An Introduction to Mechanical Engineering: Study on the Competitiveness of the EU Mechanical Engineering Industry

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Mechanical Engineering: Study on the Competitiveness of the EU Mechanical Engineering Industry An introduction to Mechanical Engineering: Study on the Competitiveness of the EU Mechanical Engineering Industry Within the Framework Contract of Sectoral Competitiveness Studies – ENTR/06/054 Final Report Client: Directorate-General Enterprise & Industry Dr. Hans-Günther Vieweg Munich, 01 February 2012 Project leader: Hans-Günther Vieweg, Ifo Institute Team: Ifo Institute: Jörg Claussen Christian Essling Michael Reinhard Cambridge Econometrics: Eva Alexandri Graham Hay Ian Robins Danish Technological Institute: Tine Andersen Karsten Frøhlich Hougaard Table of contents 1 An introduction to Mechanical Engineering 1 1.1 Structure of the report and the team 1 1.2 Understanding the project and its objectives 2 1.3 Specifics of Mechanical Engineering 4 2 EU Mechanical Engineering 19 2.1 Profile of the EU Mechanical Engineering 19 2.1.1 Description of the sector 19 2.1.2 Mechanical Engineering compared to total manufacturing 27 2.2 Mechanical engineering in selected Member States 31 2.2.1 France 31 2.2.2 Germany 35 2.2.3 Italy 38 2.2.4 Spain 41 2.2.5 United Kingdom 45 2.2.6 Poland 47 2.2.7 Czech Republic 50 2.2.8 Slovakia 53 2.3 Subsectors of Mechanical Engineering 55 2.3.1 Engines and turbines 55 2.3.2 Pumps and compressors 60 2.3.3 Taps and valves 65 2.3.4 Bearings, gears and drives 68 2.3.5 Lifting, handling and storage equipment 74 2.3.6 Non-domestic cooling and ventilation equipment 83 2.3.7 Agricultural and forestry machinery 87 2.3.8 Machinery for mining, quarrying and construction 93 2.3.9 Machine Tools for metal working 98 2.3.10 Machinery for textile, apparel and leather production 105 2.4 Specific topics for the assessment of the performance of EU ME 109 2.4.1 Supply side analysis of EU Mechanical Engineering 109 2.4.2 EU ME – regional distribution and division of labour 112 2.4.3 Non-European players activities in the EU 118 3 Major competitors and sales markets 120 3.1 Major competitors 120 3.1.1 United States 120 3.1.2 Japan 128 3.1.3 China 136 3.2 Major sales markets 149 3.2.1 Russia 149 3.2.2 Turkey 151 3.2.1 Middle East and North Africa (MENA) 154 3.2.2 India 156 3.2.3 South Korea 160 3.2.4 Taiwan 163 3.2.5 Indonesia 166 3.2.6 Australia 168 3.2.7 Canada 170 3.2.8 Mexico 172 3.2.9 Brazil 175 4 Assessment of competitive position of the EU Mechanical Engineering 178 4.1 Recent trends in the EU Mechanical Engineering’s structure 178 4.1.1 Mechanical engineering – a regionally anchored industry 178 4.1.2 Regional specifics within the EU 179 4.1.3 Globalization – a driver for structural change 179 4.1.4 Structural changes 181 4.1.5 Changing upstream environment – challenges to ME firms 182 4.1.6 Changing sales market environment needs adjustments 182 4.2 Price competitiveness and profitability 183 4.3 Trade analysis 189 4.4 Changes in the EU ME value chain 196 4.4.1 New organizational strategies – opportunities and threats for smaller firms 196 4.4.2 Broaden the regional reach and co-operation 197 4.4.3 Regional patterns 198 4.5 Impact of changes in the product programme of the EU ME and competitiveness of supply 199 4.6 Performance of the EU ME in technological competition 201 4.6.1 ME as innovation enabler 201 4.6.2 Resources to R&D – a methodological view 201 4.6.3 Trends in corporate R&D expenditure 202 4.6.4 Trends in corporate patent activities 204 4.6.5 Assessment of the technological competitiveness 207 4.7 Concluding evaluation of the EU ME’s competitiveness 208 5 Framework conditions 212 5.1 Market regulation 212 5.1.1 New Approach and New Legislative Framework 212 5.1.2 Market surveillance 213 5.1.3 National provisions hampering free trade in the Single Market 214 5.1.4 Multiple requirements for manufacturers of intermediary products 215 5.1.5 Internal combustion engines and mobile machinery 215 5.1.6 Energy related regulation 216 5.1.7 Self-regulation 217 5.1.8 Reliable regulatory environment 217 5.1.9 Smaller firms 218 5.1.10 International standards 218 5.2 Knowledge: R&D, innovation, and product development 219 5.3 Labour force and skills 229 5.3.1 Overall development in employment 230 5.3.2 Country trends in employment 231 5.3.3 National importance of ME as an employer 233 5.3.4 Sub-sector developments 235 5.3.5 Occupational structure and qualifications 236 5.3.6 Evidence at the national level 238 5.3.7 Evidence at sub-sector level 240 5.3.8 Current skill needs and skill shortages in the EU for different types of work 241 5.3.9 Availability of skilled staff 243 5.3.10 Future occupational profiles 246 5.3.11 Skills needed as a result of strategic developments in the sector 247 5.3.12 Human resources policy with regard to flexibility of employment 249 5.3.13 Conclusion 250 5.4 Corporate finances 251 5.4.1 Changes in financial markets and enterprise funding 251 5.4.2 Interest of financial investors in mechanical engineering 252 5.5 Openness of international markets 254 5.5.1 Overview 254 5.5.2 United States 255 5.5.3 Japan 255 5.5.4 China 256 5.5.5 Russia 257 5.5.6 Turkey 258 5.5.7 Middle East 258 5.5.8 India 258 5.5.9 Central and South America 259 5.6 Structural change and geographic cohesion 259 6 Strategic outlook 262 6.1 Medium-term outlook 262 6.1.1 Impact of the global economic crisis on ME 262 6.1.2 Quarterly trends in Mechanical Engineering in 2010 and 2011 263 6.1.3 Mechanical Engineering in 2011 compared to 2008 264 6.1.4 Mechanical Engineering compared to Manufacturing 265 6.2 Investigation in selected future oriented markets 266 6.2.1 Middle East and North Africa (MENA) 266 6.2.2 The demand potential of less exploited renewable energies 269 6.2.3 Long-term prospects for services 272 6.2.4 Conclusions 273 6.3 Long-term outlook 274 6.3.1 Economic growth potential 275 6.3.2 Productivity development 279 6.3.3 Employment implications 281 6.3.4 Conclusions 282 6.4 Recommendations 283 6.4.1 Organisation and industry structure 283 6.4.2 Market regulation 284 6.4.3 Financial markets 286 6.4.4 Labour market 286 6.4.5 Innovation environment 287 6.4.6 Access to third markets 289 7 References 290 List of tables Table 1.1: Key figures for EU-27 in Mechanical Engineering 6 Table 1.2: Distribution of enterprises by size category and average employment 8 Table 1.3: Distribution of employment by size category 8 Table 1.4: Regional distribution of Mechanical Engineering in the EU 2008 9 Table 1.5: Research efforts measured by business expenditure on R&D in mechanical engineering (ISIC Rev.2) in € million 17 Table 1.6: Research efforts measured by R&D intensity 2007 - 2009 18 Table 2.1: Key indicators on the performance of total manufacturing and Mechanical Engineering by the size of enterprises 2008 20 Table 2.2: Energy savings – ex-post and expected – in Germany induced by ME 27 Table 2.3: Key-figures for French Mechanical Engineering 32 Table 2.4: Key-figures for the German Mechanical Engineering 36 Table 2.5: Key-figures for Italian Mechanical Engineering 39 Table 2.6: Key-figures for Spanish Mechanical Engineering 42 Table 2.7: Key-figures for British Mechanical Engineering 45 Table 2.8: Key-figures for Polish Mechanical Engineering 48 Table 2.9: Key-figures for Czech Mechanical Engineering 51 Table 2.10: Key-figures for Slovakian Mechanical Engineering 54 Table 2.11: Key figures for the manufacture of engines and turbines – C2811 57 Table 2.12: Key figures for the manufacture of pumps and compressors C2813 62 Table 2.13: Key figures for the manufacture of taps and valves C2814 66 Table 2.14: Key figures for the manufacture of bearings, gears and drives C2815 69 Table 2.15: Key figures for the manufacture of lifting and handling equipment C2822 77 Table 2.16: Key figures for the manufacture of non-domestic cooling and ventilation equipment C2825 84 Table 2.17: Key figures for the manufacture of agricultural and forestry machinery C283 88 Table 2.18: Key figures for the manufacture of machinery for, mining, quarrying and construction C2892 94 Table 2.19: Key figures for the manufacture of machine tools C2841 100 Table 2.20: Key figures for machinery for textile, apparel and leather production C2894 106 Table 3.1: Output and efficiency of the US mechanical engineering 122 Table 3.2: Trade performance of the US mechanical engineering 124 Table 3.3: Output and efficiency of the Japanese mechanical engineering 130 Table 3.4: Trade performance of the Japanese mechanical engineering 132 Table 3.5: Selected Chinese European affiliations 138 Table 3.6: Output and efficiency of the Chinese mechanical engineering 140 Table 3.7: Trade performance of the Chinese mechanical engineering 142 Table 3.8: Russian trade with mechanical engineering products 150 Table 3.9: Trade performance of the Turkish mechanical engineering 153 Table 3.10: Trade performance of the Middle East and North Africa in mechanical engineering 156 Table 3.11: Trade performance of the Indian mechanical engineering 159 Table 3.12: Trade performance of the South Korean mechanical engineering 162 Table 3.13: Trade performance of the Taiwanese mechanical engineering 165 Table 3.14: Trade performance of the Indonesian mechanical engineering 167 Table 3.15: Trade performance of the Australian mechanical engineering 169 Table 3.16: Trade performance of the Canadian mechanical engineering 172 Table 3.17: Trade performance of the Mexican mechanical engineering 174 Table 3.18: Trade performance of the Brazilian mechanical engineering 177 Table 4.1: Key figures on the economic performance of major competing economies in mechanical engineering 184 Table 4.2: Key figures for global trade with mechanical engineering products 190 Table 4.3: Key indicators for the EU-27 foreign trade 191 Table 4.4: Global and bilateral EU trade with mechanical engineering products of major competing nations 192 Table 4.5: Penetration of major competing economies in the EU-27 market for mechanical engineering products 194 Table 4.6: EU machinery trade with important sales markets 195 Table 4.7: R&D expenditure in Mechanical Engineering 2006 203 Table 4.8: R&D intensity of large Mechanical Engineering enterprises 204 Table 4.9: Transnational Patent Applications in Mechanical Engineering 2006- 2008 by selected countries 206 Table 5.1 Ex-post and projected annual rates of change in employment in machinery manufacturing in the US.
Recommended publications
  • SOURCES of MACHINE-TOOL INDUSTRY LEADERSHIP in the 1990S: OVERLOOKED INTRAFIRM FACTORS
    ECONOMIC GROWTH CENTER YALE UNIVERSITY P.O. Box 208269 New Haven, CT 06520-8269 CENTER DISCUSSION PAPER NO. 837 SOURCES OF MACHINE-TOOL INDUSTRY LEADERSHIP IN THE 1990s: OVERLOOKED INTRAFIRM FACTORS Hiroyuki Chuma Hitotsubashi University October 2001 Note: Center Discussion Papers are preliminary materials circulated to stimulate discussions and critical comments. This paper can be downloaded without charge from the Social Science Research Network electronic library at: http://papers.ssrn.com/abstract=289220 An index to papers in the Economic Growth Center Discussion Paper Series is located at: http://www.econ.yale.edu/~egcenter/research.htm Sources of Machine-tool Industry Leadership in the 1990s: Overlooked Intrafirm Factors Hiroyuki Chuma Institute of Innovation Research Hitotsubashi University Naka 2-1, Kunitachi, Tokyo, 186-8603 [email protected] Abstract Through the use of extensive field research and an original international questionnaire, the main sources of the leapfrogging development of the Japanese machine-tool industry in the past 19 years were investigated. Past studies have emphasized the strategic R&D alliance with superlative computerized numerical control (CNC) makers, the extensive use of outsourcing from excellent precision parts’ suppliers, and the extraordinary development of automakers. This paper critically considered these factors and verified their inadequacy in explaining the further development of this industry in the 1990s. Hence, attention was paid to the significant roles of “intrafirm factors” such as: (a) the simultaneous and cross-functional information sharing system at an early stage of new product development processes; (b) the positive and early participation of frontline skilled workers in assembly or machining shops; and (c) the existence of highly skilled assemblymen or machinists.
    [Show full text]
  • Whyalla and EP Heavy Industry Cluster Summary Background
    Whyalla and EP Heavy Industry Cluster Summary Background: . The Heavy Industry Cluster project was initiated and developed by RDAWEP, mid 2015 in response to a need for action to address poor operating conditions experienced by major businesses operating in Whyalla and Eyre Peninsula and their supply chains . The project objective is to support growth and sustainability of businesses operating in the Whyalla and Eyre Peninsula region which are themselves either a heavy manufacturing business or operate as part of a heavy industry supply chain . The cluster is industry led and chaired by Theuns Victor, GM OneSteel/Arrium Steelworks . Consists of a core leadership of 9 CEO’s of major regional heavy industry businesses . Includes CEO level participation from the Whyalla Council, RDAWEP and Deputy CEO of DSD . There is engagement with an additional 52 Supply chain companies Future direction for the next 12 months includes work to progress three specific areas of focus: 1. New opportunities Identify, pursue and promote new opportunities for Whyalla and regional business, including Defence and other major projects; 1.1 Defence Projects, including Access and Accreditation 1.2 Collective Bidding, How to structure and market to enable joint bids for new opportunities 1.3 Other opportunities/projects for Whyalla including mining, resource processing and renewable energy 2. Training and Workforce development/Trade skill sets 2.1 Building capability for defence and heavy industry projects with vocational training and industry placement 3. Ultra High Speed Internet 3.1 Connecting Whyalla to AARnet, very high speed broadband, similar to Northern Adelaide Gig City concept Other initiatives in progress or that will be progressed: .
    [Show full text]
  • Automation Practices in Wood Product Industries: Lessons Learned, Current Practices and Future Perspectives
    http://www.diva-portal.org This is the published version of a paper presented at The 7th Swedish Production Symposium SPS, 25-27 October, 2016, Lund, Sweden. Citation for the original published paper: Landscheidt, S., Kans, M. (2016) Automation Practices in Wood Product Industries: Lessons learned, current Practices and Future Perspectives. In: The 7th Swedish Production Symposium SPS, 25-27 October, 2016, Lund, Sweden Lund, Sweden: Lund University N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-58199 Automation Practices in Wood Product Industries: Lessons learned, current Practices and Future Perspectives Steffen Andreas Landscheidt 1, Mirka Kans 2 1Linnaeus University , Department of Forestry and Wood Technology , Växjö, Sweden 2Linnaeus University , Department of Mechanical Engineering , Växjö, Sweden Corresponding author: [email protected] Abstract Wood product industries are a cornerstone of the Swedish industry and contribute vastly to the total Swedish export value. Wood as material itself has a promising perspective of becoming one of the most valuable resources. Sweden in particular has a long tradition and the knowledge of how to cultivate forests. In comparison to the highly automated forest industries, production systems of Swedish wood products industries are mostly characterized by a low degree of automation, tough manual labour and a relative low competency of the workforce. Facing fiercer competition on a global market, Swedish wood product industries are starting to lose touch with wood working industries in other industrialized European countries. Based upon established literature, this paper systematizes the status of automation practices in wood processing industries.
    [Show full text]
  • The Underground Economy and Carbon Dioxide (CO2) Emissions in China
    sustainability Article The Underground Economy and Carbon Dioxide (CO2) Emissions in China Zhimin Zhou Lingnan (University) College, Sun Yat-Sen University, Guangzhou 510275, China; [email protected]; Tel.: +86-1592-6342-100 Received: 21 April 2019; Accepted: 9 May 2019; Published: 16 May 2019 Abstract: China aims to reduce carbon dioxide (CO2) intensity by 40–45% compared to its level in 2005 by 2020. The underground economy accounts for a significant proportion of China’s economy, but is not included in official statistics. Therefore, the nexus of CO2 and the underground economy in China is worthy of exploration. To this end, this paper identifies the extent to which the underground economy affects CO2 emissions through the panel data of 30 provinces in China from 1998 to 2016. Many studies have focused on the quantification of the relationship between CO2 emissions and economic development. However, the insights provided by those studies have generally ignored the underground economy. With full consideration of the scale of the underground economy, this research concludes that similar to previous studies, the inversely N-shaped environmental Kuznets curve (EKC) still holds for the income-CO2 nexus in China. Furthermore, a threshold regression analysis shows that the structural and technological effects are environment-beneficial and drive the EKC downward by their threshold effects. The empirical techniques in this paper can also be applied for similar research on other emerging economies that are confronted with the difficulties of achieving sustainable development. Keywords: carbon emissions; informal economy; EKC; industry structural effects; technological effects 1. Introduction During the past few decades, climate change has been a challenging problem all over the world [1].
    [Show full text]
  • Mechanical Design in Agricultural Machines
    Mechanical Design in Agricultural Machines 15 riq^mfiii 2557 nm 09.00-12.15 *u. m 'HQ^IIIS^'^II 212 a member of NSTDA nis;vin-3lyitnffitr?iiiiat;i'tifilT4lei3 MTEC nn?'e]'anuiJiJvin>3n^ltiiRi'a>3'^n?n^nn?mi2Fi?] (Mechanical Design in Agricultural Machines) SECTION 1: ARGICULTURAL MACHINE and FUTURE TREND TYPES OF AGRICULTURE According to its dependence of According to the scale of water: production and its relation to the market: Dry land farming Subsistence Irrigation farming Industrial agriculture • As seeking maximum • According to method and performance or minimal use of objectives: other means of production, this will determine more or Traditional agriculture less ecological footprint: Industrial agriculture Intensive agriculture Extensive agriculture AGRICULTURAL MACHINERY, EQUIPMENT AND TOOL Tractor: is a very useful agricultural machine, with wheels or designed to move easily on the ground and pulling power enabling successful agricultural work, even in flooded fields. Walking Tractor: agricultural machine is a single axle and is operated by handles, have median motor power and strength led to horticultural and ornamental work, can work in strong fields, but is preferably used in construction of gardens. AGRICULTURAL MACHINERY, EQUIPMENT AND TOOL Combine: or mower is a powerful engine agricultural machine, comb cutter to cut the plants mature grain and a long rake that goes before the machine and rotates about a horizontal axis. AGRICULTURAL EQUIPMENT • Farm equipment is a group of devices designed to open furrows in the ground, shredding, spraying and fertihzing the soil. AGRICULTURAL EQUIPMENT Plough: agricultural equipment is designed to open furrows in the earth consists of a blade, fence, plough, bead, bed, wheel and handlebar, which serve to cut and level the land, hold parts of the plough, set shot and to serve as handle.
    [Show full text]
  • THIS STUDY IS an Attempt to Outline the Evolution of Japan's
    Japanese Yearbook on Business History-1999/16 The Machine Industry in the Meiji Period Jun Suzuki Universityof Tokyo machine industry prior to World War I,focusing especially on THISmachineSTUDY productionISANattempt for toprivate-sectoroutline the demand.1Theevolution of Japan'sreason for this special focus on machine production for private-sector demand is that previous research has concentrated on the munitions production aspect of the machine industry in this period and has thus painted a one-sided picture of the situation. Throughout this period the representative large-scale machinery producers were the government-owned army and navy arsenals,the private-sector shipyards,and the railway factories(both government and private).Steamships were an important means of transport for military purposes in Japan,surrounded as it is by the sea,and their manufacture was given the protection of the state.The major ship yards,too,especially from the time of the Russo-Japanese War (1904-1905),were involved,under the control of the Navy,in man ufacturing warships as well.As a result,a certain percentage of their business operations was taken up by munitions production.2And the 1Basically,this paper is a summary of the author's Meijino kikai kogyo[TheMeiji machine industry](Minerva Shobo,1996);to that extent references to bibliographic sources have been reduced to a minimum. 2Opinions are divided about assessing the percentage of military supplies in ship- 114JAPANESE YEARBOOKON BUSINESSHISTORY-1999/16 shipyards not only manufactured(right from their
    [Show full text]
  • Applications of Machine Learning to Reciprocating Compressor Fault Diagnosis: a Review
    processes Review Applications of Machine Learning to Reciprocating Compressor Fault Diagnosis: A Review Qian Lv 1, Xiaoling Yu 1,*, Haihui Ma 1, Junchao Ye 1, Weifeng Wu 1 and Xiaolin Wang 2 1 School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; [email protected] (Q.L.); [email protected] (H.M.); [email protected] (J.Y.); [email protected] (W.W.) 2 School of Engineering, University of Tasmania, Hobart, TAS 7001, Australia; [email protected] * Correspondence: [email protected] Abstract: Operating condition detection and fault diagnosis are very important for reliable operation of reciprocating compressors. Machine learning is one of the most powerful tools in this field. However, there are very few comprehensive reviews which summarize the current research of machine learning in monitoring reciprocating compressor operating condition and fault diagnosis. In this paper, the recent application of machine learning techniques in reciprocating compressor fault diagnosis is reviewed. The advantages and challenges in the detection process, based on three main monitoring parameters in practical applications, are discussed. Future research direction and development are proposed. Keywords: reciprocating compressor; condition monitoring; fault diagnosis; machine learning Citation: Lv, Q.; Yu, X.; Ma, H.; Ye, J.; 1. Introduction Wu, W.; Wang, X. Applications of The reciprocating compressor (RC) is a key piece of equipment in petroleum and Machine Learning to Reciprocating chemical industries. If the RC does not operate in the rated efficiency, it will lead to great Compressor Fault Diagnosis: A economic loss to the company.
    [Show full text]
  • The Dynamics of Industrial Growth In
    The Dynamicsof Industrial Growth in the Old Northwest 1830-70:An InterdisciplinaryApproach Margaret Walsh Department of History, University of Birmingham and University of Illinois, Chicago Circle Historians have customarily talked about the economic devel- opment of the Old Northwest in the middle years of the 19th cen- tury within an agrarianframework. 1 Thoughthe Jeffersonianimage has been modernized and modified by studies of the rapid growth of commercial farming, of the national importance of mineral and for- est resources, and of urban frontiers, little systematic attention has yet been given to the growth of a manufacturing sector. Pre- sumablywestern industrial enterpriseswere either nonexistentor unimportant. A similar conclusion about the insignificance of manufactur- ing in the Old Northwest in the period 1830-70 could be reached from a different approach -- namely an analysis of the process of American industrialization. Throughout both the customary and "new" discussions of the timing, location, and causes of indus- trial growth, attention has been focused on the Northeastern States. Presumably cotton textiles, heavy goods, or the railroad provided the keys to understanding the rise of the factory system somewhere between 1815 and 1850. But neither the West nor the Southwas destined to playa noteworthypart in the modernization of the economy. Given this disinterest in or lack of information on western manufacturing in a period in which the American economy was under- going rapid change, some quantitative evidence must first be pro- duced to show that there was an industrial sector which fulfilled a significant function in both regional and national development. Then it is possible to discuss alternative approaches to analyzing the dynamics of growth before suggesting a new synthesis.
    [Show full text]
  • Disentangling the Causes Behind Regional Employment Differences in Sweden
    I NTERNATIONELLA H ANDELSHÖGSKOLAN HÖGSKOLAN I JÖNKÖPING Disentangling the causes behind regional employment differences in Sweden - The case of regional job losses within two sectors of the Manufacturing Industry Master Thesis in Economics Author: Hanna Larsson Tutors: Associate Professor Johan Klaesson PhD. Candidate Johanna Palmberg Jönköping June 2007 Master Thesis in Economics Title: Disentangling the causes behind regional employment differences in Sweden. Author: Hanna Larsson Tutors: Associate Professor Johan Klaesson PhD. Candidate Johanna Palmberg Date: June 2007 Subject terms: Work, employment, regions, growth, regional disparity ___________ Abstract The purpose of this thesis is to disentangle the causes behind differences in regional employment across the 81 Swedish LA regions. Thus, two questions will be answered; which factors causes regional disparity in employment and which where the least and the most affected regions during the economic crises of the 1990’s? The answer to these questions are imposed by certain chosen restrictions, where only the situation within two manufacturing industries will be investigated; the car- and machine manufacturing sectors. Previous research claim that there are specific factors that influence and creates regional growth disparity. Among these factors can be found; education, infrastructure, demography, industry diversity and migration. Statistical data then enables a division of the regions on basis of the change in employment level within the manufacturing industries as a share of total employment. It is revealed that the most affected regions during an economic shock are those areas that have the highest employment ratio within these manufacturing sectors. The empirical findings indicates that in the case of Swedish manufacturing industries especially three factors influence the employment level; population, education and migration.
    [Show full text]
  • North East of England
    Organisation for Economic Co-operation and Development Directorate for Education Education Management and Infrastructure Division Programme on Institutional Management of Higher Education (IMHE) Supporting the Contribution of Higher Education Institutions to Regional Development Peer Review Report: North East of England Chris Duke, Robert Hassink, James Powell and Jaana Puukka January 2006 The views expressed are those of the authors and not necessarily those of the OECD or its Member Countries. 1 This Peer Review Report is based on the review visit to the North East of England in October 2005, the regional Self-Evaluation Report, and other background material. As a result, the report reflects the situation up to that period. The preparation and completion of this report would not have been possible without the support of very many people and organisations. OECD/IMHE and the Peer Review Team for the North East of England wish to acknowledge the substantial contribution of the region, particularly through its Coordinator, the authors of the Self-Evaluation Report, and its Regional Steering Group. 2 TABLE OF CONTENTS PREFACE...................................................................................................................................... 5 ABBREVIATIONS AND ACRONYMS...................................................................................... 7 1. INTRODUCTION..................................................................................................................... 9 1.1 Evaluation Context and Approach
    [Show full text]
  • MEAT SOURCING Engaging Qsrs on Climate and Water Risks to Protein Supply Chains
    GLOBAL INVESTOR ENGAGEMENT ON MEAT SOURCING Engaging QSRs on climate and water risks to protein supply chains PROGRESS BRIEFING • APRIL 2021 1 Executive summary The Global Investor Engagement on Meat However, progress towards mitigating risks related Sourcing, initiated in 2019, consists of dialogues to water scarcity and pollution has been limited. between six of the largest quick-service restaurant In addition, only two of the six companies have (QSR) brands and institutional investors with over disclosed plans to conduct a 2°C scenario analysis, a $11 trillion in combined assets. Investors have urged key recommendation of the Task Force on Climate- the QSRs to analyse and reduce their vulnerability Related Financial Disclosures (TCFD). While the to the impacts of climate change, water scarcity, progress to date is encouraging, there are critical and pervasive threats to water quality driven by elements yet to be addressed around climate and animal protein production. water-related financial risks. Companies have made notable progress in addressing these concerns. All six target companies have now publicly stated they will set or have already set global GHG reduction targets. Five of the six QSRs have now set or committed to setting emissions reduction targets approved by the Science-Based Targets initiative (SBTi) that would align their businesses with the Paris Agreement’s goal to limit global temperature rises to well below 2°C. 2 Contents The case for engagement 4 Trends in company performance 6 Board oversight and ESG risk management
    [Show full text]
  • Raw Material Wood Wool Data | Facts | Markets
    Raw material wood wool Data | facts | markets Food Logistics Erosion protection mats Evaporative coolers Udder hygiene Raw material wood wool | data | facts | markets | 1. November 201 Author | Hanspeter Frey | Information date | 1. November 2012 © 2012 by Hanspeter Frey | 9620 Lichtensteig | Schweiz | [email protected] The copying and distribution of this pdf. document is expressly permitted, in particular for training purposes. Wood wool | Definition Wood wool is a multi-functional raw material produced mechanically by wood wool machines in the form of fine, elastic, almost dust free wood wool fibres, up . Roundwoodofthehighestquality . nowastewood to 500 mm long and free from wood splinters. It is produced from debarked . freefrom additives hardwoods and softwoods of the highest quality classifications [FSC and PEFC [alsofreefromwoodpreservatives] . freefrombindingagents certified], which - depending on use - is air-dried to up to 13 % wood moisture. chippingtechniqueprotects woodfibres In Switzerland wood wool is produced in conformity with the Swiss Wood . problem-freedisposalofwaste Wool Standard, which came in force on 1st June 2011. However, before this wood raw material, which originally came from the USA, appeared in Europe in the 1880's the expression, "wood wool" had , however, already been used for two quite different products. At the International Exhibition in Paris in 1885 the French architect and decorator Edouard Guichard [1815-1889] exhibited his "jaine de bois" [wood wool] as a cost-effective substitute for shavings of flocking for the production of wallpapers. These were very thin wood shavings boiled in soapy water . In 1883 the surgeon, Gustav Adolf Walcher [1856-1935] described in his thesis how he had produced anti-septic bandages from wood fibres, which he called sublimate wood wool bandages.
    [Show full text]