Changes in Mechanization in Selected Manufacturing Industries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SOURCES of MACHINE-TOOL INDUSTRY LEADERSHIP in the 1990S: OVERLOOKED INTRAFIRM FACTORS
ECONOMIC GROWTH CENTER YALE UNIVERSITY P.O. Box 208269 New Haven, CT 06520-8269 CENTER DISCUSSION PAPER NO. 837 SOURCES OF MACHINE-TOOL INDUSTRY LEADERSHIP IN THE 1990s: OVERLOOKED INTRAFIRM FACTORS Hiroyuki Chuma Hitotsubashi University October 2001 Note: Center Discussion Papers are preliminary materials circulated to stimulate discussions and critical comments. This paper can be downloaded without charge from the Social Science Research Network electronic library at: http://papers.ssrn.com/abstract=289220 An index to papers in the Economic Growth Center Discussion Paper Series is located at: http://www.econ.yale.edu/~egcenter/research.htm Sources of Machine-tool Industry Leadership in the 1990s: Overlooked Intrafirm Factors Hiroyuki Chuma Institute of Innovation Research Hitotsubashi University Naka 2-1, Kunitachi, Tokyo, 186-8603 [email protected] Abstract Through the use of extensive field research and an original international questionnaire, the main sources of the leapfrogging development of the Japanese machine-tool industry in the past 19 years were investigated. Past studies have emphasized the strategic R&D alliance with superlative computerized numerical control (CNC) makers, the extensive use of outsourcing from excellent precision parts’ suppliers, and the extraordinary development of automakers. This paper critically considered these factors and verified their inadequacy in explaining the further development of this industry in the 1990s. Hence, attention was paid to the significant roles of “intrafirm factors” such as: (a) the simultaneous and cross-functional information sharing system at an early stage of new product development processes; (b) the positive and early participation of frontline skilled workers in assembly or machining shops; and (c) the existence of highly skilled assemblymen or machinists. -
Automation Practices in Wood Product Industries: Lessons Learned, Current Practices and Future Perspectives
http://www.diva-portal.org This is the published version of a paper presented at The 7th Swedish Production Symposium SPS, 25-27 October, 2016, Lund, Sweden. Citation for the original published paper: Landscheidt, S., Kans, M. (2016) Automation Practices in Wood Product Industries: Lessons learned, current Practices and Future Perspectives. In: The 7th Swedish Production Symposium SPS, 25-27 October, 2016, Lund, Sweden Lund, Sweden: Lund University N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-58199 Automation Practices in Wood Product Industries: Lessons learned, current Practices and Future Perspectives Steffen Andreas Landscheidt 1, Mirka Kans 2 1Linnaeus University , Department of Forestry and Wood Technology , Växjö, Sweden 2Linnaeus University , Department of Mechanical Engineering , Växjö, Sweden Corresponding author: [email protected] Abstract Wood product industries are a cornerstone of the Swedish industry and contribute vastly to the total Swedish export value. Wood as material itself has a promising perspective of becoming one of the most valuable resources. Sweden in particular has a long tradition and the knowledge of how to cultivate forests. In comparison to the highly automated forest industries, production systems of Swedish wood products industries are mostly characterized by a low degree of automation, tough manual labour and a relative low competency of the workforce. Facing fiercer competition on a global market, Swedish wood product industries are starting to lose touch with wood working industries in other industrialized European countries. Based upon established literature, this paper systematizes the status of automation practices in wood processing industries. -
Sustainable Agricultural Mechanization Framework for Africa
African Union SUSTAINABLE AGRICULTURAL MECHANIZATION A FRAMEWORK FOR AFRICA FAO_SAMA Report_Cover.indd 1 17/9/18 11:30 AM FAO_SAMA Report_Cover.indd 4 19/9/18 10:06 AM SUSTAINABLE AGRICULTURAL MECHANIZATION A Framework for Africa Edited by: Patrick Kormawa Geoffrey Mrema Nomathemba Mhlanga Mark Kofi Fynn Josef Kienzle Joseph Mpagalile Food and Agriculture Organization of the United Nations and the African Union Commission Addis Ababa, 2018 FAO_SAMA Report_Contents and Intro.indd 1 17/9/18 11:27 AM Required citation Under the terms of this licence, this work may be copied, redistributed FAO & AUC. 2018. Sustainable Agricultural Mechanization: A Framework and adapted for non-commercial purposes, provided that the work is for Africa. Addis Ababa. 127pp. Licence: CC BY-NC-SA 3.0 IGO appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services. The The designations employed and the presentation of material in use of the FAO logo is not permitted. If the work is adapted, then it must this information product do not imply the expression of any opinion be licensed under the same or equivalent Creative Commons license. If a whatsoever on the part of the Food and Agriculture Organization of translation of this work is created, it must include the following disclaimer the United Nations (FAO) or Africa Union Commission concerning along with the required citation: “This translation was not created by the legal or development status of any country, territory, city or area the Food and Agriculture Organization of the United Nations (FAO). -
Mechanical Design in Agricultural Machines
Mechanical Design in Agricultural Machines 15 riq^mfiii 2557 nm 09.00-12.15 *u. m 'HQ^IIIS^'^II 212 a member of NSTDA nis;vin-3lyitnffitr?iiiiat;i'tifilT4lei3 MTEC nn?'e]'anuiJiJvin>3n^ltiiRi'a>3'^n?n^nn?mi2Fi?] (Mechanical Design in Agricultural Machines) SECTION 1: ARGICULTURAL MACHINE and FUTURE TREND TYPES OF AGRICULTURE According to its dependence of According to the scale of water: production and its relation to the market: Dry land farming Subsistence Irrigation farming Industrial agriculture • As seeking maximum • According to method and performance or minimal use of objectives: other means of production, this will determine more or Traditional agriculture less ecological footprint: Industrial agriculture Intensive agriculture Extensive agriculture AGRICULTURAL MACHINERY, EQUIPMENT AND TOOL Tractor: is a very useful agricultural machine, with wheels or designed to move easily on the ground and pulling power enabling successful agricultural work, even in flooded fields. Walking Tractor: agricultural machine is a single axle and is operated by handles, have median motor power and strength led to horticultural and ornamental work, can work in strong fields, but is preferably used in construction of gardens. AGRICULTURAL MACHINERY, EQUIPMENT AND TOOL Combine: or mower is a powerful engine agricultural machine, comb cutter to cut the plants mature grain and a long rake that goes before the machine and rotates about a horizontal axis. AGRICULTURAL EQUIPMENT • Farm equipment is a group of devices designed to open furrows in the ground, shredding, spraying and fertihzing the soil. AGRICULTURAL EQUIPMENT Plough: agricultural equipment is designed to open furrows in the earth consists of a blade, fence, plough, bead, bed, wheel and handlebar, which serve to cut and level the land, hold parts of the plough, set shot and to serve as handle. -
Agricultural Mechanization and Agricultural Transformation
www.acetforafrica.org Agricultural Mechanization and Agricultural Transformation Paper written by Xinshen Diao, Jed Silver and Hiroyuki Takeshima INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE BACKGROUND PAPER FOR African Transformation Report 2016: Transforming Africa’s Agriculture FEBRUARY 2016 Joint research between: African Center for Economic Transformation (ACET) and Japan International Cooperation Agency Research institute (JICA-RI) Background Paper for African Transformation Report 2016: Transforming Africa’s Agriculture Agricultural Mechanization and Agricultural Transformation Xinshen Diao, Jed Silver and Hiroyuki Takeshima (International Food Policy Research Institute) February 2016 Joint research between African Center for Economic Transformation (ACET) and Japan International Cooperation Agency Research institute (JICA-RI) Contents Executive Summary ............................................................................................................................................. 3 1. Introduction ............................................................................................................................................... 5 2. Definitions and Concepts ....................................................................................................................... 6 Definitions of Mechanization ............................................................................................................... 6 Mechanization and Agricultural Intensification .............................................................................. -
The Impact of Farm Mechanization on Small-Scale Rice Production
THE IMPACT OF FARM MECHANIZATION ON SMALL-SCALE RICE PRODUCTION Y OLANDA L . TAN MASTER OF SCIENCE (Agricultural Economics) March , 1981 THE IFPACT OF FARM MECHANIZATION ON SMALL-SCALE RICE PRODUCTION YOLANDA L. TAN SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF THE PHILIPPINES AT LOS BmOS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (Agricultural Economics) March, 1981 The thesis attached hereto entitled: THE IMPACT OF FARM MECHANIZATION ON SMALLeSCALE RICE PRODUCTIONp prepared and submitted by YOLANDA L. TAN, in partial fullfillment of the requirements for the degree of Master of Science (Agricultural Economics), is hereby accepted: BART DUFF' Member. Guidance Committee Member, Guidance Committe fl. /- TIRSO B. PARIS, Adviser and Chairman Guidance Committee 3-&rP/ (Date) Accepted as partial fullfillment of the requirements for the degree of Master of Science (Agricultural Economics). DOLORES A. RAMIREZ Dean, Graduate School University of the Philippines at Los Ba5os BIOGRAPHICAL SKETCH Yolanda L. Tan was born in San Pablo City, Laguna on October 17, 1956. She finished her high school education in 1974 at the Laguna College in San Pablo City. In the same year, she was awarded the local State Scholarship grant to pursue undergraduate studies at the University of the Philip- pines at 1.0s Baiios. She finished her college education in 1978 with the degree of Bachelor of Science in Statistics. After graduation, she joined the Commerce Department's teaching staff of the Laguna College. In 1979, she was granted J' an IAPMP (Integrated Agricultutal Productivity and Marketing Program) Fellowship to pursue a Master's degree in Agricul- tural Economics at the University of the Philippines at Los Bafios. -
Technology, Labor, and Mechanized Bodies in Victorian Culture
Syracuse University SURFACE English - Dissertations College of Arts and Sciences 12-2012 The Body Machinic: Technology, Labor, and Mechanized Bodies in Victorian Culture Jessica Kuskey Syracuse University Follow this and additional works at: https://surface.syr.edu/eng_etd Part of the English Language and Literature Commons Recommended Citation Kuskey, Jessica, "The Body Machinic: Technology, Labor, and Mechanized Bodies in Victorian Culture" (2012). English - Dissertations. 62. https://surface.syr.edu/eng_etd/62 This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in English - Dissertations by an authorized administrator of SURFACE. For more information, please contact [email protected]. ABSTRACT While recent scholarship focuses on the fluidity or dissolution of the boundary between body and machine, “The Body Machinic” historicizes the emergence of the categories of “human” and “mechanical” labor. Beginning with nineteenth-century debates about the mechanized labor process, these categories became defined in opposition to each other, providing the ideological foundation for a dichotomy that continues to structure thinking about our relation to technology. These perspectives are polarized into technophobic fears of dehumanization and machines “taking over,” or technological determinist celebrations of new technologies as improvements to human life, offering the tempting promise of maximizing human efficiency. “The Body Machinic” argues that both sides to this dichotomy function to mask the ways the apparent body-machine relation is always the product of human social relations that become embedded in the technologies of the labor process. Chapter 1 identifies the emergence of this dichotomy in the 1830s “Factory Question” debates: while critics of the factory system described workers as tools appended to monstrous, living machines, apologists claimed large-scale industrial machinery relieved human toil by replicating the laboring body in structure and function. -
THIS STUDY IS an Attempt to Outline the Evolution of Japan's
Japanese Yearbook on Business History-1999/16 The Machine Industry in the Meiji Period Jun Suzuki Universityof Tokyo machine industry prior to World War I,focusing especially on THISmachineSTUDY productionISANattempt for toprivate-sectoroutline the demand.1Theevolution of Japan'sreason for this special focus on machine production for private-sector demand is that previous research has concentrated on the munitions production aspect of the machine industry in this period and has thus painted a one-sided picture of the situation. Throughout this period the representative large-scale machinery producers were the government-owned army and navy arsenals,the private-sector shipyards,and the railway factories(both government and private).Steamships were an important means of transport for military purposes in Japan,surrounded as it is by the sea,and their manufacture was given the protection of the state.The major ship yards,too,especially from the time of the Russo-Japanese War (1904-1905),were involved,under the control of the Navy,in man ufacturing warships as well.As a result,a certain percentage of their business operations was taken up by munitions production.2And the 1Basically,this paper is a summary of the author's Meijino kikai kogyo[TheMeiji machine industry](Minerva Shobo,1996);to that extent references to bibliographic sources have been reduced to a minimum. 2Opinions are divided about assessing the percentage of military supplies in ship- 114JAPANESE YEARBOOKON BUSINESSHISTORY-1999/16 shipyards not only manufactured(right from their -
Mechanization and Automation by the Manufacturing of Removable Modular Buildings
Mechanization and Automation by the Manufacturing of Removable Modular Buildings Frans van Gassel Eindhoven University of Technology, Faculty of Building and Architecture, P.O. BOX 513, NL 5600 MB Eindhoven, The Netherlands. ABSTRACT During the last ten years Removable Modular Building Systems in the Netherlands have made remarkable progress by using mechanization and automation. These are not the only techniques, as logistic techniques, design according to a modular system and standardization of joints, are also used. An interesting question is what designers of permanent buildings and building processes can learn from these techniques. To get insight into the manufacturing of Removable Modular Buildings this system has been described. The problems related to the production of permanent buildings are mentioned too. The answer to the question: "What can we learn about mechanization and automation by the production of Removable Modular Buildings for the construction of permanent buildings?", is: - Reducing the construction processes on the site to simple transport and assembly processes allows mechanization and robotization to become less complex. - It is possibly to develop components with standard joints (design by construction). - All information about the product and its production process can be stored in one data-base. 1. INTRODUCTION The Advisory Committee for Technological Policy in the Building Industry (Adviesraad Technologiebeleid Bouwnijverheid ARTB) predicts two strategies for the coming years in its publication Building Outlook for 2010 (Bouwvisie 2010): - Optional standardization: to standardize industrially manufactured, not project-depend vent, components to make individual buildings. - Flexible production organization: to manufacture standardized components with a series of one piece [1]. -1019- 13th ISARC The manufacturing of Removable Modular Buildings in the Netherlands already involved these strategies. -
Disentangling the Causes Behind Regional Employment Differences in Sweden
I NTERNATIONELLA H ANDELSHÖGSKOLAN HÖGSKOLAN I JÖNKÖPING Disentangling the causes behind regional employment differences in Sweden - The case of regional job losses within two sectors of the Manufacturing Industry Master Thesis in Economics Author: Hanna Larsson Tutors: Associate Professor Johan Klaesson PhD. Candidate Johanna Palmberg Jönköping June 2007 Master Thesis in Economics Title: Disentangling the causes behind regional employment differences in Sweden. Author: Hanna Larsson Tutors: Associate Professor Johan Klaesson PhD. Candidate Johanna Palmberg Date: June 2007 Subject terms: Work, employment, regions, growth, regional disparity ___________ Abstract The purpose of this thesis is to disentangle the causes behind differences in regional employment across the 81 Swedish LA regions. Thus, two questions will be answered; which factors causes regional disparity in employment and which where the least and the most affected regions during the economic crises of the 1990’s? The answer to these questions are imposed by certain chosen restrictions, where only the situation within two manufacturing industries will be investigated; the car- and machine manufacturing sectors. Previous research claim that there are specific factors that influence and creates regional growth disparity. Among these factors can be found; education, infrastructure, demography, industry diversity and migration. Statistical data then enables a division of the regions on basis of the change in employment level within the manufacturing industries as a share of total employment. It is revealed that the most affected regions during an economic shock are those areas that have the highest employment ratio within these manufacturing sectors. The empirical findings indicates that in the case of Swedish manufacturing industries especially three factors influence the employment level; population, education and migration. -
Raw Material Wood Wool Data | Facts | Markets
Raw material wood wool Data | facts | markets Food Logistics Erosion protection mats Evaporative coolers Udder hygiene Raw material wood wool | data | facts | markets | 1. November 201 Author | Hanspeter Frey | Information date | 1. November 2012 © 2012 by Hanspeter Frey | 9620 Lichtensteig | Schweiz | [email protected] The copying and distribution of this pdf. document is expressly permitted, in particular for training purposes. Wood wool | Definition Wood wool is a multi-functional raw material produced mechanically by wood wool machines in the form of fine, elastic, almost dust free wood wool fibres, up . Roundwoodofthehighestquality . nowastewood to 500 mm long and free from wood splinters. It is produced from debarked . freefrom additives hardwoods and softwoods of the highest quality classifications [FSC and PEFC [alsofreefromwoodpreservatives] . freefrombindingagents certified], which - depending on use - is air-dried to up to 13 % wood moisture. chippingtechniqueprotects woodfibres In Switzerland wood wool is produced in conformity with the Swiss Wood . problem-freedisposalofwaste Wool Standard, which came in force on 1st June 2011. However, before this wood raw material, which originally came from the USA, appeared in Europe in the 1880's the expression, "wood wool" had , however, already been used for two quite different products. At the International Exhibition in Paris in 1885 the French architect and decorator Edouard Guichard [1815-1889] exhibited his "jaine de bois" [wood wool] as a cost-effective substitute for shavings of flocking for the production of wallpapers. These were very thin wood shavings boiled in soapy water . In 1883 the surgeon, Gustav Adolf Walcher [1856-1935] described in his thesis how he had produced anti-septic bandages from wood fibres, which he called sublimate wood wool bandages. -
313. Farm Power in Senegal.Docx
Invited paper presented at the 6th African Conference of Agricultural Economists, September 23-26, 2019, Abuja, Nigeria Copyright 2019 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. Farm power transition and access in Senegal: Patterns and constraints Getaw Tadessea, Anatole Goundanb and Saer Sarrc aAfrica Region, International Food Policy Research Institute, Addis Ababa, Ethiopia bAfrica region, International Food Policy Research Institute, Dakar, Senegal c Macroeconomic Analysis Office of the Senegalese Institute for Agricultural Research Abstract This paper aims at documenting evidences on the patterns and constraints affecting the sequential and simultaneous transition of farm power use from manual to animal to engine. It also aims at exploring access to farm equipment through ownership and rental service. Based on a household data collected under the huge and ambitious project called ‘Senegal Agricultural Policy Project’, the result generally confirms the very low use of farm machinery powered by engines despite years of efforts to support agricultural mechanization programs. However, the use of improved farm equipment powered by animals has shown a sharp increase overtime. The study further demonstrated the variation of constraints in farm mechanization transitions defined by sources of power. While demand side constraints such as farm size and off-farm income are more important for machineries than animal plows, supply-side constraints such as rental overhead costs and membership to a producer’s organization are very critical for transition to engine power through facilitating rental service which is the dominant source of access to heavy machineries.