(12) United States Patent (10) Patent No.: US 7,563,450 B2 Cosman (45) Date of Patent: Jul

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 7,563,450 B2 Cosman (45) Date of Patent: Jul US00756345OB2 (12) United States Patent (10) Patent No.: US 7,563,450 B2 Cosman (45) Date of Patent: Jul. 21, 2009 (54) UL16 BINDING PROTEIN 4 Bauer S et al., “Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA.” Science 285:727-729 (Jul 30, (75) Inventor: David J. Cosman, Seattle, WA (US) 1999). Bowie et al., “Deciphering the message in protein sequences: toler (73) Assignee: Immunex Corporation, Thousand Oaks, ance to amino acid substitutions.” Science 247: 1306-1310 (1990). CA (US) Bork P. "Powers and pitfalls in sequence analysis: the 70% hurdle.” Genome Research 10:398-400 (2000). (*) Notice: Subject to any disclaimer, the term of this Burgess et al., “Possible dissociation of the heparin-binding and patent is extended or adjusted under 35 mitogenic activities of heparin-binding (acidic fibroblast) growth factor-1 from its receptor-binding activities by site-directed U.S.C. 154(b) by 538 days. mutagenesis of a single lysine residue.” J Cell Biol 111:2129-2138 (1990). (21) Appl. No.: 10/265,811 Cerwenka A et al., “Ectopic expression of retinoic acid early induc ible-1 gene (RAE-1) permits natural killer cell-mediated rejection of (22) Filed: Oct. 4, 2002 a MHC class I-bearing tumor in vivo..” PNAS 98(20): 11521-11526 (Sep. 25, 2001). (65) Prior Publication Data Cerwenka A et al., “Retinoic acid early inducible genes define a US 2003/O195337 A1 Oct. 16, 2003 ligand family for the activating NKG2D receptor in mice.” Immunity 12:721-727 (Jun. 2000). Related U.S. Application Data Colucci Fet al., “Functional dichotomy in natural killer cell signal ing: Vavl-dependent and -independent mechanisms. J Exp Med (60) Provisional application No. 60/327.252, filed on Oct. 193(12): 1413-1424 (Jun. 18, 2001). 4, 2001. Cosman D et al., “ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through (51) Int. Cl. the NKG2D receptor.” Immunity 14:123-133 Feb. 2001. A6 IK 39/00 (2006.01) Das Het al., “MICA engagement by human Vy2V62T cells enhances A6 IK 38/00 (2006.01) their antigen-dependent affector function.” Immunity 15:83-93 Jul. A6 IK 38/16 (2006.01) 2001. C07K I4/00 (2006.01) Diefenbach A et al., “Rael and H60 ligands of the NKG2D receptor CI2N 5/00 (2006.01) stimulate tumour immunity.” Nature 413:165-171 Sep. 13, 2001. (52) U.S. Cl. ........................ 424/277.1: 514/2; 530/350; Diefenbach A et al., “Ligands for the murine NKG2D receptor: 530/402 expression by tumor cells and activation of NK cells and macroph ages.” Nature Immunol 1(2): 119-126 (Aug. 2000). (58) Field of Classification Search ........... ... None Dorfman D et al., “In vivo expression of B7-1 and B7-2 by follicular See application file for complete search history. lymphoma cells can prevent induction of T-cell anergy but is insuf (56) References Cited ficient to induce significant T-cell proliferation.” Blood 90(11):4297 4306 (Dec. 1, 1997). U.S. PATENT DOCUMENTS Gattei V et al., “CD30 ligand is frequently expressed in human hematopoietic malignancies of myeloid and lymphoid origin. Blood 6,458,350 B1 10/2002 Cosman et al. 2003, OOO4311 A1 1/2003 Baker et al. 89(6):2048-2059 (Mar. 15, 1997). 2003/0022239 A1 1/2003 Baker et al. Gilles SD et al., “Improving the efficacy of antibody-interleukin 2 fusion proteins by reducing their interaction with Fc receptors. Can FOREIGN PATENT DOCUMENTS cer Res. 59:2159-2166 (May 1, 1999). Girardi Metal., “Regulation of cutaneous malignancy by YöT cells.” WO WO99.31236 A2 6, 1999 Science 294:605-609 (Oct. 19, 2001). WO WOO1/O7611 A2 2, 2001 Holden SA et al., “Augmentation of antitumor activity of an anti WO WOO1/40466 A2 6, 2001 body-interleukin 2 immunocytokine with chemotherapeutic agents.” WO WOO1? 497 28 A2 T 2001 WO WOO1,71005 A3 9, 2001 Clin Cancer Res 7:2862-2869 (Sep. 2001). WO WO 01/83545 A1 11, 2001 Holmes MA et al., “Structural studies of allelic diversity of the MHC WO WOO2,68615 A2 9, 2002 class I homolog MIC-B, a stress-inducible ligand for the activating WO WO 03/14322 A2 2, 2003 immunoreceptor NKG2D,”J Immunol 169: 1395-1400 (2002). WO WOO3/O54152 T 2003 WO WOO3,O74.556 9, 2003 (Continued) WO WO 2004/O227O6 3, 2004 Primary Examiner G. REwoldt Assistant Examiner DiBrino Marianne OTHER PUBLICATIONS (74) Attorney, Agent, or Firm Rosemary Sweeney; Susan E. Cosman et al. Immunity. Feb. 2001. vol. 14, pp. 123-133.* Lingenfelter A Geneseq 21 Accession No. AAG68335. Feb. 28, 2002, one page. (57) ABSTRACT Kubinet al ((2001) Eur, J. Immunol. 31: 1428-37).* Kubinet al (1999) Eur, J. Immunol. 29: 3466-3477).* Smith et al ((1993) Cell 73: 1349-1360).* ULBP4, a novel member of the ULBP family has been iso Zamaietal ((2007).J. Immunology 178: 4011-4016).* lated and characterized. ULBP4 is a useful activator of Miller ((2001) Exp. Hematol. 29: 1157-1168).* Scott-Algaraetal ((2002) Current Molecular Medicine 2: 757-768).* immune effector cells, particularly of NK cells. Chalupny JN et al., “ULBP4 is a novel ligand for human NKG2D.” Biochem Biophy's Res Commun (2003) 305(1): 129-135. 18 Claims, 4 Drawing Sheets US 7,563,450 B2 Page 2 OTHER PUBLICATIONS GenBank Accession No. AAD 12613 (2001). GenBank Accession No. AAY36021 (1999). Kubin Metal., “ULBP1, 2, 3: novel MHC class I-related molecules GenBank Accession No. AIO91180 (1997). that bind to human cytomegalovirus glycoprotein UL16, activate NK GenBank Accession No. AL602601 (2001). cells.” Eur.J Immunol 31:1428-1437 (2001). GenBank Accession No. AX191626 (2001). Lazaret al., “Transforming growth factor alpha: mutation of aspartic GenBank Accession No. BI258059 (2001). acid 47 and leucine 48 results in different biological activities.” Mol GenBank Accession No. R25716 (1995). Cell Biol 8:1247-1252 (1988). GenBank Accession No. AAX97755 (1999). Luo Det al., “Rathepatic natural killer cells (pit cells) express mRNA NCBI Accession No. AAL11005 (2001). and protein similar to in vitro interleukin-2 activated spleen natural NCBI Accession No. AAL76417 (2001). killer cells.” Cell Immunol 210:41-48 (2001). NCBI Accession No. AL355312 (2001). Myers D and Uckun F. "An anti-CD72 immunotoxin against therapy NCBI Accession No. AF359243 (2001). refractory B-lineage acute lymphoblastic leukemia. Leukemia and NCBI Accession No. Lymphoma 18: 119-122, Harwood Academic Publishers GmbH, AYO54974 (2001). Printed in Singapore (1995). NCBI Accession No. AY069961 (2002). Onda H et al., “A novel secreted tumor antigen with a NCBI Accession No. BE545401 (2000). glycosylphosphatidylinositol-anchored structure ubiquitously NCBI Accession No. NM 139165 (2002). expressed in human cancers.” Biochem Biophy's Res Comm NCBI Accession No. XM 059764 (2002). 285(2):235-243 (2001). NCBI Accession No. XP 059764 (2002). Radaev S et al., “Conformational plasticity revealed by the cocrystal Cosman, “ULBPS, MHC class I-related molecules, bind to CMV structure of NKG2D and its class IMHC-like ligand ULBP3.” Immu glycoprotein UL16 and stimulate NK cytotoxicity through the nity 15:1039-1049 (Dec. 2001). NKG2D receptor.” Immunity 14:123-133, 2001. Radosavljevic Met al., “A cluster often novel MHC class I related Conejo-Garcia et al., “Letal, a tumor-associated NKG2D genes on human chromosome 6q24.2-q25.3.” Genomics 79(1): 114 immunoreceptor ligand, induces activation and expansion of effector 123 Jan. 2002. immune cells.” Cancer Biol. Ther: 2(4):446-451, 2003. Scott et al., “The pendred syndrome gene encodes a chloride-iodide Conejo-Garcia et al., “Ovarian carcinoma expresses the NKG2D transport protein.” Nat Gen 21:440-443 (Apr. 1999). ligand Letal and promotes the Survival and expansion of CD28 anti Steinle A et al., “Interactions of human NKG2D with its ligands tumor T cells, Cancer Res. 64:2175-2182, 2004. MICA, MICB, and homologs of the mouse RAE-1 protein family.” Diefenbach et al., “Rael and H60 ligands of the NKG2D receptor Immunogenetics 53:279-287 (2001). stimulate tumour immunity.” Nature 413: 165-171, 2001. Sun T. et al., “Histiocyte-rich B-cell lymphoma.” Human Pathology Diefenbach et al., “A novelligand for the NKG2D receptor activates 28(11): 1321-1324 (Nov. 1997). NK cells and macrophages and induces tumor immunity.” Eur: J. Sutherland CL et al., “The UL 16-binding proteins, a novel family of Immunol. 33:381-391, 2003. MHC class I-related ligands for NKG2D, activate natural killer cell NCBI Protein/GenBank Database Accession No. AAL58090, Aug. functions.” Immunol Rev 181:185-192 (2001). 13, 2004. Ugolini Sand Vivier E. “Multifaceted roles of MHC class I and MHC Rölle et al., “Effects of human cytomegalovirus infection on ligands class I-like molecules in T cell activation.” Nature Immunol2(3):198 for the activating of NKG2D receptor of NK cells: up-regulation of 200 (Mar. 2001). UL 16-binding protein (ULBP) 1 and ULBP2 is counteracted by the Whiteside T. and Herberman R., “The role of natural killer cells in viral UL16 protein.” J. Immunol. 171:902-908, 2003. immune surveillance of cancer.” Curr Opin Immunol 7:704-710 Song et al., “Soluble ULBP suppresses natural killer cell activity via (1995). down-regulating NKG2D expression.” Cell. Immunol. 239:22-30, Yamabe et al., “Induction of the 2B9 antigen/dipeptidyl peptidase 2006. IV/CD26 on human natural killer cells by IL-2, IL-12 and IL-15.” Immunology 91:151-158 (1997). * cited by examiner U.S. Patent Jul. 21, 2009 Sheet 1 of 4 US 7,563,450 B2 100 ELA 90 ULBP -- ELA. 80 ULBP2 - ELA. 7O ULBP3 + ELA ULBP4 - ELA. 6O 5 O 4 O 3.O 20 10 Effector:Target Ratio Figure 1 U.S.
Recommended publications
  • NKG2D Ligands in Tumor Immunity
    Oncogene (2008) 27, 5944–5958 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc REVIEW NKG2D ligands in tumor immunity N Nausch and A Cerwenka Division of Innate Immunity, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany The activating receptor NKG2D (natural-killer group 2, activated NK cells sharing markers with dendritic cells member D) and its ligands play an important role in the (DCs), which are referred to as natural killer DCs NK, cd þ and CD8 þ T-cell-mediated immune response to or interferon (IFN)-producing killer DCs (Pillarisetty tumors. Ligands for NKG2D are rarely detectable on the et al., 2004; Chan et al., 2006; Taieb et al., 2006; surface of healthy cells and tissues, but are frequently Vosshenrich et al., 2007). In addition, NKG2D is expressed by tumor cell lines and in tumor tissues. It is present on the cell surface of all human CD8 þ T cells. evident that the expression levels of these ligands on target In contrast, in mice, expression of NKG2D is restricted cells have to be tightly regulated to allow immune cell to activated CD8 þ T cells (Ehrlich et al., 2005). In activation against tumors, but at the same time avoid tumor mouse models, NKG2D þ CD8 þ T cells prefer- destruction of healthy tissues. Importantly, it was recently entially accumulate in the tumor tissue (Gilfillan et al., discovered that another safeguard mechanism controlling 2002; Choi et al., 2007), suggesting that the activation via the receptor NKG2D exists. It was shown NKG2D þ CD8 þ T-cell population comprises T cells that NKG2D signaling is coupled to the IL-15 receptor involved in tumor cell recognition.
    [Show full text]
  • NKG2D Controls Natural Reactivity of Vg9vd2 T Lymphocytes Against
    Published OnlineFirst September 10, 2019; DOI: 10.1158/1078-0432.CCR-19-0375 Translational Cancer Mechanisms and Therapy Clinical Cancer Research NKG2D Controls Natural Reactivity of Vg9Vd2T Lymphocytes against Mesenchymal Glioblastoma Cells Cynthia Chauvin1,2,Noemie Joalland1,2, Jeanne Perroteau1,2, Ulrich Jarry1,2, Laura Lafrance1,2, Catherine Willem1,3, Christelle Retiere 1,3, Lisa Oliver1,4, Catherine Gratas1,4, Laetitia Gautreau-Rolland1,2, Xavier Saulquin1,2, Francois¸ M. Vallette1,2,5, Henri Vie1,2, Emmanuel Scotet1,2, and Claire Pecqueur1,2 Abstract Purpose: Cellular immunotherapies are currently being Results: We evidenced that GBM cells displaying a mes- explored to eliminate highly invasive and chemoradioresistant enchymal signature are spontaneously eliminated by allo- glioblastoma (GBM) cells involved in rapid relapse. We recent- geneic human Vg9Vd2 T lymphocytes, a reactivity process ly showed that concomitant stereotactic injections of non- being mediated by gd T-cell receptor (TCR) and tightly alloreactive allogeneic Vg9Vd2 T lymphocytes eradicate regulated by cellular stress–associated NKG2D pathway. zoledronate-primed human GBM cells. In the present study, This led to the identification of highly reactive Vg9Vd2T we investigated the spontaneous reactivity of allogeneic lymphocyte populations, independently of a specificTCR human Vg9Vd2 T lymphocytes toward primary human GBM repertoire signature. Moreover, we finally provide evidence cells, in vitro and in vivo, in the absence of any prior of immunotherapeutic efficacy in vivo, in the absence of any sensitization. prior tumor cell sensitization. Experimental Design: Through functional and transcrip- Conclusions: By identifying pathways implicated in the tomic analyses, we extensively characterized the immuno- selective natural recognition of mesenchymal GBM cell reactivity of human Vg9Vd2 T lymphocytes against various subtypes, accounting for 30% of primary diagnosed and primary GBM cultures directly derived from patient 60% of recurrent GBM, our results pave the way for novel tumors.
    [Show full text]
  • A Disease-Linked ULBP6 Polymorphism Inhibits NKG2D-Mediated Target Cell Killing by Enhancing the Stability of NKG2D-Ligand Binding
    A disease-linked ULBP6 polymorphism inhibits NKG2D-mediated target cell killing by enhancing the stability of NKG2D-ligand binding Jianmin Zuo,1* Carrie R. Willcox,1* Fiyaz Mohammed,1* Martin Davey,1 Stuart Hunter,1 Kabir Khan,1 Ayman Antoun,2 Poonam Katakia,1 Joanne Croudace,1 Charlotte Inman,1 Helen Parry,1,4 David Briggs,3 Ram Malladi,1,4 Benjamin E. Willcox,1*† Paul Moss1,4*† 1Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK. 2School of Pharmacy, Faculty of Sciences and Engineering, University of Wolverhampton, WV1 1LY, UK. 3National Health Service Blood and Transplant, Birmingham, B15 2SG, UK. 4Department of Haematology, University Hospital Birmingham, B15 2TH, Birmingham, UK. *These authors contributed equally to this study. †Corresponding author. Email: [email protected] (P.M.); [email protected] (B.E.W.) This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Signaling, VOL 10, issue 481 30 May 2017, DOI: 10.1126/scisignal.aai8904. ABSTRACT NKG2D (natural killer group 2, member D) is an activating receptor found on the surface of immune cells, including natural killer (NK) cells, which regulates innate and adaptive immunity through recognition of the stress-induced ligands ULBP1 to ULBP6 and MICA/B. Similar to class I human leukocyte antigen (HLA), these NKG2D ligands possess a major histocompatibility complex (MHC)-like fold and exhibit pronounced polymorphism, which influences human disease susceptibility.
    [Show full text]
  • Arming Ohsv with ULBP3 Drives Abscopal Immunity in Lymphocyte-Depleted Glioblastoma
    RESEARCH ARTICLE Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma Hans-Georg Wirsching,1,2 Huajia Zhang,3 Frank Szulzewsky,1 Sonali Arora,1,4 Paola Grandi,5,6 Patrick J. Cimino,1,7 Nduka Amankulor,6 Jean S. Campbell,3 Lisa McFerrin,1,4 Siobhan S. Pattwell,1 Chibawanye Ene,1,8 Alexandra Hicks,9 Michael Ball,9 James Yan,1 Jenny Zhang,1 Debrah Kumasaka,1 Robert H. Pierce,3 Michael Weller,2 Mitchell Finer,9 Christophe Quéva,9 Joseph C. Glorioso,5 A. McGarry Houghton,3 and Eric C. Holland1,4,8,10 1Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. 2Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland. 3Clinical Research Division and 4Seattle Translational Tumor Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. 5Department of Microbiology and Molecular Genetics and 6Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. 7Department of Pathology, Division of Neuropathology, and 8Department of Neurosurgery, University of Washington, Seattle, Washington, USA. 9Oncorus, Cambridge, Massachusetts, USA. 10Alvord Brain Tumor Center, University of Washington, Seattle, Washington, USA. Oncolytic viruses induce local tumor destruction and inflammation. Whether virotherapy can also overcome immunosuppression in noninfected tumor areas is under debate. To address this question, we have explored immunologic effects of oncolytic herpes simplex viruses (oHSVs) in a genetically engineered mouse model of isocitrate dehydrogenase (IDH) wild-type glioblastoma, the most common and most malignant primary brain tumor in adults. Our model recapitulates the genomics, the diffuse infiltrative growth pattern, and the extensive macrophage-dominant immunosuppression of human glioblastoma.
    [Show full text]
  • Gene-12-622271 February 15, 2021 Time: 18:36 # 1
    fgene-12-622271 February 15, 2021 Time: 18:36 # 1 ORIGINAL RESEARCH published: 19 February 2021 doi: 10.3389/fgene.2021.622271 SARS-CoV-2 Infection-Induced Promoter Hypomethylation as an Epigenetic Modulator of Heat Shock Protein A1L (HSPA1L) Gene Jibran Sualeh Muhammad1,2*†, Narjes Saheb Sharif-Askari2, Zheng-Guo Cui3, Mawieh Hamad2,4 and Rabih Halwani2,5,6*† 1 Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates, 2 Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates, 3 Department of Environmental Health, University of Fukui School of Medical Science, University of Fukui, Fukui, Japan, 4 Department of Medical Laboratory Edited by: Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates, 5 Department of Clinical Rui Henrique, Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates, 6 Prince Abdullah Ben Khaled Celiac Portuguese Oncology Institute, Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia Portugal Reviewed by: Numerous researches have focused on the genetic variations affecting SARS-CoV-2 Renata Zofia Jurkowska, Cardiff University, United Kingdom infection, whereas the epigenetic effects are inadequately described. In this report, for Yi Huang, the first time, we have identified potential candidate genes that might be regulated University of Pittsburgh, United States via SARS-CoV-2 induced DNA methylation changes in COVID-19 infection. At first, *Correspondence: Jibran Sualeh Muhammad in silico transcriptomic data of COVID-19 lung autopsies were used to identify the [email protected] top differentially expressed genes containing CpG Islands in their promoter region.
    [Show full text]
  • RAET1/ULBP Alleles and Haplotypes Among Kolla South American Indians
    RAET1/ULBP alleles and haplotypes among Kolla South American Indians Steven T. Cox1, Esteban Arrieta-Bolaños,1,2,3, Susanna Pesoa4, Carlos Vullo4, J. Alejandro Madrigal1,2 and Aurore Saudemont1,2 1The Anthony Nolan Research Institute, The Royal Free Hospital, Hampstead, London, UK. 2UCL Cancer Institute, Royal Free Campus, London, UK. 3Centro de Investigaciones en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica. 4HLA Laboratory, Hospital Nacional de Clinicas, Cordoba, Argentina. Corresponding author: Steven Cox ([email protected]). Tel: +44 (0)20 7284 8324. Fax: +44 (0)20 7284 8331. Abstract NK cell cytolysis of infected or transformed cells can be mediated by engagement of the activating immunoreceptor NKG2D with one of eight known ligands (MICA, MICB and RAET1E-N) and is essential for innate immunity. As well as diversity of NKG2D ligands having the same function, allelic polymorphism and ethnic diversity has been reported. We previously determined HLA class I allele and haplotype frequencies in Kolla South American Indians who inhabit the northwest provinces of Argentina, and were found to have a similar restricted allelic profile to other South American Indians and novel alleles not seen in other tribes. In our current study, we characterized retinoic acid early transcription-1 (RAET1) alleles by sequencing 58 unrelated Kolla people. Only three of six RAET1 ligands were polymorphic. RAET1E was most polymorphic with five alleles in the Kolla including an allele we previously described, RAET1E*009 (allele frequency (AF) 5.2%). Four alleles of RAET1L were also found and RAET1E*002 was most frequent (AF = 78%).
    [Show full text]
  • NKG2D Natural Killer Cell Receptor—A Short Description and Potential Clinical Applications
    cells Review NKG2D Natural Killer Cell Receptor—A Short Description and Potential Clinical Applications Jagoda Siemaszko 1, Aleksandra Marzec-Przyszlak 2 and Katarzyna Bogunia-Kubik 1,* 1 Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53114 Wroclaw, Poland; [email protected] 2 Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, 41800 Zabrze, Poland; [email protected] * Correspondence: [email protected] Abstract: Natural Killer (NK) cells are natural cytotoxic, effector cells of the innate immune system. They can recognize transformed or infected cells. NK cells are armed with a set of activating and inhibitory receptors which are able to bind to their ligands on target cells. The right balance between expression and activation of those receptors is fundamental for the proper functionality of NK cells. One of the best known activating receptors is NKG2D, a member of the CD94/NKG2 family. Due to a specific NKG2D binding with its eight different ligands, which are overexpressed in transformed, infected and stressed cells, NK cells are able to recognize and attack their targets. The NKG2D receptor has an enormous significance in various, autoimmune diseases, viral and bacterial infections as well as for transplantation outcomes and complications. This review focuses on the NKG2D receptor, the mechanism of its action, clinical relevance of its gene polymorphisms and a potential application in various clinical settings. Citation: Siemaszko, J.; Marzec-Przyszlak, A.; Keywords: NKG2D receptor; NKG2D ligands; NK cells Bogunia-Kubik, K. NKG2D Natural Killer Cell Receptor—A Short Description and Potential Clinical Applications.
    [Show full text]
  • Anti-KLRK1 Monoclonal Antibody, Clone 2E22 [PE] (DCABH-6504) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-KLRK1 monoclonal antibody, clone 2E22 [PE] (DCABH-6504) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Mouse monoclonal to NKG2D (Phycoerythrin) Antigen Description Receptor for MICA, MICB, ULBP1, ULBP2, ULBP3 (ULBP2> ULBP1> ULBP3) and ULBP4. Plays a role as a receptor for the recognition of MHC class I HLA-E molecules by NK cells and some cytotoxic T-cells. Involved in the immune surveillance exerted by T- and B-lymphocytes. Immunogen Tissue, cells or virus corresponding to Human NKG2D. NKL cell line. Isotype IgG1 Source/Host Mouse Species Reactivity Human Clone 2E22 Purity Size exclusion Purification Affinity purified Conjugate PE Preparation The purified antibody is conjugated with R-Phycoerythrin (PE) under optimum conditions. The conjugate is purified by size-exclusion chromatography and adjusted for direct use. Procedure Conjugated Antibodies Format Liquid Size 100 μg Buffer Preservative: 0.1% Sodium azide; Constituents: 99% PBS, 0.2% BSA; BSA is high-grade and protease free. Preservative 0.1% Sodium Azide Storage Store at +4°C. Do Not Freeze. Store In the Dark. Ship Shipped at 4°C. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved GENE INFORMATION Gene Name KLRK1 killer cell lectin-like receptor subfamily K, member 1 [ Homo sapiens ] Official Symbol KLRK1 Synonyms KLRK1; killer cell lectin-like receptor subfamily K, member 1; D12S2489E, DNA segment
    [Show full text]
  • Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus
    RESEARCH ARTICLE Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus Elizabeth R. Sturgill1, Daniel Malouli1, Scott G. Hansen1, Benjamin J. Burwitz1, Seongkyung Seo1, Christine L. Schneider2, Jennie L. Womack1, Marieke C. Verweij1, Abigail B. Ventura1, Amruta Bhusari1, Krystal M. Jeffries1, Alfred W. Legasse1, Michael K. Axthelm1, Amy W. Hudson3, Jonah B. Sacha1, Louis J. Picker1, Klaus Früh1* 1 Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America, 2 Department of Life Sciences, Carroll University, Waukesha, Wisconsin, United States of America, 3 Department of Microbiology and Molecular a11111 Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America * [email protected] Abstract OPEN ACCESS The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands Citation: Sturgill ER, Malouli D, Hansen SG, Burwitz (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) BJ, Seo S, Schneider CL, et al. (2016) Natural Killer UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act Cell Evasion Is Essential for Infection by Rhesus via lysomal degradation but the importance of NK cell evasion for infection is unknown. Cytomegalovirus. PLoS Pathog 12(8): e1005868. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how doi:10.1371/journal.ppat.1005868 NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Inter- Editor: Laurent Coscoy, University of California estingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the Berkeley, UNITED STATES homolog of UL148, to prevent NKG2DL surface expression.
    [Show full text]
  • NK Cell Activating Receptor Ligand Expression in Lymphangioleiomyomatosis Is Associated with Lung Function Decline
    NK cell activating receptor ligand expression in lymphangioleiomyomatosis is associated with lung function decline Andrew R. Osterburg, … , Francis X. McCormack, Michael T. Borchers JCI Insight. 2016;1(16):e87270. https://doi.org/10.1172/jci.insight.87270. Research Article Immunology Pulmonology Lymphangioleiomyomatosis (LAM) is a rare lung disease of women that leads to progressive cyst formation and accelerated loss of pulmonary function. Neoplastic smooth muscle cells from an unknown source metastasize to the lung and drive destructive remodeling. Given the role of NK cells in immune surveillance, we postulated that NK cell activating receptors and their cognate ligands are involved in LAM pathogenesis. We found that ligands for the NKG2D activating receptor UL-16 binding protein 2 (ULBP2) and ULBP3 are localized in cystic LAM lesions and pulmonary nodules. We found elevated soluble serum ULBP2 (mean = 575 pg/ml ± 142) in 50 of 100 subjects and ULBP3 in 30 of 100 (mean = 8,300 pg/ml ± 1,515) subjects. LAM patients had fewer circulating NKG2D+ NK cells and decreased NKG2D surface expression. Lung function decline was associated with soluble NKG2D ligand (sNKG2DL) detection. The greatest rate of decline forced expiratory volume in 1 second (FEV1, –124 ± 30 ml/year) in the 48 months after enrollment (NHLBI LAM Registry) occurred in patients expressing both ULBP2 and ULBP3, whereas patients with undetectable sNKG2DL levels had the lowest rate of FEV1 decline (–32.7 ± 10 ml/year). These data suggest a role for NK cells, sNKG2DL, and the innate immune system in LAM pathogenesis. Find the latest version: https://jci.me/87270/pdf RESEARCH ARTICLE NK cell activating receptor ligand expression in lymphangioleiomyomatosis is associated with lung function decline Andrew R.
    [Show full text]
  • Investigation of an Enhancer-Based Regulation of LILRB1 Gene and the Differential Functions of LILRB1 Variants in Natural Killer Cells
    Investigation of an enhancer-based regulation of LILRB1 gene and the differential functions of LILRB1 variants in natural killer cells by Kang Yu A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Immunology Department of Medical Microbiology and Immunology University of Alberta © Kang Yu, 2020 Abstract: Human cytomegalovirus (HCMV) causes severe disease in immunocompromised people such as transplant patients. NK cells are crucial in controlling HCMV whereas HCMV developed multiple strategies to evade NK cell surveillance. HCMV encodes a human MHC-I homolog called UL18 to target an inhibitory receptor called leukocyte immunoglobulin-like receptor B1 (LILRB1) expressed on NK cells. LILRB1 is also broadly expressed on other immune cells and associated with viral infection, autoimmune diseases, and cancer. LILRB1 expression exhibits dramatic heterogeneity among different types of immune cells and LILRB1 gene transcription in lymphoid and myeloid cells arises from the distal promoter and the proximal promoter, respectively. LILRB1 is expressed on subsets of human NK cells and the frequency of LILRB1-positive NK cells differs among people. I verified in this thesis that NK clones have either single or double allelic expression. Notably, the frequency of LILRB1-positive NK cells has been shown to increase in the context of HCMV infection. Our group demonstrated that LILRB1 polymorphisms are associated with the frequency of LILBR1+ NK cells, and there are “high” and “low” haplotypes involving the SNPs in the regulatory regions that are correlated with relatively high and low frequency of LILRB1-positive NK cells, respectively. Intriguingly, our group found that the kidney transplant patients homozygous for the SNPs linked with the “low” haplotype were more susceptible to HCMV infection.
    [Show full text]
  • Targeting Mitosis in Ovarian Cancer
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en TARGETING MITOSIS IN OVARIAN CANCER: THE STUDY OF BORA AS A FUTURE THERAPEUTIC AVENUE PhD thesis presented by Alfonso Parrilla Ocón To obtain the degree of PhD for the Universitat Autònoma de Barcelona (UAB) PhD thesis carried out at the Cell Cycle and Cancer Laboratory within the Biomedical Research Group in Gynecology, at Vall d'Hebron Research Institute (VHIR) Thesis affiliated to the Department of Biochemistry and Molecular Biology from the UAB, in the PhD program of Biochemistry, Molecular Biology and Biomedicine Universitat Autònoma de Barcelona, September 12th 2019 Doctorate Director Tutor Alfonso Parrilla Ocón Dr. Anna Santamaria Margalef Dr. Ana Meseguer Navarro TARGETING MITOSIS IN OVARIAN CANCER The study of BORA as a future therapeutic avenue Alfonso Parrilla PhD Thesis 2019 CLINICAL RELEVANCE OF THIS THESIS Clinical management of ovarian cancer remains a challenge due to the failure to obtain long-lasting benefits and the development of resistance to current standard therapies. Since the mitotic spindle is a validated target against cancer, using an integrative global transcriptional profiling we searched for novel actionable mitotic candidates, focusing our attention on BORA.
    [Show full text]