The Art of Paper-Making;
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
26 the Carton Packaging Fact File CARTONBOARD
26 The Carton Packaging Fact File CARTONBOARD 5 The Carton Packaging Fact File 27 KEY FACTS Cartonboard is a multilayered material. The main types of cartonboard are solid bleached board, solid unbleached board, folding boxboard and white lined chipboard. Cartonboard usually has a white, pigmented coating on one or both surfaces Cartonboard specifications Cartonboard can be vary with respect to the pulp combined with other composition of the various materials to vary the visual layers and by the grammage appearance and to extend (weight per sq. metre in the protective properties grammes) and thickness (microns or 0.001 millimetre) Laminations, coatings and impregnations can be added to extend the range of carton applications 28 The Carton Packaging Fact File CARTONBOARD COMMON ABBREVIATIONS SBB Solid Bleached Board SUB Solid Unbleached Board FBB Folding Box Board WLC White Lined Chipboard Different types and grades the range 200-600g/m 2 for grammage product aroma, flavour and hygiene are of cartonboard and their and 350-800µm for thickness. critical. Examples of cartons where abbreviations. The principles SBB is used are perfumes, cosmetics, of cartonboard manufacture, What are the main characteristics chocolates, pharmaceuticals, frozen developments and treatments of cartonboard? foods and cigarettes. Cartonboard is mechanically strong. What is cartonboard? Its stiffness, rigidity and toughness SBB is sometimes referred to as SBS Cartonboard is a multilayer material provide compression strength to protect or GZ. with, usually, three or more layers, or products in distribution and use. It can plies, of cellulose fibre (pulp) derived be cut, creased, folded and glued, giving What is Solid Unbleached Board? from wood. -
The EMA Guide to Envelopes and Mailing
The EMA Guide to Envelopes & Mailing 1 Table of Contents I. History of the Envelope An Overview of Envelope Beginnings II. Introduction to the Envelope Envelope Construction and Types III. Standard Sizes and How They Originated The Beginning of Size Standardization IV. Envelope Construction, Seams and Flaps 1. Seam Construction 2. Glues and Flaps V. Selecting the Right Materials 1. Paper & Other Substrates 2. Window Film 3. Gums/Adhesives 4. Inks 5. Envelope Storage 6. Envelope Materials and the Environment 7. The Paper Industry and the Environment VI. Talking with an Envelope Manufacturer How to Get the Best Finished Product VII. Working with the Postal Service Finding the Information You Need VIII. Final Thoughts IX. Glossary of Terms 2 Forward – The EMA Guide to Envelopes & Mailing The envelope is only a folded piece of paper yet it is an important part of our national communications system. The power of the envelope is the power to touch someone else in a very personal way. The envelope has been used to convey important messages of national interest or just to say “hello.” It may contain a greeting card sent to a friend or relative, a bill or other important notice. The envelope never bothers you during the dinner hour nor does it shout at you in the middle of a television program. The envelope is a silent messenger – a very personal way to tell someone you care or get them interested in your product or service. Many people purchase envelopes over the counter and have never stopped to think about everything that goes into the production of an envelope. -
Triangle Accordion Books Part 2
“Part Two: Assembling the book” Time from start to finish = 1 hour You will need the following materials: • Heavy paper, which will be cut into three 4 5/8” X 20” strips, the best option is to cut these strips from one large 22” X 30” sheet of watercolor paper (this will be used for the inner “accordion” of the book) • 2 pieces of chipboard or thick cardboard, 6x6 inches each • Painted paper or scrapbooking paper at least 6x6 inches in size • Pencil • Ruler • Glue (regular white glue or glue sticks) • Clean scrap paper, computer paper or newsprint is good • X-acto Knife or scissors • Cutting matt (or a piece of scrap cardboard to protect your work surface) Brief description: The next part of our process is to measure, cut and assemble your book. This part is made up of several smaller steps within each major step and requires precise measurement and patience. For Part Two, I suggest making a cup of your favorite tea and putting on some relaxing music in the background. While, this may be the most challenging step for some, if you follow the instructions closely and don’t rush, you should come out of it with a fully assembled book ready for creative alteration and decoration! For those new to bookmaking here are a few helpful hints: • Measure! Measure! Measure!: Nothing is more disappointing than assembling several pieces only to find at the final step that they don’t quite fit, especially when you’re out of materials to try again! During this process, we will be measuring out strips of paper, then folding, cutting and gluing them together at specific points. -
Final Paper Products Recovered Materials Advisory Notice Response to Public Comments
FINAL PAPER PRODUCTS RECOVERED MATERIALS ADVISORY NOTICE Response to Public Comments Office of Solid Waste U.S. Environmental Protection Agency April 1996 CONTENTS I. Introduction . 1 A. The Draft Paper Products Recovered Materials Advisory Notice . 1 B. Overview of the RCRA Requirements . 1 C. Overview of the Executive Order Provisions for Paper . 3 II. Applicability . 5 A. Background. 5 B. Comments and Agency Response. 5 III. EPA's Objectives . 7 A. Background. 7 B. Comments and Agency Response. 7 IV. EPA's Approach to Recommendations. 11 A. Background . 11 B. Comments and Agency Response . 11 V. EPA's Methodology . 14 A. Background . 14 B. Comments and Agency Response . 14 VI. Recommendations for Printing and Writing Papers. 15 A. Background . 15 B. Comments and Agency Response . 19 VII. Recommendations for Newsprint . 27 A. Background . 27 B. Comments and Agency Response . 27 VIII. Recommendations for Tissue Products. 31 A. Background . 31 B. Comments and Agency Response . 32 IX. Recommendations for Paperboard and Packaging Products . 36 A. Background . 36 B. Comments and Agency Response . 38 X. Recommendations for Miscellaneous Paper Products. 45 A. Background . 45 B. Comments and Agency Response . 45 XI. Recommendations for Measurement. 46 A. Background . 46 B. Comments and Agency Response . 46 XII. Recommendations for Specifications. 48 A. Background . 48 B. Comments and Agency Response . 48 XIII. Recommendations for Recyclability. 49 A. Background . 49 B. Comments and Agency Response . 49 XIV. Definitions . 51 A. Background . 51 B. Comments and Agency Response . 51 XV. Certification and Verification . 54 A. Background . 55 B. Comments and Agency Response . 55 XVI. Sawdust as Recovered Fiber. -
3. Baseboard Physical Properties
3. Baseboard physical properties Performance properties 111 Laws of nature 112 Flatness and stability 116 Strength and toughness 123 Defi ned physical properties 125 Tensile strength 125 Compression strength 126 Complex physical properties 128 Tearing resistance 128 Impact burst strength 128 Delamination, interlaminar strength 129 Stiffness 134 Box compression strength 138 Performance properties 110 Reference Manual | IGGESUND PAPERBOARD Performance properties Performance properties The performance properties are related to the physical Measurable properties characteristics of the paperboard. These properties relate The measurable properties are those which are com- to how the paperboard will withstand the surrounding monly found when describing the technical data for a environment. The following performance properties are paperboard grade. The methods described are those described in this chapter: most commonly used. They are also used by Iggesund • fl atness and dimensional stability Paperboard. • strength and toughness For further information about specific testing equip- • stiffness ment see the manufacturers’ product catalogues • box compression strength. (e.g. Lorentzen & Wettre). The measuring methods for the properties listed are described in the following pages: • tensile strength • tearing resistance • interlayer strength, plybond • bending stiffness • bending resistance • bending moment • density • dimensional properties - Flatness • grammage • grammage (plastic-coated products) • thickness • compression strength • moisture content • stiffness • curl and twist. IGGESUND PAPERBOARD | Reference Manual 111 Laws of nature Laws of nature Two of the most basic physical properties that defi ne a pa- Test method and equipment perboard are grammage and thickness. These properties During production the grammage is measured con- tell us how much fibres and coating that is used for one tinuously on-line with an IR device. -
THE REVISION of EU ECOLABEL CRITERIA for Converted Paper Products
THE REVISION OF EU ECOLABEL CRITERIA for Converted Paper Products Draft Preliminary Report Malgorzata Kowalska, Antonios Konstantas, Oliver Wolf Marzia Traverso, Rose Nangah Mankaa, Sabrina Neugebauer November 2018 EUR xxxxx xx 1 This publication is a Science for Policy report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Contact information Name: Address: E-mail: Tel.: JRC Science Hub https://ec.europa.eu/jrc JRCxxxxx EUR xxxxx xx PDF ISBN xxx-xx-xx-xxxxx-x ISSN xxxx-xxxx doi:xx.xxxx/xxxxxx XX-NA-xxxxx-EN-N Print ISBN xxx-xx-xx-xxxxx-x ISSN xxxx-xxxx doi:xx.xxxxx/xxxxxx XX-NA-xxxxx-EN-C © European Union, 20xx Reproduction is authorised provided the source is acknowledged. How to cite: Authors; title; EUR; doi All images © European Union 20xx, except: 2 Table of contents ABSTRACT ............................................................................................................ 3 Executive summary ............................................................................................... 3 1. Introduction ...................................................................................................... 4 2. Task 1: Scope and definition analysis .................................................................. -
Paper Grades
720 PAPERMAKING / Paper Grades Further Reading Biermann CJ (1996) Handbook of Pulping and Papermak- ing. San Diego: Academic Press. Borch J, Lyne MB, Mark RE, and Habeger Jr, CC (eds) (2002) Handbook of Physical Testing of Paper, vol. 2, 2nd edn. New York: Marcel Dekker. Britt KW (1975) Handbook of Pulp and Paper Technology. New York: Van Nostrand Reinhold. Clark Jd’A (1985) Pulp Technology and Treatment for Paper, 2nd edn. San Francisco: Miller Freeman. Dieson M (1998) Papermaking Science and Technology. Atlanta, GA: Tappi Press. Gavelin G (1998) Paper Machine Design and Operation. Vancouver, BC: Angus Wilde. Hunter D (1978) Papermaking: The History and Techni- que of an Ancient Craft. New York: Dover Publications. Karlsson M (2000) Papermaking, Part 2, Drying. Atlanta, GA: Tappi Press. Kline JE (1991) Paper and Paperboard: Manufacturing and Converting Fundamentals. San Francisco: Miller Freeman. Kojio M (1999) Papermaking: Finishing. Atlanta, GA: Tappi Press. Levlin J-E and So¨ derhelm L (1999) Pulp and Paper Testing. Atlanta, GA: Tappi Press. Mark RE, Habeger Jr, CC, Borch J, and Lyne MB (eds) (2002) Handbook of Physical Testing of Paper, vol. 1, 2nd edn. New York: Marcel Dekker. Patrick KL (1999) Primer of Pulping and Paper Making: Technologies and Production Practices. San Francisco, CA: Miller Freeman Books. Figure 20 Calender of the pilot papermachine at SUNY Paulapuro H (2000) Papermaking Part 1: Stock Prepara- College of Environmental Science and Forestry. The sheet tion and Wet End. Atlanta, GA: Tappi Press. passes through multiple nips to smooth the surface of the sheet. Savolainen A (1998) Paper and Paperboard Converting: Papermaking Science and Technology. -
A3 Paper Size: ISO Paper Size 297 X 420Mm Used for Small Poster Or Small News Paper
A3 Paper size: ISO paper size 297 x 420mm used for small poster or small news paper. A4 Paper size: ISO paper size 210 x 297mm used for Letterhead. Accordion fold: Bindery term, two or more parallel folds which open like an accordion. Acetate: a transparent sheet placed over artwork allowing the artist to write instructions or indicate where second colour is to be placed. Acid Resist: An acid-proof protective coating applied to metal plates prior to etching. Against the grain: At right angles to direction of paper grain. Alteration: Change in copy of specifications after production has begun. Aqueous Coating: Coating in a water base and applied like ink by a printing press to protect and enhance the printing underneath. Artboard: Alternate term for mechanical art. Ascender: any part of a lower case letter extending above the x-height. For example, the upper half of the vertical in the letters b or h. Authors corrections: changes made to the copy by the author after typesetting but not including those made as a result of errors in keying in the copy. Back up: Printing the second side of a sheet already printed on one side. Backslant: Letters that slant the opposite way from italic characters. Banding: Method of packaging printed pieces of paper using rubber or paper bands. Basis weight: Weight in pounds of a ream of paper cut to the basic size for its grade. Bind: To fasten sheets or signatures with wire, thread, glue. or by other means. Bindery: The finishing department of a print shop or firm specializing in finishing printed products. -
VNP Guideline LCA Data for Paper and Board in the Netherlands
VNP Guidelines - LCA data for paper and board products It is of high importance that the data which isused from generic LCA databases (e.g. ecoinvent) are recent as well as representative for the kind of material used. Paper and board are complex materials that appear in different types suitable for the various applications. This document is set-up to assist LCA experts in finding the right data belonging to the type of paper and board studied. General advices: It is not advisable to use the data from European Life Cycle Database (ELCD) as these data are incomplete and also only ‘cradle to grave’: these are aggregated data hence difficult to identify where impacts come from and thus hardly usable for comparisons or to change for specific situations. Of all other generic databases ecoinvent is the most complete and current database. Other public datasets (e.g. GaBi, Base Impacts and ProBas) are less current and less easy to interpret from a user point of view. For LCA assessments on paper and board produced in the Netherlands it is essential to replace the input of the European average enery mix with input the Dutch energy mix. (NB this is not possible with ELCD as these allow no changes at all). Packaging paper Paper for corrugated board - Papier voor golfkarton Description Corrugated board (in Dutch: golfkarton) is the most commonly used transport packaging. Corrugated board consists of one or more layers of corrugated paper, in combination with one or more layers flat paper. The corrugated paper is called fluting or medium. The flat papers are called liners. -
President's Report Issue
DEC MASSACHUSETTS INSTITUTE o TRAL OF TECHNOLOGY BULLETIN PRESIDENT'S REPORT ISSUE VOLUM E 77 NUMBER 1I OCTOBER, 1941 Published by Massachusetts Institute of Technology Cambridge, Massachusetts .O I - - - Entered July 13, 1933, at the Post Office, Boston, Massachusetts, as second-class matter under Act of Congress of August 24, 1912. Published by the Massachusetts Institute of Technology, Cambridge Station, Boston, Massachusetts, in October, November, February and June. Issues of the BULLETIN include the reports of the President and of the Treasurer, the General Catalogue, the Summer Session, and the Directory of Officers and Students. MASSACHUSETTS INSTITUTE . OF TECHNOLOGY : BULLETIN President's Report Issue I940-I941 Covering Periodfrom Meeting of CorporationOctober, 1940 to Meeting of CorporationOctober, i941 VOLUME 77 NUMBER I OCTOBER, 1941 PUBLISHED BY THE INSTITUTE, CAMBRIDGE I _ ~_·___· -7:-olG _ I ___ TABLE OF CONTENTS PAGE REPORT OF THE PRESIDENT. ......... 5 CO-OPERATION IN THE NATIONAL DEFENSE PROGRAM . 6 Personnel ....... 6 Educational Activities ... 7 Defense Research ..... : I I I IO Financing the Research Program 12 SOME EDUCATIONAL EFFECTS AND IMPLICATIONS OF THE DEFENSE PROGRAM .. TRENDS IN OUR NORMAL OPERATIONS . .. 19 Finances .. ... 19 Enrollment . .. 20 Student Aid S. 21 Placement ....... ... 22 Personnel.......... 23 IMPORTANT GAINS .... ... .. .. 26 SOME OBJECTIVES UNDER STUDY . .. .. 28 REPORTS OF OTHER ADMINISTRATIVE OFFICERS Dean of Students ........... 31 Dean of the Graduate School ........ 34 Registrar .. ... 37 Director of Admissions ...... 58 Chairman of Committee on Summer Session 59 Librarian . S 61 Director of the Division of Industrial Co5peration 69 Director of the Albert Farwell Bemis Foundation 72 Secretary of Society of Arts ..... ... 74 Chairman of Committee on the Museum . -
Study of the Windows of Window Envelopes for the Purpose of Developing Standard Specifications
DEPARTMENT OF COMMERCE AUG BUREAU OF STANDARDS George K. Burgess, Director TECHNOLOGIC PAPERS OF THE BUREAU OF STANDARDS, No. 343 [Part of Vol. 21] STUDY OF THE WINDOWS OF WINDOW ENVELOPES FOR THE PURPOSE OF DEVELOPING STANDARD SPECIFICATIONS BY R. E. LOFTON, Associate Physicist Bureau of Standards -' y> \>^' June 6, 1927 >*& w - PRICE 5 CENTS $1.25 Per Volume on Subscription Sold only by the Superintendent of Documents, Government Printing Office Washington, D.C. UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON 1927 T343 STUDY OF THE WINDOWS OF WINDOW ENVELOPES FOR THE PURPOSE OF DEVELOPING STANDARD SPECIFICATIONS By R. E. Lofton ABSTRACT This paper gives an idea of the extent of the use of window envelopes, and also the importance of this matter to postal employees, especially mail clerks, since windows of poor transparency and high gloss would cause serious eyestrain and loss of time in distributing the mails. For the purpose of getting data upon which specifications for transparency and gloss might be based, glassine papers, one-piece and two-piece windows, and a few semitransparent materials were tested. One-piece envelopes are those made from a single sheet of paper in which the window is made by impregnating that part of the envelope pattern through which the address is to be read with a suit- able oil or varnish. Two-piece envelopes are those made from two pieces of paper. The envelope pattern is cut from an opaque sheet of paper; the window is then cut out, and subsequently covered with glassine paper. For permanenc}7 of transparency, the glassine paper windows were better than the one-piece windows. -
8 Paper and Paperboard Packaging M.J
8 Paper and Paperboard Packaging M.J. Kirwan 8.1 INTRODUCTION A wide range of paper and paperboard is used in packaging today – from lightweight infusible tissues for tea and coffee bags to heavy duty boards used in distribution. Paper and paperboard are found wherever products are produced, distributed, marketed and used, and account for about one-third of the total packaging market. Over 40% of all paper and paperboard consumption in Europe is used for packaging and over 50% of the paper and paperboard used for packaging is used by the food industry. One of the earliest references to the use of paper for packaging food products is a patent taken out by Charles Hildeyerd on 16 February 1665 for ‘The way and art of making blew paper used by sugar-bakers and others’ (Hills, 1988). The use of paper and paperboard for packaging purposes accelerated during the latter part of the nineteenth century to meet the needs of manufacturing industry. The manufacture of paper had progressed from a laborious manual operation, one sheet at a time, to continuous high speed production with wood pulp replacing rags as the main raw material. There were also developments in the techniques for printing and converting these materials into packaging containers. Today, examples of the use of paper and paperboard packaging for food can be found in many places, such as supermarkets, traditional markets and retail stores, mail order, fast food, dispensing machines, pharmacies, and in hospital, catering and leisure situations. Uses can be found in packaging all the main categories of food, such as: r dry food products – cereals, biscuits, bread and baked products, tea, coffee, sugar, flour, dry food mixes, etc r frozen foods, chilled foods and ice cream r liquid foods and beverages – juice drinks, milk and milk derived products r chocolate and sugar confectionery r fast foods r fresh produce – fruit, vegetables, meat and fish Packaging made from paper and paperboard is found at the point of sale (primary packs), in storage and for distribution (secondary packaging).