliegend or Saar-Nahe Basin lowermost Autunian respectively (Schneider, herein) · Saarbrücken Subgroup, Luisenthal Formation: Archimylacris lubnensis-zone, lower Westphalian D · Millery Formation: Bohemiacanthus type Buxières (Schneider et al., 2005, in press) 285 · Göttelborn to Heusweiler Formation, Ottweiler Sub- ± 2 Ma (295 ± 3 to 291 ± 2) (Ar/Ar) (Goll and Lippolt, : Pseudestheria limbata/Ps. rimosa - Lioestheria 2001) form Köllerbach - Assemblage-Zone, Stephanian A/B (Schneider et al., 2005, in press) · Formation: Apateon dracyiensis - Melanerpeton sembachense-zone (Werneburg, 1996; · Dilsburg Formation, lower Ottweiler Subgroup: 302.7 Werneburg and Schneider, 2006, in press) ± 0.6 Ma, Ar/Ar (Burger et al., 1997) · Manebach Formation: Apateon dracyiensis - · Göttelborn Formation, lower Ottweiler Subgroup: Melanerpeton sembachense-zone (Werneburg, 1996; Syscioblatta intermedia-Sysciophlebia sp. A-zone, Werneburg and Schneider, 2006, in press); Stephanian A (Schneider et al., 2005, in press) Bohemiacanthus Um/Om-zone (Schneider, 1985, 1996) = upper Bohemiacanthus lauterensis to palatinus-zone · lowermost Heusweiler Formation, middle Ottweiler (Hampe, 1989; Schneider, 1996); Sysciophlebia ilfeldensis Subgroup: Spiloblattina pygmae-zone, Stephanian B to S. balteata-zone (Schneider, 1982; Schneider and (Schneider, 1982; Schneider and Werneburg, 1993) Werneburg, 1993)

· Breitenbach Formation: Bohemiacanthus Ug - zone · Goldlauter Formation: 288 ± 7 Ma (Lützner et al., 2003; (Schneider and Zajic, 1994); Sysciophlebia euglyptica - Lützner et al., 2006, in press); Spiloblattina homigtalensis Syscioblatta dohrni-zone (Schneider and Werneburg, - S. sperbersbachensis to Sysciophlebia balteata-zone 1993); 300 ± 2.4 Ma (Ar/Ar) (Burger et al., 1997) (Schneider, 1982; Schneider and Werneburg, 1993); Bohemiacanthus Ugo/Ogo-zone (Schneider, 1985) = · ?Göttelborn to Breitenbach Formation: SN a- Bohemiacanthus palatinus-zone (Hampe, 1989; Schneider, xenacanthid-zone (Hampe in (Schneider et al., 2000) 1996); Apateon flagrifer flagrifer-Branchierpeton reinholdi - to Melanerpeton eisfeldi-zone (Werneburg, · Remigiusberg to Wahnwegen Formation: SN ß- 1996; Werneburg and Schneider, 2006, in press) xenacanthid-zone (Hampe in (Schneider, et al., 2000) · Oberhof Formation: 287 ± 2 Ma (282 ± 2) (Ar/Ar) (Goll Apateon flagrifer oberhofensis - · Quirnbach to higher Meisenheim Formation: SN ?- and Lippolt, 2001); Melanerpeton arnhardti - to Melanerpeton pusillum – M. xenacanthid-zone (Hampe in Schneider et al., 2000) gracile-zone (Werneburg, 1996; Werneburg and Schneider, 2006, in press) · Meisenheim Formation: 297 ± 3.2 Ma (U/Pb-SHRIMP) (Königer, 2000) · Rotterode Formation: Moravamylacris kukalovae-zone (Schneider, herein) · Upper Meisenheim Formation: SN d-xenacanthid-zone (Hampe in (Schneider et al., 2000) · Tambach Formation: Elgersburg rhyolithe 275 ± 4 Ma (U/Pb) (Lützner, et al., 2003; Lützner et al., 2006, in press); · Top Meisenheim Formation: SN e-xenacanthid-zone Moravamylacris kukalovae-zone (Schneider, herein); Melanerpeton pusillum (Hampe in (Schneider et al., 2000); Lioestheria monticula-zone (Martens, 1987) = L. andreevi – M. gracile-zone (Werneburg and Schneider, 2006, in -zone (Holub and Kozur, 1981); Seymouria sanjuanensis, press) earliest Wolfcampian (Berman and Martens, 1993); Dimetrodon teutonis, early Kungurian (Werneburg and · Dissibodenberg Formation to lower Nahe Subgroup: Schneider, 2006, in press) SN ?-xenacanthid-zone (Hampe in Schneider et al., 2000) · Eisenach Formation: Pseudestheria wilhelmsthalensis- · Dissibodenberg Formation: Spiloblattina zone (Martens, 1987) odernheimensis - Sysciophlebia n. sp. B-zone (Schneider and Werneburg, 1993) · Förtha Formation: Lueckisporites virkkiae, Corisaccites, to Abadehian (Kozur, 1988) · Donnersberg Formation: 290.7 ± 0.9 Ma (Rb/Sr) (Hess and Lippolt, 1989); inconsistent age after Lützner et al. · Zechstein Group: Merrillina divergens in the 1. cycle

(2003) and Lützner et al. (2006, in press) (Werra) carbonates - lower (Bender and Stoppel, 1965; Kozur, 1994); 257.3 ± 1.6 Ma Re/Os iso- · Formation, Sobernheim horizon: topic age of the at the base of the Zechstein Moravamylacris kukalovae-zone (Schneider, herein) (Brauns et al., 2003); see North German Basin, below.

Thuringian Forest Basin Saale Basin · Gehren Subgroup: Apateon intermedius - · Siebigerode Formation, Wettin Subformation: Apateon Branchierpeton saalensis-zone (Werneburg, 1996; intermedius -Branchierpeton saalensis-zone (Werneburg, Werneburg and Schneider, 2006, in press); 1996; Werneburg and Schneider, 2006, in press); Bohemiacanthus Ug-zone (Schneider and Zajic, 1994); Bohemiacanthus Ug - zone (Schneider and Zajic, 1994); Sysciophlebia euglyptica - Syscioblatta dohrni-zone Sysciophlebia euglyptica - Syscioblatta dohrni-zone (Schneider, 1982; Schneider and Werneburg, 1993); 293 (Schneider and Werneburg, 1993); 293 ± 2 Ma (295 ± 3 286 to 291 ± 2) (Ar/Ar) (Goll and Lippolt, 2001) 1995a, 1995b)

· Halle Formation: 297-301± 3 Ma (U/Pb-SHRIMP) · Müritz Subgroup: Lioestheria andreevi - Pseudestheria (Breitkreuz and Kennedy, 1999); Apateon intermedius - graciliformis - Palaeolimnadiopsis wilhelmsthalensis-as- Branchierpeton saalensis-zone (Werneburg, 1996; semblage-zone, Upper Rotliegend I (Hoffmann et al., 1989; Werneburg and Schneider, 2006, in press) Schneider et al., 2005, in press)

· Upper Hornburg Formation: conchostracans, · Parchim Formation: Illawara Reversal in the basal part Lioestheria andreevi - Pseudestheria graciliformis - (Menning, 1995) Palaeolimnadiopsis wilhelmsthalensis - assemblage-zone (Hoffmann et al., 1989; Schneider et al., 2005, in press) · Zechstein Group: see Thuringian Forest Basin; Mesogondolella britannica in the Kupferschiefer, · Eisleben Formation: equivalent to the Hannover For- Wuchiapingian (Legler et al., 2005, in press) mation of the North German Basin Döhlen Basin · Zechstein Group: see Thuringian Forest Basin · Döhlen Formation: Stephanian/Lower Rotliegend tran- sitional flora (Barthel, 1976); after macroflora the Döhlen Ilfeld Basin Formation is younger as the Wettin-Subformation, · Netzkater Formation: Apateon intermedius - Stephanian C of the Saale Basin and of similar age as the Branchierpeton saalensis-zone (Werneburg, 1990, 1996; Netzkater Formation of the Ilfeld Basin (Barthel, 1976; Werneburg and Schneider, 2006, in press); Sysciophlebia Schneider and Barthel, 1997) ilfeldensis-zone (Schneider, 1982) · Niederhäslich Formation: Melanerpeton pusillum – M. · Sülzhayn Formation: 290 Ma (Ar/Ar) (Lippolt and gracile-zone (Werneburg, 1996; Werneburg and Schneider, Hess, 1996) 2006, in press)

· Walkenried Formation: equivalent to the Hannover Formation of the North German Basin Czech Republic Central and Western Bohemian Basins · Zechstein Group: see Thuringian Forest Basin · Kladno Formation, Radnice Member: macroflora, Bolsovian (Pešek, 2004); Archimylacris lubnensis-zone, Erzgebirge Basin Bolsovian to lower Westphalian D (Schneider et al., 2005, · Zwickau Formation: Archimylacris form Zwickau-zone in press) (Schneider et al., 2005, in press) · Kladno Formation, Nýrany Member: Branchiosaurus · Härtensdorf Formation: macroflora - Lower Rotliegend salamandroides - Limnogyrinus elegans-zone (Werneburg, (Barthel, 1976); lower Härtensdorf Formation - 1996; Werneburg and Schneider, 2006, in press); sporomorph zone VII, level Q8 (upper Kartamysh Forma- Westphalian D to Cantabrian, macro-/microflora (Pešek, tion) of the Donetsk Basin and higher; upper Härtensdorf 2004) Formation - sporomorph zone XIII, level S2 (lower Slavansk Formation) of the Donetsk basin.; Asselian · Týnec Formation: Barruelian, macroflora (Pešek, 2004) (Döring et al., 1999) · Slaný Formation, Hredle Member: Sysciophlebia · Leukersdorf Formation: Melanerpeton pusillum – M. grata-zone, Stephanian B (Schneider, 1982) gracile- to Discosauriscus austriacus -zone (Werneburg, 1996; Werneburg and Schneider, 2006, in press); lower- · Line Formation: Apateon intermedius - Branchierpeton most Leukersdorf Formation - sporomorph zone XVI, level saalensis-zone (Werneburg, 1996; Werneburg and S4 (upper Slavjansk Formation) of the Donetsk basin, Schneider, 2006, in press); macroflora, Stephanian C upper Asselian (DÖRING et al., 1999) (Pešek, 2004)

· Zechstein Group: see Thuringian Forest Basin Krkonoše-Piedmont Basin · Syrenov Formation: macroflora, early Stephanian B North German Depression (Šimunek in Pešek, 2004) · Lower Ignimbrite: 302 ± 3 Ma (U/Pb, SHRIMP) (Breitkreuz and Kennedy, 1999) · Semily Formation, Plouznice Horizon: macroflora, Stephanian C (Pešek, 2004); Spiloblattina lawrenceana · Sediment intercalations within the volcanics: and Sysciophlebia rubida-zone = late Stephanian B Bohemiacanthus Om-Ugo-zone (Gaitzsch, 1995a, 1995b), (Schneider, 1982) Pseudestheria paupera and Pseudestheria palaeoniscorum, middle Lower Rotliegend (Gaitzsch, · Vrchlabí Formation: macroflora, Autunian (Pešek, 287 2004) (Werneburg, 1999; Werneburg and Schneider, 2006, in press; Ronchi et al., 2006, this volume) · Prosec· né Formation: macroflora, late Autunian (Šimunek in Pešek, 2004) Morocco Intra-Sudetic Basin Sous Basin and Argana Basin · •aclér Formation: macroflora, Late Namurian to · Oued Issene Formation: Spiloblattina pygmaea- and Bolsovian (Pešek, 2004) Sysciophlebia grata- zones, Stephanian B (Hmich et al. 2003, Hmich et al., 2006, this volume) · Odolov Formation: Sooblatta stephanensis, Stephanian B (Schneider, 1983; Pešek, 2004) · Ikakern Formation (T2 or Tourbihine Member): diplocaulid nectridean ( minimus), the · Chvalec· Formation: macroflora, Stephanian to captorhinid Acrodonta and a moradisaurine, Kazanian age Autunian (Pešek, 2004) (Middle Permian, Guadalupian) after Dutuit (1976, 1988) and Jalil and Dutuit (1996); transition Ait Driss / · Broumov Formation: macroflora, late Autunian Tourbihine Member (T1/T2) based on tetrapod tracks (Šimunek in Pešek, 2004); Melanerpeton pusillum - (Synaptichnium, Rhynchosauroides) latest Permian (S. Melanerpeton gracile-zone (Werneburg, 1996; Werneburg Voigt, personal comm., 2005) and Schneider, 2006, in press)

Ukraina Boskovice Graben Donetsk Basin · Rosice-Oslavany Formation: macroflora, Stephanian C (Pešek, 2004) · for marine correlations see Davydov and Leven (2003)

· Padochov Formation, Ríc· any Horizon: · Mironovsk Formtion (Araukararitovaja svita) P5 Coal Spiloblattina weissigensis-zone, middle Lower Rotliegend seam: possibly Pseudestheria limbata/Ps. rimosa - or Autunian respectively (Schneider and Werneburg, 1993) Lioestheria form Köllerbach - assemblage-zone, Stephanian A/B (Schneider et al. 2005, in press) · Letovice Formation, Zbonek-Svitavka Horizon: Sysciophlebia alligans-zone, upper Lower Rotliegend or Autunian respectively (Schneider and Werneburg, 1993) S-Africa Karoo Basin · Letovice Formation, Bac· ov Horizon: Discosauriscus austriacus -zone (Werneburg, 1996; · Deglaciation cycle II (Ganigobis Member): 299.2 Werneburg and Schneider, 2006, in press); Obora Hori- ± 3.2 / 302.0 ± 3 Ma (SHRIMP) (Bangert et al., 1999); zon: Moravamylacris kukalovae-zone (Schneider, 1980) for interpretations of glaciation/deglaciation cycles see Scheffler et al. (2003)

Italy · Pietermaritzburg Formation: 288.0 ± 3.0 Ma (SHRIMP) (Bangert et al., 1999) Southern Alps · Bozen Volcanite Complex: Brack and Schaltegger · Collingham Formation: 270 ± 1.0 Ma (SHRIMP) (1999) report an 276.3 ± 2.2 Ma age fort he upper part of (Turner, 1999) the BVC, but up to now no agreement exist on the age of the whole BVC; Cassinis and Ronchi (2001) estimate an · Middleton Formation: 265 ± 2.5 Ma (SHRIMP) (Wanke late to early Permian age using different et al., 2000) data (for references see there) · lowermost Abrahamskraal Formation: Eodicynodon · Gröden Formation / Val Gardena Sandstone and A.Z. (Rubidge, 1995) Bellerophon Formation: tetrapod footprints Rhynchosauroides, Pachypes dolomiticus, Ichniotherium, · mid Abrahamskraal Formation (Koonap Formation): Dicynodontipus, uppermost Permian (Massari et al., Tapinocephalus A.Z. (Smith and Keyser, 1995a) 1999); sporomorphs, upper Tatarian (Massari et al., 1999); marine microfauna (Bellerophon Formation), Dzhulfian- · upper Abrahamskraal Formation (upper Koonap For- Dorashamian (Neri and Massari, 1999) mation) to lower Teeklof Formation (lower Middleton Formation): Pristerognathus A.Z. (Smith and Keyser, Sardinia - Perdasdefogu Basin 1995b)

· Rio su Luda Formation: Melanerpeton eisfeldi-zone, · mid Teeklof Formation (mid Middleton Formation): middle Lower Rotliegend or Autunian respectively Tropidostoma A.Z. (Smith and Keyser, 1995c) 288 · upper Teeklof Formation (upper Middleton Formation) shown by Lützner et al. (2003, 2005, in press), because tectonic reacti- to lower Balfour Formation: Cictecephalus A.Z. (Smith vations in the European Variscides and multiple Mesozoic thermal events and Keyser, 1995d) have upset the geochronologic systems throughout large areas. Only cross correlation in conjunction with biostratigraphic data enable the · mid Balfour Formation: Dicynodon A.Z. (Kitching, best fitting of isotopic ages for the time being. On the other hand, most 1995) of the numerical ages used for the stage boundaries are estimated ages only, not really measured (comp. Menning, 1995; Menning et al., 2000). · upper Balfour Formation to lowermost Burgersdorp These problems need a solution, if we are to understand biotic and Formation: Lystrosaurus A.Z. (Groenewald and Kitching, abiotic processes on the late Palaeozoic earth. 1995) The tables and explanations provided here as well as further correlation charts of Carboniferous and Permian basins are available at CONCLUSIONS www.geo.tu-freiberg.de/~schneidj/ The progressively improved tables should be cited as: Roscher, Reliable biostratigraphic data, derived from bio(chrono)species, M. and Schneider, J.W., (year). Carboniferous/Permian correlation charts are very accessible in most of the basins, particularly in the Pennsylva- - www.geo.tu-freiberg.de/~schneidj/ nian and lower half of the Cisuralian. The density of data depends We will be grateful for constructive criticism as well as the sup- merely on the intensity of investigations - see for example the Thuringian ply of published data or references, which we have overlooked or which Forest basin. Late Cisuralian, Guadalupian and Lopingian sediments are newly published. are mostly discontinuously developed in the overwhelming number of basins; compare Figures 1 and 2. Additionally, drastic changes in the ACKNOWLEDGMENTS environments took place during Permian time. In the Late Pennsylva- nian and the lowermost Early Permian, sedimentary environments in- The authors thank the Deutsche Forschungsgemeinschaft (DFG), clude alluvial plains with palustrine and lacustrine gray facies that who supported this study with the research grants DFG-SCHN 408/7, interfinger with relatively wet, red alluvial deposits (Schneider et al., which was a part of the SPP “Evolution of the System Earth,” as well 2006, in press). In the late Lower Permian and the early Middle Per- as the common project of M. Menning and J.W. Schneider DFG-Me mian, sedimentary environments evolved to increasingly dryer, red al- 1134/5-2 “-Carboniferous-Permian Correlation Chart.” The luvial plains with lacustrine gray facies restricted to depocenters only. German Academic Exchange Survey (DAAD) has contributed with the Playa red beds predominate during the Middle and Late Permian. Ma- grant A/01/00754 for investigations in Morocco, and the DFG with the rine incursions in the southern and northern foreland of the Variscan grant 436 UKR 18/1/02 for fieldwork in the Donetsk basin, Ukraine. morphogene, such as the Bellerophon transgression in southern Europe The DFG grant SCHN 408/8 enables the revision of Euramerian Car- and the pre-Zechstein incursions and the Zechstein transgression in boniferous and Permian conchostracans by J. Goretzki, well supported northern Europe, generated alternations of playa and sabkha environ- by V. R. Lozovsky, Moscow. The Geological Survey of Saxony, espe- ments (Legler et al., 2005, in press). Similarly, the biotic environments cially W. Alexowsky, H. Walter and H.J. Berger, is thanked for coop- and the fossil record changed. Insects are still common, as in the eration as well as for research and mapping projects in some German Tambach Formation of the Thuringian Forest basin and the Wadern basins. The studies in the North German Basin have been supported by Formation of the Saar Nahe basin; they are really frequent in the playa the Central Geological Institute, namely by N. Hoffmann, and the Erdöl/ red beds of the Salagou Formation of the Lodève basin and in the Erdgas Gommern company of the former GDR, later by the BEB, Mobil Wellington of Kansas and Oklahoma. Aquatic amphibians, such Oil and EEG hydrocarbon exploration companies in Germany. Recently, as the temnospondyl branchiosaurs, disappear because of the disap- these studies could be intensified by the DFG grant SCHN 408/10. pearance of stable lake biotopes. On the other hand, terrestrially-adapted J.W.S would like to thank his friends, especially G. Gand, of the Asso- amphibians and reptiles became more important for biostratigraphy ciation des Géologues du Permien et du Trias (AGPT) for common (Lucas, 1998, 2002; Lozovsky 2003). Unfortunately, they are not well excursions and research projects in the French Massif Central and else- enough known from Western Europe, but perspective sites exist, as where, his Czech, Ukrainian and Russian friends for decades of coop- shown by the Tambach locality in the Thuringian Forest (e.g. Martens eration in fieldwork and biostratigraphic studies as well as the team of et al., 1981; Berman and Martens, 1993) and the La Lieude site in the the New Mexico Museum of Natural History for current extensive co- Lodève basin (Schneider et al., 2006, in press). operative work in collections and the field. This inestigations are sup- Real serious problems are the direct biostratigraphic correlations ported by the DFG grant SCHN 408/12. S. Gosh, Geological Survey of to the marine scale. Besides single exceptions (Schneider et al., 1995b; India, and G. Schneider, Geological Survey of Namibia, enable J.W.S. Schneider et al., 2004), terrestrial zone fossils were rarely found in to get an idea of the Carboniferous and Permian during field- well dated marine profiles. But again, the potential is much higher. work and excursions. We would like to thank Spencer G. Lucas (Albu- Very perspective plays are the Permian mixed marine/continental de- querque) for his linguistic improvements of the text. This publication posits of the North American Midcontinent basin and in the Volga- is a contribution to the tasks of the working group “Marine – non- Kama region of Tatarstan in Eastern Europe. Up to now, non-marine/ marine correlations” of the Subcommission on Permian Stratigraphy of marine correlations are based nearly exclusive on isotopic ages from the IUGS. volcanites of the continental basins. But, they are not unambiguous, as

REFERENCES

Bangert, B., Stollhofen, H., Lorenz, V. and Armstrong, R., 1999. The geochronol- Bender, H. and Stoppel, D., 1965. Perm-Conodonten. Geol. Jb., 82, p. 331- ogy and significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian 364. Dwyka Group of Namibia and . Journal of African Earth Sciences, Berman, D. S. and Martens, T., 1993. First occurrence of Seymouria (Am- 29(1), p. 33-49. phibia; Batrachosauria) in the Lower Permian Rotliegend of central Barthel, M., 1976. Die Rotliegendflora Sachsens. Abh. Staatl. Mus. Min. Geol, 24, Germany. Annals of Carnegie Museum, 62(1), p. 63-79. p. 1 - 190. Bethoux, O., Nel, A., Gand, G., Lapeyrie, J. and Galtier, J., 2002. Discovery of the 289 Iasvia Zalessky, 1934 in the Upper Permian of France (Lodéve zeilleri dans la partie nord du bassin de St Affrique. Geobios, 18, p. 215- Basin) (Orthoptera, Ensifera, Oedischiidae). Geobios, 35(3), p. 293- 227. 302. Gand, G., Lapeyrie, J., Garric, J., Nel, A., Schneider, J. and Walter, H., 1997. Boy, J. A., 1987. Die Tetrapoden-Lokalitäten des saarpfälzischen Rotliegenden Découverte d’Arthropodes et de bivalves inédits dans le Permien conti- (?Ober-Karbon - Unter-Perm; SW-Deutschland) und die Biostratigraphie der nental (Lodèvois, France). Sciences de la terre et des planètes, 325, p. Rotliegend-Tetrapoden. Mainzer geowissenschaftliche Mitteilungen, 16, p. 31- 891-898. 65. Goll, M. and Lippolt, H. J., 2001. Biotit-Geochronologie (40Ar rad/K, 40Ar rad/ 39Ar Boy, J. A. and Fichter, J., 1982. Zur Stratigraphie des saarpfälzischen Rotliegenden K, 87Sr rad/ 87Rb) spät-variszischer Magmatite des Thüringer Waldes. N.Jb. Geol. (?Ober-Karbon - Unter-Perm; SW-Deutschland). Zeitschrift der deutschen Paläont., Abh, 222(3), p. 353-405. Geologischen Gesellschaft, 133, p. 607 – 642. Groenewald, G. H. and Kitching, J. W., 1995. Biostratigraphy of the Lystrosaurus Boy, J. A. and Schindler, T., 2000. Ökostratigraphische Bioevents im Grenzbereich Assemblage Zone. In: Rubidge, B. S. (Editor), Biostratigraphy of the Beaufort Stephanium/Autunium (höchstes Karbon) des Saar-Nahe-Beckens (SW- Group (). South African Committee for Stratigraphy, p. 35- Deutschland) und benachbarter Gebiete. Neues Jahrbuch für Geologie und 39. Paläontologie, Abhandlungen, 216, p. 89-152. Hampe, O., 1989. Revision der Triodus-Arten (Chondrichthyes: Xenacanthida) aus Brack, P. and Schaltegger, U., 1999. Magmatism and extension in the Lower Per- dem saarpfälzischen Rotliegenden (Oberkarbon-Perm, SW-Deutschland) mian of the Southern Alps: new age constraints from high resolution U-Pb dat- aufgrund ihrer Bezahnung. Paläont. Z, 63, p. 79-101. ing zircons, Abstracts of the International Congress on „The continental Per- Harris, S. K., Lucas, S. G., Berman, D. S. and Henrici, A. C., 2004. Vertebrate fossil mian of the Southern Alps and Sardinia (Italy). Regional reports and general assemblage from the Upper Pennsylvanian Red Tanks Member of the Bursum correlations“. Earth Sci. Dept., Pavia University, Brescia, Italy, p.107. Formation, Lucero Uplift, central New Mexico. In: Lucas, S. G. and Zeigler, K. Brauns, C. M., Pätzold, T. and Haack, U., 2003. A Re-Os study bearing on the age E. (Editors), Carboniferous-Permian transition at Carrizo Arroyo, Central New of the Kupferschiefer black shale at Sangerhausen (Germany), XVth Interna- Mexico. New Mexico Museum of Natural History and Science, 25, p. 267-284. tional Congress on Carboniferous and Permian Stratigraphy, Utrecht, p. 66. Haubold, H., 1973. Die Tetrapodenfährten aus dem Perm Europas. Freiberger Breitkreuz, C. and Kennedy, A., 1999. Magmatic flare-up at the Carboniferous/ Forschungshefte, C 285, p. 5-55. Permian boundary in the NE German Basin revealed by SHRIMP zircon ages. Hess, J. C. and Lippolt, H. J., 1989. Isotopic evidence for the stratigraphic position Tectonophysics, 302(3-4), p. 307-326. of the Saar-Nahe Rotliegende volcanism; Part III, Synthesis of results and geo- Broutin, J., Chateauneuf, J. J., Galtier, J. and Ronchi, A., 1999. L´Autunien d´Autun logical implications. N.Jb. Geol. Paläont., Abh, 1989(9), p. 553-559. reste-t-il une référence pour les dépots continentaux du Permien inférieur Hmich, D., Schneider, J.W., Saber, H. and El Wartiti, M., 2003. First d´Europe ? Apport des données paléobotaniques. Géol. de la France, 2, p. 17- Permocarbonifreous insects (blattids) from North Africa (Morocco) – implica- 31. tions on palaeobiogeography and palaeoclimatology. Freiberger Broutin, J., Doubinger, J., Farjanel, G., Freytet, P., Kerp, H., Langiaux, J., Lebreton, Forschungsheftee, C 499, p. 117-134. M.-L., Sebban, S. and Satta, S., 1990. Le renouvellement des flores au passage Hmich, D., Schneider, J. W., Saber, H. and El Wartiti, M., 2006. Spiloblattinidae carbonifère-permien: approches stratigraphique, biologique, sédimentologique. (Insecta, Blattida) from the Carboniferous of North Africa (Morocco) - implica- C. R. Acad. Sci. Paris, Sér. II, p. 1563-1569. tions on biostratigraphy. New Mexico Museum of Natural History and Science, Bruguier, O., Becq-Giraudon, J. F., Champenois, M., Deloule, E., Ludden, J. and Hoffmann, N., Kamps, H.-J. and Schneider, J., 1989. Neuerkenntnisse zur Mangin, D., 2003. Application of in situ zircon geochronology and accessory Biostratigraphie und Paläodynamik des Perms in der Norddeutschen Senke - phase chemistry to constraining basin development during post-collisional ex- ein Diskussionsbeitrag. Z. angew. Geol., 35(7), p. 198 - 207. tension: a case study from the French Massif Central. Chemical Geology, 201(3- Holub, V. and Kozur, H., 1981. Revision einiger Conchostracen-Faunen des 4), p. 319-336. Rotliegend und biostratigraphische Auswertung der Conchostracen des Burger, K., Hess, J. C. and Lippolt, H. J., 1997. Tephrochronologie mit Kaolin- Rotliegend. Geol. Paläont. Mitt. Innsbruck, 11(2), p. 93-94. Kohlentonsteinen: Mittel zur Korrelation paralischer und limnischer Jalil, N. and Dutuit, J.-M., 1996. Permian capthorinid reptiles from Argana Forma- Ablagerungen des Oberkarbons. Geol.Jb, A 147, p. 3-39. tion, Morocco. Palaeontology, 39, p. 907-918. Cassinis, G. and Ronchi, A., 2001. Permian chronostratigraphy of the Southern Kerp, H., 1996. Post-Variscan late Palaeozoic Northern Hemisphere gymnosperms: Alps (Italy) - an update. In Weiss, R. H. (edit.). Contributions to the Geology the onset to the Mesozoic. Review of Palaeobotany and Palynology, 90, p. 263- and Palaeontology of Gondwana - in honour of Helmut Wopfner. Cologne, p. 285. 73-88. Kitching, J. W., 1995. Biostratigraphy of the Dicynodon Assemblage Zone. In: Davydov, V. I. and Leven, E. J., 2003. Correlation of Upper Carboniferous (Penn- Rubidge, B. S. (Editor), Biostratigraphy of the Beaufort Group (Karoo Super- sylvanian) and Lower Permian (Cisuralian) marine deposits of the Peri-Tethys. group). South African Committee for Stratigraphy, p. 29-34. Palaeogeography, Palaeoclimatology, Palaeoecology, 196, 39-57. Königer, S., 2000. Verbreitung, Fazies und stratigraphische Bedeutung distaler DiMichele, W. A., Pfefferkorn, H. W. and Phillips, T. L., 1996. Persistence of Late Ascheentuffe der Glan-Gruppe im karbonisch-permischen Saar-Nahe-Becken Carboniferous tropical vegetation during glacially driven climatic and sea-level (SW-Deutschland). Mainzer geowiss. Mitt., 29, p. 97-132. fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 125(1-4), p. Kozur, H., 1988. The age of the Central European Rotliegendes. Z. geol. Wiss., 105-128. 16(9), p. 907-915. Döring, H., Fischer, F. and Rößler, R., 1999. Sporostratigraphische Korrelation des Kozur, H., 1994. The correlation of the Zechstein with the marine standard. Jb.geol. Rotliegend im Erzgebirge-Becken mit dem Permprofil des Donezk-Beckens. B.-A, 137(1), p. 85-103. Veröffentlichungen des Museums für Naturkunde Chemnitz, 22, p. 29-56. Krainer, K., Lucas, S. G. and Kues, B. S., 2001. The facies of the nonmarine to Dutuit, J.-M., 1976. Découverte d’Amphibiens Lépospondyles dans la série inférieure shallow marine Red Tanks Formation, Pennsylvanian-Permian, central New de la Formation rouge d’Argana (Atlas occidental marocain). Comptes Rendus Mexico. New Mexico Geology, 23, p. 62-63. - Academie des sciences. Geoscience, 283, p. 1733-1734. Legler, B., Gebhardt, U. and Schneider, J. W., 2005, in press. Late permian non- Dutuit, J.-M., 1988. Diplocaulus minimus n sp. (Amphibia: ), marine-marine transitonal profiles in the central Southern , northern Lépospondyle de la Formation d’Argana, dans l’Atlas marocain. Comptes Rendus Germany. International Journal of Earth Sciences. - Academie des sciences. Geoscience, 307, p. 851-854. Lippolt, H. J. and Hess, J. C., 1996. Numerische Stratigraphie permokarbonischer Gaitzsch, B., 1995a. Grüneberg-Formation. In: Plein, E. (Editor), Stratigraphie von Vulkanite Zentraleuropas. Teil II: Westharz. Z. dt. geol. Ges., 147(1), p. -9. Deutschland I. Norddeutsches Rotliegendbecken. Rotliegend-Monographie Teil Lopez, M., Gand, G., Garric, J. and Galtier, J., 2005. Excursion guide. Playa Envi- II. Cour. Forsch.-Inst. Senckenberg, Frankfurt a.M., p. 102-106. ronments in the Lodève Permian basin and the Cover (Languedoc- Gaitzsch, B., 1995b. Zwischensedimente. In: Plein, E. (Editor), Stratigraphie von France). Association Sedimentologistes Francais, Montpellier, 54 pp. Deutschland I. Norddeutsches Rotliegendbecken. Rotliegend-Monographie Teil Lozovsky, V. R., 2003. Correlation of the continental Permian of northern Pangea: II. Cour. Forsch.-Inst. Senckenberg, Frankfurt a.M., p. 101-102. a review. Boll. Soc. Geol. It., 2, p. 239-244. Gand, G., 1985. Significations paléobiologique et stratigraphique de Limnopus Lucas, S. G. 1998. Permian tetrapod biochronology. Permophiles, Newsletter of the 290 Subcommission on Permian Stratigraphy, 32, p. 17-24. Pešek, J., 2004. Late Paleozoic Limnic Basins and Coal Deposits of the Lucas, S. G. 2002. and the subdivision of Permian Time. In: Carbonifer- Czech Republic, Geologica Editio Specialis Volumen 1. Musei Rerum ous and Permian of the World (edited by Hills, L. V., Henderson, C. M. & Bamber, Naturalium Bohemiae Occidentalis, Plzen, 188 pp. E. W.) Memoir 19. Canadian Society of Petroleum Geologists, p. 479-491. Ramezani, J., Davydov, V. I., Northrup, C. J., Bowering, S. A., Chuvashov, B. I. and Lucas, S. G. and Krainer, K., 2004. The Red Tanks Member of the Bursum Snyder, W. S. 2003. Volcanic ashes in the Upper Paleozoic of the Southern Urals: Formation in the Lucero Uplift and regional stratigraphy of the Bursum Opportunities for the high-precision calibration of the Upper Carbonif- Formation in New Mexico. In: Lucas, S. G. and Zeigler, K. E. (Editors), erous - Cisuralian interval. XVth International Congress on Carbonifer- Carboniferous-Permian transition at Carrizo Arroyo, Central New ous and Permian Stratigraphy, Utrecht, abstracts, p. 431-432. Mexico. New Mexico Museum of Natural History and Science, 25, p. Ronchi, A., Schneider, J. W., Werneburg, R. and Fischer, J., 2006. Carbonif- 43-52. erous/Permian fishes and amphibians of Sardinia - biostratigraphic cor- Lützner, H., Mädler, J., Romer, R. L. and Schneider, J. W., 2003. Improved strati- relations across the Variscan mountains. New Mexico Museum of Natu- graphic and radiometric age data for the continental Permocarboniferous refer- ral History and Science, p ence-section Thüringer-Wald, Germany, Abstracts of the XVth International Rubidge, B. S., 1995. Biostratigraphy of the Eodicynodon Assemblage Zone. In: Congress on Carboniferous and Permian Stratigraphy, Utrecht, p. 338-341. Rubidge, B. S. (Editor), Biostratigraphy of the Beaufort Group (Karoo Super- Lützner, H., Littmann, S., Mädler, J., Romer, R. L. and Schneider, J. W., 2006, in group). South African Committee for Stratigraphy, p. 3-7. press. Radiometric and biostratigraphic data of the Permocarboniferous refer- Scheffler, K., Hoernes, S. and Schwark, L., 2003. Global changes during Carbonif- ence section Thüringer Wald, Proceedings of the XVth International Congress erous-Permian glacation of Gondwana: Linking polar and equatorial climate on Carboniferous and Permian Stratigraphy, Utrecht. evolution by geochemical proxies. Geology, 31(7), p. 605-608. Martens, T., 1983. Zur Taxonomie und Biostratigraphie der Conchostraca Schneider, J., 1980. Zur Entomofauna des Jungpaläozoikums der Boskovicer Furche (Phyllopoda, Crustacea) des Jungpaläozoikums der DDR, Teil 1. Freiberger (CSSR), Teil 1: Mylacridae (Insecta, Blattodea). Freiberger Forschungshefte, C Forschungshefte, C 382, p.7-105. 357, p. 43-55. Martens, T., 1987. Conchostracan zone - succession. In: Lützner, H. (Editor), Sedi- Schneider, J., 1982. Entwurf einer Zonengliederung für das euramerische mentary and volcanic Rotliegendes of the Saale Depression - Excursion guidbook, Permokarbon mittels der Spiloblattinidae (Blattodea, Insecta). Freiberger Symp. Rotliegendes in Central Europe. Zentralinst. Physik der Erde, Potsdam, Forschungshefte, C 375, p. 27-47. p. 89. Schneider, J., 1983. Die Blattodea (Insecta) des Paläozoikums, Teil 1: Systematik, Martens, T., Schneider, J. and Walter, H., 1981. Zur Paläontologie und Genese Ökologie und Biostratigraphie. Freiberger Forschungshefte, C 382, p. 106-145. fossilführender Rotsedimente - Der Tambacher Sandstein, Oberrotliegendes, Schneider, J., 1985. Elasmobranchier-Zahntypen (Pisces, Chondrichthyes) und ihre Thüringer Wald. Freiberger Forschungshefte, C 363, p. 75 – 100. stratigraphische Verbreitung im Karbon und Perm der Saale-Senke (DDR). Martin, J. L., 1971. Stratigraphic analysis of Pennsylvanian strata in the Lucero Freiberger Forschungshefte, C 400, p. 90-100. region of west central New Mexico. Ph. D. Thesis, University of New Mexico, Schneider, J., 1989. Basic problems of biogeography and biostratigraphy of the Upper Albuquerque, 196 pp. Carboniferous and Rotliegendes. Acta musei reginaehradecensis, Ser. A, p. 31– Massari, F., Neri, C., Fontana, D., Manni, R., Mariotti, N., Nicosia, U., Pittau, P., 44. Spezzamonte, M. and Stefani, C., 1999. Excursion 3: The Bletterbach Section Schneider, J. W., 1996. Xenacanth teeth a key for and biostratigraphy. (Val Gardena Sandstone and Bellerophon Formation). In: Cassinis, G., Modern Geology 20: 321-340. Cortesogno, L., Gaggero, L., Massari, F., Neri, C., Nicosia, U. and Pittau, P. Schneider, J. W. and Werneburg, R., 1993. Neue Spiloblattinidae (Insecta, Blattodea) (Editors), Stratigraphy and Facies of the Permian deposits between eastern Lom- aus dem Oberkarbon und Unterperm von Mitteleuropa sowie die Biostratigraphie bardy and the western Dolomites. Field Trip Guidebook of the International des Rotliegend. Veröff. Naturhist. Mus. Schloß Bertholdsburg Schleusingen, 7/ Congress on “The continental Permian of the Southern Alps and Sardinia (Italy). 8, p. 31-52. Regional reports and general correlations”. Earth Science Department, Pavia Schneider, J. W., 1996. Xenacanth teeth - a key for taxonomy and biostratigraphy. University, Brescia, Italy, p. 111-134. Modern Geology, 20, p. 321-340. Menning, M., 1995. A Numerical Time Scale for the Permian and Triassic Periods: Schneider, J.W., 2001. Rotliegendstratigraphie – Prinzipien und Probleme. Beiträge an Integrated Time Analysis. In: Scholle, P., Peryt, T. M. and Scholle-Ulmer, N. zur Geologie von Thüringen, Neue Folge, 8, p.7-42. (Editors), Permian of the Northern Pangea. Springer, Heidelberg, p. 77-97. Schneider, J. W. and Barthel, M., 1997. Eine Taphocoenose mit Arthropleura (Ar- Menning, M. and German Stratigraphic Commission, 2002. A geological time scale thropoda) aus dem Rotliegend (Unterperm) des Döhlen-Becken (Elbe-Zone, 2002. in: German Stratigraphic Commission (ed.), Stratigraphic Table of Ger- Sachsen). Freiberger Forschungshefte, C 466, p. 183-223. many. Schneider, J. W., Goretzki, J. and Rössler, R., 2005, in press. Biostratigraphisch Menning, M., Weyer, D., Drozdzewski, G., Van Ameron, H. W. J. and Wendt, F., relevante nicht-marine Tiergruppen im Karbon der variscischen Vorsenke und 2000. A Carboniferous Time Scale 2000: Discussion and use of geological pa- der Innensenken. In: Wrede, V. (Editor), Stratigraphie von Deutschland, rameters as time indicators from Central and Western Europe. Geol. Jb., A 156, Oberkarbon. Cour. Forsch.-Inst. Senckenberg, Frankfurt a.M. p. 3-44. Schneider, J. W., Hampe, O. and Soler-Gijón, R., 2000. The Late Carboniferous Menning, M., Schneider, J.W., Chuvashov, B. I., Davydov, V. I., Forke, H. C., Heckel, and Permian: Aquatic vertebrate zonation in Southern Spain and German ba- P. H., Jin, Y. G., Jones, P., Kozur, H., Nemyrovska, T. I., Riley, N., Weddige, K. sins.- IGCP 328. Final Report. Cour. Forsch.-Inst. Senckenberg, 223, p. 543- and Weyer, D., 2003. A Devonian – Carboniferous – Permian Correlation Chart 561. 2003 (DCP 2003).- XVth International Congress on Carboniferous and Per- Schneider, J., Hoffmann, N., Kamps, H.-J., 1991. A potential reference section of mian Stratigraphy 2003, Utrecht, abstracts, p. 350 – 351. Central European continetal Upper Carboniferousand Permian for correlations Neri, C. and Massari, F., 1999. 4. The continental to marine Upper Permian with marine standard scales. Permophiles, Newsletter of SCPS, 18, p. 5-10. succsessions of the eastern Southern Alps. In: Cassinis, G., Cortesogno, L., Schneider, J. W., Körner, F., Roscher, M. and Kroner, U., 2006, in press. Permian Gaggero, L., Massari, F., Neri, C., Nicosia, U. and Pittau, P. (Editors), Stratigra- climate development in the northern peri-Tethys area – the Lodève basin, French phy and Facies of the Permian deposits between eastern Lombardy and the west- Massif Central, compared in a European and global context. Palaeogeography, ern Dolomites. Field Trip Guidebook of the International Congress on “The Palaeoclimatology, Palaeoecology. continental Permian of the Southern Alps and Sardinia (Italy). Regional reports Schneider, J. W., Lucas, S. G. and Rowland, J. M., 2004. The Blattida and general correlations”. Earth Science Department, Pavia University, Brescia, (Insecta) fauna of Carrizo Arroyo, New Mexico - biostratigraphic link Italy, p. 27-34. between marine and nonmarine Pennsylvanian/Permian boundary profiles. In: Orchard, M. J., Lucas, S. G. and Krainer, K., 2004. Conodonts and the age of the Lucas, S. G. and Zeigler, K. E. (Editors), Carboniferous-Permian transition Red Tanks Member of the Bursum Formation at Carizzo Arroyo, central New at Carrizo Arroyo, Central New Mexico. New Mexico Museum of Natu- Mexico. In: Lucas, S. G. and Zeigler, K. E. (Editors), Carboniferous-Permian ral History and Science, 25, p. 247-262. transition at Carrizo Arroyo, Central New Mexico. New Mexico Museum of Schneider, J.W., Röehler, R. and Gaitzsch, B., 1995 (a). Time lines of the Natural History and Science, Bulletin 25, Albuquerque, p. 123-126. Late Variscan volcanism - holostratigraphic synthesis. Zbl. Geol. Paläont. 291 Teil I, 5/6, p. 477-490. Journal of African Earth Sciences, 28(1), p. 215-238. Schneider, J. W., Rössler, R. and Gaitzsch, B., 1995 (b). Proposal for a combined Voigt, S., 2005. Die Tetrapodenfauna des kontinentalen Oberkarbon und Perm im reference section of the Central European Continental Carboniferous and Per- Thüringer Wald - Ichnotaxonomie, Paläoökologie und Biostratigraphie. 297 mian for correlations with marine standard sections. Permophiles, Newsletter of pp. Cuvillier Verlag, Göttingen. the Subcommission on Permian Stratigraphy, 26, p. 26-31. Wanke, A., Stollnhofen, H., Stanistreet, I. G. and Lorenz, V., 2000. Karoo Schneider, J. W., Werneburg, R., Lucas, S. G., Bethoux, O. and Hmich, D., unconformities in NW-Namibia and their tectonic implications. Communica- 2003. Insect biochronozones – a powerful tool in the biostratigraphy of tions of the Geological Survey of South West Africa/Namibia, 12, p. 259-268. the Pennsylvanian and the Permian. Permophiles, Newsletter of the Wengerd, S. A., 1959a. Regional geology as related to the petroleum potential of Subcommission on Permian Stratigraphy, 42, p. 11-13. the Lucero region, west-central New-Mexico, Guidebook 10. New Mexico Geo- Schneider, J. W. and Zajic, J., 1994. Xenacanthodier (Pisces, Chondrichthyes) des logical Society, p. 121-134. mitteleuropäischen Oberkarbon und Perm - Revision der Originale zu Wengerd, S. A., 1959b. Pennsylvanian paleogeology and search for oil in Lucero GOLDFUSS 1847, BEYRICH 1848, KNER 1867 und FRITSCH 1879 - 1890. basin, central New Mexico. American Association of Petroleum Geologists Freiberger Forschungshefte, C 452, p. 101-151. Bulletin, 43, p. 1108. Smith, R. M. H. and Keyser, A. W., 1995a. Biostratigraphy of the Tapinocephalus Werneburg, R., 1988. Paläobiogeographie der labyrinthodonten Amphibien im Assemblage Zone. In: Rubidge, B. S. (Editor), Biostratigraphy of the Beaufort Oberkarbon und Rotliegenden Mitteleuropas. Zeitschrift für geologischen Group (Karoo Supergroup). South African Committee for Stratigraphy, p. 8- Wissenschaften, 16, p. 929-932. 12. Werneburg, R., 1990. Dissorophoiden (Amphibia) aus dem Grenzbereich Karbon/ Smith, R. M. H. and Keyser, A. W., 1995b. Biostratigraphy of the Pristerognathus Perm der Saale-Senke und des Ilfelder Beckens (DDR). Z. geol. Wiss., 18(7), p. Assemblage Zone. In: Rubidge, B. S. (Editor), Biostratigraphy of the Beaufort 665-677. Group (Karoo Supergroup). South African Committee for Stratigraphy, p. 13- Werneburg, R., 1996. Temnospondyle Amphibien aus dem Karbon 17. Mitteldeutschlands. Veröff. Naturhist. Mus. Schloß Bertholdsburg Schleusingen, Smith, R. M. H. and Keyser, A. W., 1995c. Biostratigraphy of the Tropidostoma 11, p. 23-64. Assemblage Zone. In: Rubidge, B. S. (Editor), Biostratigraphy of the Beaufort Werneburg, R., 1999. Biostratigraphy and Palaeobiogeography of the European Group (Karoo Supergroup). South African Committee for Stratigraphy, p. 18- Permo-Carboniferous using labyrinthodont amphibians., The Continental Per- 22. mian of the Southern Alps and Sardinia (Italy). Int. Congress in Brescia 9/1999, Smith, R. M. H. and Keyser, A. W., 1995d. Biostratigraphy of the Cistecephalus Abstracts, University Pavia, p. 27. Assemblage Zone. In: Rubidge, B. S. (Editor), Biostratigraphy of the Beaufort Werneburg, R., 2001. Die Amphibien- und Reptilien-Faunen im Permokarbon des Group (Karoo Supergroup). South African Committee for Stratigraphy, p. 23- Thüringer Waldes. Beiträge zur Geologie von Thüringen, Neue Folge, 8, p. 28. 125–152. Sumida, S.S., Berman, D.S. and Martens, T., 1996. Biostratigraphic correlations Werneburg, R., 2003. The branchiosaurid amphibians from the Lower Permian of between the Lower Permian of North America and Central Europe using the Buxières- les-Mines, Bourbon I’Archambault Basin (Allier, France) and its bio- first record of an assemblage of terrestrial tetrapods from Germany. PaleoBios, stratigraphic significance. Bulletin de la Société Géologique de France, 174 (4), 17 (2-4), 1-12. 1-7. Turner, B. R., 1999. Tectonostratigraphical development of the Upper Karoo foreland Werneburg, R. and Schneider, J.W., 2006, in press. Amphibian Biostratigraphy of basin; orogenic unloading versus thermally-induced Gondwana rifting. the European Permocarboniferous. Journal of the Geological Society, London.