J-2 Consistency Results in Topology, I: Quotable Principles 419 J-2 Consistency Results in Topology, I: Quotable Principles

Total Page:16

File Type:pdf, Size:1020Kb

J-2 Consistency Results in Topology, I: Quotable Principles 419 J-2 Consistency Results in Topology, I: Quotable Principles hart v.2003/06/18 Prn:23/06/2003; 15:17 F:hartj02.tex; VTEX/EA p. 1 j-2 Consistency results in topology, I: Quotable principles 419 j-2 Consistency Results in Topology, I: Quotable Principles A noteworthy feature of general topology – as contrasted 1. The Continuum Hypothesis with geometry, number theory, and most other fields of mathematics – is that many of its fundamental questions are The best-known quotable principle is undoubtedly the Con- not decided by “the usual axioms of set theory”. What this tinuum Hypothesis, abbreviated as CH, which states that means is that if one codifies the set-theoretic assumptions the real line has minimum possible cardinality, i.e., c = ℵ used implicitly in ordinary mathematics and consolidates |R|=2 0 =ℵ1. It was proved consistent by Gödel in [5] these in a list of axioms – the usual axioms of set theory (see [Ku] for a proof) but before that numerous conse- – one is left with many statements that can neither be proved quences were derived from it, see, e.g., [7]. nor refuted on the basis of these axioms alone. In some It derives its strength from the facts that so many sets have sense such undecidability results are commonplace: every- cardinality c and the initial segments of ω1 are all countable; one knows that, say, the statement ϕ = (∀x)(∀y)(xy = yx) this makes for relatively easy transfinite constructions. To give the flavour we construct a Lusin set: an uncountable cannot be decided by “the usual axioms of Group Theory”. subset of R that meets every nowhere dense set in a count- Indeed, the group of integers is a model for “Group The- able set. It suffices to take an enumeration N : α<ω of ory plus ϕ”, which makes this conjunction consistent and α 1 the family of all closed nowhere dense sets and apply the ϕ non-refutable; the permutation group S3 does the same Baire Category Theorem each time to choose lα outside for ¬ϕ. { : } β<α Nα;then lα α<ω1 is the Lusin set. A similar con- A convenient list of axioms for Set Theory, one which struction will yield a strongly infinite-dimensional subspace has become standard is “ZFC” – Zermelo–Fraenkel set the- of the Hilbert cube all of whose finite-dimensional subsets ory, including the Axiom of Choice. See, e.g., [Ku] for a are countable. In [KV, Chapter 8, § 4] one finds more intri- detailed exposition. Thus there are important topological cate constructions, involving CH,ofhereditarily separable statements ϕ such that neither ϕ nor its negation follow nonLindelöf spaces (S-spaces)aswellashereditarily Lin- from ZFC. Establishing this is not as easy as in the case of delöf nonseparable spaces (L-spaces). Group Theory. While it is easy to prove the consistency of On occasion CH helps simply by counting: in combination ℵ ℵ Group Theory by providing models (groups) for it, the same with Jones’ Lemma CH (or even its consequence 2 0 < 2 1 ) is, by Gödel’s Second Incompleteness Theorem, in principle implies that in a separable normal space closed and dis- impossible for ZFC (or any other useful collection of axioms crete subsets are countable and hence that separable normal for set theory). Gödel’s theorem says that a consistency proof Moore spaces are metrizable. By contrast, CH implies there of a theory as strong as ZFC cannot be formalized in the the- is a non-metrizable normal Moore space [KV, Chapter 16]. ory itself. This explains why many results are formulated as Another counting example comes from the theory of uni- “if ZFC is consistent then so is ZFC plus ϕ” instead of sim- form spaces. It is well-known that in a uniform space the ply “ϕ is consistent with ZFC” and why, formally, we should finite uniform covers generate a uniformity again as do the be speaking of relative consistency proofs. Even if one is not countable uniform covers. The proofs can be generalized to ℵ interested in consistency results per se, it is nonetheless pru- show that any 1-sized uniform cover has a uniform star re- finement of cardinality c. Thus, CH implies that the ℵ -sized dent to be aware of them, lest one waste effort trying to prove 1 uniform covers generate a uniformity. In general, the Gen- a proposition that has a consistent negation. eralized Continuum Hypothesis (GCH), which states that There are two ways in which consistency results in to- + for all cardinals κ one has 2κ = κ , implies that for every κ pology are obtained. The first consists of proving implica- the uniform covers of cardinality less than κ generate a uni- tions between statements, where the antecedent is a state- formity. ment previously proven consistent with ZFC. Thus, the con- The Continuum Hypothesis also implies that there is an sequent itself is proven consistent with ZFC as well. The almost disjoint family of uncountable subsets of ω1 of car- ℵ present article deals with results like these and in partic- dinality 2 1 or, equivalently, that the cellularity of the space ℵ ular with the best-known combinatorial principles that oc- U(ω1) of uniform ultrafilters is the maximum possible 2 1 . cur as antecedents. In the second kind of consistency result Here ‘almost disjoint’ means that intersections are countable will be dealt with in the companion article; here one needs and an ultrafilter u on a set X is uniform if every element an intimate knowledge of how one actually proves (relative) has full cardinality, i.e., |U|=|X| for all U ∈ u. consistency results. The principal subjects in that article are See also the article on βN and βR for other applications forcing and large cardinals. of CH. hart v.2003/06/18 Prn:23/06/2003; 15:17 F:hartj02.tex; VTEX/EA p. 2 420 Section J: Influences of other fields 2. Martin’s Axiom less than c are meager and of measure zero. We discuss the consequences of CH mentioned above. Every consequence of CH is a potential theorem, as it can no Lusin sets no longer exist as every set of reals of cardi- longer be refuted. Some consequences are in fact equivalent nality less than c is of first category. It becomes harder to to CH, e.g., the existence of the special infinite-dimensional find S-andL-spaces. Indeed, MA +¬CH denies the exis- space above; such consequences are then automatically non- tence of compact such spaces and it is even consistent with provable because Cohen proved the consistency of the nega- MA +¬CH that no S-spaces exist. tion of CH (see the next article for an indication of the proof On the positive side: MA +¬CH implies that separable and [Ku] for a full treatment). To decide other consequences normal nonmetrizable Moore spaces exist. It also implies one would need proofs that avoid CH or principles that imply that there is a uniform space with a uniform cover of car- their negations. dinality ℵ1 without an ℵ1-sized uniform star refinement, to Martin’s Axiom (MA) is such a principle. It can be wit the subspace {x:x=1 (∀α)(xα 0)} of ∞(ℵ1) [6]. viewed as an extension of the Baire Category Theorem: it The latter paper does not mention MA +¬CH directly but the states that if X is a compact Hausdorff space with the count- proof needs a family A,ofsizeℵ2, of uncountable subsets able chain condition (the ccc for short) then the union of of ω1 such that for some fixed cardinal κ ℵ2 every sub- fewer than c many nowhere dense in X still has a dense com- family A of A of size κ has a finite intersection. To make plement. As such it is a consequence of CH but the conjunc- such a family one starts with an almost disjoint family B,of tion MA +¬CH is also consistent. size ℵ2, of uncountable subsets of ω1 (almost disjoint means Its original formulation, though more extensive, is ulti- distinct elements have a countable intersection); by repeated mately more useful: if P is a partially ordered set (a poset) application of [4, 42I] one shrinks the elements of B to pro- with the ccc and D is a family of fewer than c dense sets then duce the desired family A (with κ = 2). there is a filter G on P that meets all members of D.Twoel- The ccc is the weakest in a line of properties, the best- ements p and q of P are compatible if there is an element r known of these are σ -centered (corresponding to separa- with r p,q,andincompatible otherwise. An antichain is ble compact spaces) and countable (corresponding to com- a set of mutually incompatible elements and “P has the ccc” pact metrizable spaces). These in turn give rise to weaken- means every antichain is countable. A set D ⊆ P is a dense ings of MA that have generated interest of their own, since set if for every p there is d ∈ D with d p. Finally, a filter they provide the possibility of denying some of MAs conse- on P is a subset G that satisfies: if p,q ∈ G then there is quences while retaining others. r ∈ G with r p,q,andifp ∈ G and q p then q ∈ G. Martin’s Axiom for σ -centered partially ordered sets The equivalence between the two formulations becomes was shown to be equivalent to the purely combinatorial state- somewhat apparent when one thinks of P as representing the ment known variously as P(c) or p = c:ifF is a family, of open sets of the space X – a proof may be devised along cardinality less than c, of subsets of N with the strong finite the lines of the Stone Representation Theorem of Boolean intersection property, i.e., the intersection of every finite algebras.
Recommended publications
  • Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
    Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness .
    [Show full text]
  • Set-Theoretic Foundations1
    To appear in A. Caicedo et al, eds., Foundations of Mathematics, (Providence, RI: AMS). Set-theoretic Foundations1 It’s more or less standard orthodoxy these days that set theory - - ZFC, extended by large cardinals -- provides a foundation for classical mathematics. Oddly enough, it’s less clear what ‘providing a foundation’ comes to. Still, there are those who argue strenuously that category theory would do this job better than set theory does, or even that set theory can’t do it at all, and that category theory can. There are also those insist that set theory should be understood, not as the study of a single universe, V, purportedly described by ZFC + LCs, but as the study of a so-called ‘multiverse’ of set-theoretic universes -- while retaining its foundational role. I won’t pretend to sort out all these complex and contentious matters, but I do hope to compile a few relevant observations that might help bring illumination somewhat closer to hand. 1 It’s an honor to be included in this 60th birthday tribute to Hugh Woodin, who’s done so much to further, and often enough to re-orient, research on the fundamentals of contemporary set theory. I’m grateful to the organizers for this opportunity, and especially, to Professor Woodin for his many contributions. 2 I. Foundational uses of set theory The most common characterization of set theory’s foundational role, the characterization found in textbooks, is illustrated in the opening sentences of Kunen’s classic book on forcing: Set theory is the foundation of mathematics. All mathematical concepts are defined in terms of the primitive notions of set and membership.
    [Show full text]
  • Axiomatic Set Teory P.D.Welch
    Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L.
    [Show full text]
  • Lecture Notes: Axiomatic Set Theory
    Lecture Notes: Axiomatic Set Theory Asaf Karagila Last Update: May 14, 2018 Contents 1 Introduction 3 1.1 Why do we need axioms?...............................3 1.2 Classes and sets.....................................4 1.3 The axioms of set theory................................5 2 Ordinals, recursion and induction7 2.1 Ordinals.........................................8 2.2 Transfinite induction and recursion..........................9 2.3 Transitive classes.................................... 10 3 The relative consistency of the Axiom of Foundation 12 4 Cardinals and their arithmetic 15 4.1 The definition of cardinals............................... 15 4.2 The Aleph numbers.................................. 17 4.3 Finiteness........................................ 18 5 Absoluteness and reflection 21 5.1 Absoluteness...................................... 21 5.2 Reflection........................................ 23 6 The Axiom of Choice 25 6.1 The Axiom of Choice.................................. 25 6.2 Weak version of the Axiom of Choice......................... 27 7 Sets of Ordinals 31 7.1 Cofinality........................................ 31 7.2 Some cardinal arithmetic............................... 32 7.3 Clubs and stationary sets............................... 33 7.4 The Club filter..................................... 35 8 Inner models of ZF 37 8.1 Inner models...................................... 37 8.2 Gödel’s constructible universe............................. 39 1 8.3 The properties of L ................................... 41 8.4 Ordinal definable sets................................. 42 9 Some combinatorics on ω1 43 9.1 Aronszajn trees..................................... 43 9.2 Diamond and Suslin trees............................... 44 10 Coda: Games and determinacy 46 2 Chapter 1 Introduction 1.1 Why do we need axioms? In modern mathematics, axioms are given to define an object. The axioms of a group define the notion of a group, the axioms of a Banach space define what it means for something to be a Banach space.
    [Show full text]
  • The Logic of Sheaves, Sheaf Forcing and the Independence of The
    The logic of sheaves, sheaf forcing and the independence of the Continuum Hypothesis J. Benavides∗ Abstract An introduction is given to the logic of sheaves of structures and to set theoretic forcing constructions based on this logic. Using these tools, it is presented an alternative proof of the independence of the Continuum Hypothesis; which simplifies and unifies the classical boolean and intuitionistic approaches, avoiding the difficulties linked to the categorical machinery of the topoi based approach. Introduction The first of the 10 problems that Hilbert posed in his famous conference the 1900 in Paris 1, the problem of the Continuum Hypothesis (CH for short), which asserts that every subset of the real numbers is either enumerable or has the cardinality of the Continuum; was the origin of probably one of the greatest achievements in Mathematics of the second half of the XX century: The forcing technique created by Paul Cohen during the sixties. Using this technique Cohen showed that the CH is independent (i.e. it cannot be proved or disproved) from the axioms of Zermelo-Fraenkel plus the Axiom of Choice (ZF C). At the beginning Cohen approached the problem in a pure syntactic way, he defined a procedure to find a contradiction in ZF C given a contradiction in ZF C + ¬CH; which implies that Con(ZF C) → Con(ZF C + ¬CH) (The consistency of ZF C implies the con- sistency of ZF C + ¬CH). However this approach was a non-constructivist one, for it was not given a model of ZF C + ¬CH. Nevertheless in his publish papers Cohen developed two arXiv:1111.5854v3 [math.LO] 7 Feb 2012 other approaches more constructivist.
    [Show full text]
  • FORCING and the INDEPENDENCE of the CONTINUUM HYPOTHESIS Contents 1. Preliminaries 2 1.1. Set Theory 2 1.2. Model Theory 3 2. Th
    FORCING AND THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS F. CURTIS MASON Abstract. The purpose of this article is to develop the method of forcing and explain how it can be used to produce independence results. We first remind the reader of some basic set theory and model theory, which will then allow us to develop the logical groundwork needed in order to ensure that forcing constructions can in fact provide proper independence results. Next, we develop the basics of forcing, in particular detailing the construction of generic extensions of models of ZFC and proving that those extensions are themselves models of ZFC. Finally, we use the forcing notions Cκ and Kα to prove that the Continuum Hypothesis is independent from ZFC. Contents 1. Preliminaries 2 1.1. Set Theory 2 1.2. Model Theory 3 2. The Logical Justification for Forcing 4 2.1. The Reflection Principle 4 2.2. The Mostowski Collapsing Theorem and Countable Transitive Models 7 2.3. Basic Absoluteness Results 8 3. The Logical Structure of the Argument 9 4. Forcing Notions 9 5. Generic Extensions 12 6. The Forcing Relation 14 7. The Independence of the Continuum Hypothesis 18 Acknowledgements 23 References 23 The Continuum Hypothesis (CH) is the assertion that there are no cardinalities strictly in between that of the natural numbers and that of the reals, or more for- @0 mally, 2 = @1. In 1940, Kurt G¨odelshowed that both the Axiom of Choice and the Continuum Hypothesis are relatively consistent with the axioms of ZF ; he did this by constructing a so-called inner model L of the universe of sets V such that (L; 2) is a (class-sized) model of ZFC + CH.
    [Show full text]
  • Sainsbury, M., Thinking About Things. Oxford: Oxford University Press, 2018, Pp
    Sainsbury, M., Thinking About Things. Oxford: Oxford University Press, 2018, pp. ix + 199. Mark Sainsbury’s last book is about “aboutness”. It is widely recognised that in- tentionality—conceived as a peculiar property of mental states, i.e. their being about something—posits some of the most difficult philosophical issues. Moreo- ver, this mental phenomenon seems to be closely related to the linguistic phe- nomenon of intensionality, which has been extensively discussed in many areas of philosophy. Both intentionality and intensionality have something to do with nonexistent things, in so far as we can think and talk about things that do not exist—as fictional characters, mythical beasts, and contents of dreams and hal- lucinations. But how is it possible? And, more generally, how do intentional mental states actually work? In his book, Sainsbury addresses these fundamental problems within the framework of a representational theory of mind. Representations are nothing but what we think with (and, at least in typical cases, not what we think about). They can be characterised as concepts which behave “like words in the language of thought” (1). According to this view, in- tentional states are essentially related to representations, namely to concepts, and it seems quite intuitive to assume that not all concepts have objects: as a consequence, contra Brentano’s thesis,1 we should concede that some intentional states lack intentional objects. Now, Sainsbury raises four main questions about intentionality: 1. How are intentional mental states attributed? 2. What does their “aboutness" consist in? 3. Are they (always) relational? 4. Does any of them require there to be nonexistent things? Given what we just said, Sainsbury’s answer to (4) will reasonably be negative.
    [Show full text]
  • What Is Mathematics: Gödel's Theorem and Around. by Karlis
    1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27
    [Show full text]
  • Extremal Axioms
    Extremal axioms Jerzy Pogonowski Extremal axioms Logical, mathematical and cognitive aspects Poznań 2019 scientific committee Jerzy Brzeziński, Agnieszka Cybal-Michalska, Zbigniew Drozdowicz (chair of the committee), Rafał Drozdowski, Piotr Orlik, Jacek Sójka reviewer Prof. dr hab. Jan Woleński First edition cover design Robert Domurat cover photo Przemysław Filipowiak english supervision Jonathan Weber editors Jerzy Pogonowski, Michał Staniszewski c Copyright by the Social Science and Humanities Publishers AMU 2019 c Copyright by Jerzy Pogonowski 2019 Publication supported by the National Science Center research grant 2015/17/B/HS1/02232 ISBN 978-83-64902-78-9 ISBN 978-83-7589-084-6 social science and humanities publishers adam mickiewicz university in poznań 60-568 Poznań, ul. Szamarzewskiego 89c www.wnsh.amu.edu.pl, [email protected], tel. (61) 829 22 54 wydawnictwo fundacji humaniora 60-682 Poznań, ul. Biegańskiego 30A www.funhum.home.amu.edu.pl, [email protected], tel. 519 340 555 printed by: Drukarnia Scriptor Gniezno Contents Preface 9 Part I Logical aspects 13 Chapter 1 Mathematical theories and their models 15 1.1 Theories in polymathematics and monomathematics . 16 1.2 Types of models and their comparison . 20 1.3 Classification and representation theorems . 32 1.4 Which mathematical objects are standard? . 35 Chapter 2 Historical remarks concerning extremal axioms 43 2.1 Origin of the notion of isomorphism . 43 2.2 The notions of completeness . 46 2.3 Extremal axioms: first formulations . 49 2.4 The work of Carnap and Bachmann . 63 2.5 Further developments . 71 Chapter 3 The expressive power of logic and limitative theorems 73 3.1 Expressive versus deductive power of logic .
    [Show full text]
  • The Continuum Hypothesis: How Big Is Infinity?
    The Continuum Hypothesis: how big is infinity? When a set theorist talks about the cardinality of a set, she means the size of the set. For finite sets, this is easy. The set f1; 15; 9; 12g has four elements, so has cardinality four. For infinite sets, such as N, the set of even numbers, or R, we have to be more careful. It turns out that infinity comes in different sizes, but the question of which infinite sets are \bigger" is a subtle one. To understand how infinite sets can have different cardinalities, we need a good definition of what it means for sets to be of the same size. Mathematicians say that two sets are the same size (or have the same cardinality) if you can match up each element of one of them with exactly one element of the other. Every element in each set needs a partner, and no element can have more than one partner from the other set. If you can write down a rule for doing this { a matching { then the sets have the same cardinality. On the contrary, if you can prove that there is no possible matching, then the cardinalities of the two sets must be different. For example, f1; 15; 9; 12g has the same cardinality as f1; 2; 3; 4g since you can pair 1 with 1, 2 with 15, 3 with 9 and 4 with 12 for a perfect match. What about the natural numbers and the even numbers? Here is a rule for a perfect matching: pair every natural number n with the even number 2n.
    [Show full text]
  • 1. the Zermelo Fraenkel Axioms of Set Theory
    1. The Zermelo Fraenkel Axioms of Set Theory The naive definition of a set as a collection of objects is unsatisfactory: The objects within a set may themselves be sets, whose elements are also sets, etc. This leads to an infinite regression. Should this be allowed? If the answer is “yes”, then such a set certainly would not meet our intuitive expectations of a set. In particular, a set for which A A holds contradicts our intuition about a set. This could be formulated as a first∈ axiom towards a formal approach towards sets. It will be a later, and not very essential axiom. Not essential because A A will not lead to a logical contradiction. This is different from Russel’s paradox:∈ Let us assume that there is something like a universe of all sets. Given the property A/ A it should define a set R of all sets for which this property holds. Thus R = A∈ A/ A . Is R such a set A? Of course, we must be able to ask this { | ∈ } question. Notice, if R is one of the A0s it must satisfy the condition R/ R. But by the very definition of R, namely R = A A/ A we get R R iff R/∈ R. Of course, this is a logical contradiction. But{ how| can∈ } we resolve it?∈ The answer∈ will be given by an axiom that restricts the definition of sets by properties. The scope of a property P (A), like P (A) A/ A, must itself be a set, say B. Thus, instead of R = A A/ A we define≡ for any∈ set B the set R(B) = A A B, A / A .
    [Show full text]
  • Arxiv:1904.06099V5 [Math.LO]
    GENERALIZED TOPOLOGICAL SEMANTICS FOR WEAK MODAL LOGICS TOMASZ WITCZAK Abstract. Generalized topological spaces are not necessarily closed under finite intersections. Moreover, the whole universe does not need to be open. We use modified version of this framework to establish certain models for non- normal modal logics. We consider at least two approaches to this topic, wherein one of them is based on the interplay of two operators, both reflecting the idea of necessity. The second one leads to the quite known logics MT4 and MNT4 . We obtain some completeness results and we prove correspondence between different classes of frames. Also, three types of bisimulation are investigated. 1. Introduction Topological notions are very useful in formal logic. They form bridge between possible-world semantics (which can be considered as somewhat abstract) and well- known mathematical objects (like real line, real plane or Cantor set). Topology al- lows us to discuss various properties of possible-world frames (depending on axioms of separation or on the notions of density, compactness etc.). Moreover, sometimes these properties can be characterized by means of specific formulas. On the other hand, topology is rather strong notion. For example, topological semantics for modal logics leads us to systems not weaker than S4 . They are equivalent with the so-called S4 neighbourhood frames (see [14]). However, neigh- arXiv:1904.06099v5 [math.LO] 27 May 2020 bourhoods are most frequently used with non-normal logics, sometimes very weak. The problem is that in topology neighbourhood is very rigorous notion, while in possible-worlds semantics it is just an arbitrary (maybe even empty) collection of these worlds which are assigned to the given world w.
    [Show full text]