What Is Math Really?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Richard Dedekind English Version
RICHARD DEDEKIND (October 6, 1831 – February 12, 1916) by HEINZ KLAUS STRICK, Germany The biography of JULIUS WILHELM RICHARD DEDEKIND begins and ends in Braunschweig (Brunswick): The fourth child of a professor of law at the Collegium Carolinum, he attended the Martino-Katherineum, a traditional gymnasium (secondary school) in the city. At the age of 16, the boy, who was also a highly gifted musician, transferred to the Collegium Carolinum, an educational institution that would pave the way for him to enter the university after high school. There he prepared for future studies in mathematics. In 1850, he went to the University at Göttingen, where he enthusiastically attended lectures on experimental physics by WILHELM WEBER, and where he met CARL FRIEDRICH GAUSS when he attended a lecture given by the great mathematician on the method of least squares. GAUSS was nearing the end of his life and at the time was involved primarily in activities related to astronomy. After only four semesters, DEDEKIND had completed a doctoral dissertation on the theory of Eulerian integrals. He was GAUSS’s last doctoral student. (drawings © Andreas Strick) He then worked on his habilitation thesis, in parallel with BERNHARD RIEMANN, who had also received his doctoral degree under GAUSS’s direction not long before. In 1854, after obtaining the venia legendi (official permission allowing those completing their habilitation to lecture), he gave lectures on probability theory and geometry. Since the beginning of his stay in Göttingen, DEDEKIND had observed that the mathematics faculty, who at the time were mostly preparing students to become secondary-school teachers, had lost contact with current developments in mathematics; this in contrast to the University of Berlin, at which PETER GUSTAV LEJEUNE DIRICHLET taught. -
Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness . -
Set-Theoretic Foundations1
To appear in A. Caicedo et al, eds., Foundations of Mathematics, (Providence, RI: AMS). Set-theoretic Foundations1 It’s more or less standard orthodoxy these days that set theory - - ZFC, extended by large cardinals -- provides a foundation for classical mathematics. Oddly enough, it’s less clear what ‘providing a foundation’ comes to. Still, there are those who argue strenuously that category theory would do this job better than set theory does, or even that set theory can’t do it at all, and that category theory can. There are also those insist that set theory should be understood, not as the study of a single universe, V, purportedly described by ZFC + LCs, but as the study of a so-called ‘multiverse’ of set-theoretic universes -- while retaining its foundational role. I won’t pretend to sort out all these complex and contentious matters, but I do hope to compile a few relevant observations that might help bring illumination somewhat closer to hand. 1 It’s an honor to be included in this 60th birthday tribute to Hugh Woodin, who’s done so much to further, and often enough to re-orient, research on the fundamentals of contemporary set theory. I’m grateful to the organizers for this opportunity, and especially, to Professor Woodin for his many contributions. 2 I. Foundational uses of set theory The most common characterization of set theory’s foundational role, the characterization found in textbooks, is illustrated in the opening sentences of Kunen’s classic book on forcing: Set theory is the foundation of mathematics. All mathematical concepts are defined in terms of the primitive notions of set and membership. -
Axiomatic Set Teory P.D.Welch
Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L. -
Lecture Notes: Axiomatic Set Theory
Lecture Notes: Axiomatic Set Theory Asaf Karagila Last Update: May 14, 2018 Contents 1 Introduction 3 1.1 Why do we need axioms?...............................3 1.2 Classes and sets.....................................4 1.3 The axioms of set theory................................5 2 Ordinals, recursion and induction7 2.1 Ordinals.........................................8 2.2 Transfinite induction and recursion..........................9 2.3 Transitive classes.................................... 10 3 The relative consistency of the Axiom of Foundation 12 4 Cardinals and their arithmetic 15 4.1 The definition of cardinals............................... 15 4.2 The Aleph numbers.................................. 17 4.3 Finiteness........................................ 18 5 Absoluteness and reflection 21 5.1 Absoluteness...................................... 21 5.2 Reflection........................................ 23 6 The Axiom of Choice 25 6.1 The Axiom of Choice.................................. 25 6.2 Weak version of the Axiom of Choice......................... 27 7 Sets of Ordinals 31 7.1 Cofinality........................................ 31 7.2 Some cardinal arithmetic............................... 32 7.3 Clubs and stationary sets............................... 33 7.4 The Club filter..................................... 35 8 Inner models of ZF 37 8.1 Inner models...................................... 37 8.2 Gödel’s constructible universe............................. 39 1 8.3 The properties of L ................................... 41 8.4 Ordinal definable sets................................. 42 9 Some combinatorics on ω1 43 9.1 Aronszajn trees..................................... 43 9.2 Diamond and Suslin trees............................... 44 10 Coda: Games and determinacy 46 2 Chapter 1 Introduction 1.1 Why do we need axioms? In modern mathematics, axioms are given to define an object. The axioms of a group define the notion of a group, the axioms of a Banach space define what it means for something to be a Banach space. -
The Logic of Sheaves, Sheaf Forcing and the Independence of The
The logic of sheaves, sheaf forcing and the independence of the Continuum Hypothesis J. Benavides∗ Abstract An introduction is given to the logic of sheaves of structures and to set theoretic forcing constructions based on this logic. Using these tools, it is presented an alternative proof of the independence of the Continuum Hypothesis; which simplifies and unifies the classical boolean and intuitionistic approaches, avoiding the difficulties linked to the categorical machinery of the topoi based approach. Introduction The first of the 10 problems that Hilbert posed in his famous conference the 1900 in Paris 1, the problem of the Continuum Hypothesis (CH for short), which asserts that every subset of the real numbers is either enumerable or has the cardinality of the Continuum; was the origin of probably one of the greatest achievements in Mathematics of the second half of the XX century: The forcing technique created by Paul Cohen during the sixties. Using this technique Cohen showed that the CH is independent (i.e. it cannot be proved or disproved) from the axioms of Zermelo-Fraenkel plus the Axiom of Choice (ZF C). At the beginning Cohen approached the problem in a pure syntactic way, he defined a procedure to find a contradiction in ZF C given a contradiction in ZF C + ¬CH; which implies that Con(ZF C) → Con(ZF C + ¬CH) (The consistency of ZF C implies the con- sistency of ZF C + ¬CH). However this approach was a non-constructivist one, for it was not given a model of ZF C + ¬CH. Nevertheless in his publish papers Cohen developed two arXiv:1111.5854v3 [math.LO] 7 Feb 2012 other approaches more constructivist. -
Infinitesimals Via Cauchy Sequences: Refining the Classical Equivalence
INFINITESIMALS VIA CAUCHY SEQUENCES: REFINING THE CLASSICAL EQUIVALENCE EMANUELE BOTTAZZI AND MIKHAIL G. KATZ Abstract. A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number sys- tem. Such an approach can be seen as formalizing Cauchy’s senti- ment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infinitesimals in a 1910 publication by Giuseppe Peano, reversing his earlier endorsement of Cantor’s belittling of infinitesimals. June 2, 2021 1. Historical background Robinson developed his framework for analysis with infinitesimals in his 1966 book [1]. There have been various attempts either (1) to obtain clarity and uniformity in developing analysis with in- finitesimals by working in a version of set theory with a concept of infinitesimal built in syntactically (see e.g., [2], [3]), or (2) to define nonstandard universes in a simplified way by providing mathematical structures that would not have all the features of a Hewitt–Luxemburg-style ultrapower [4], [5], but nevertheless would suffice for basic application and possibly could be helpful in teaching. The second approach has been carried out, for example, by James Henle arXiv:2106.00229v1 [math.LO] 1 Jun 2021 in his non-nonstandard Analysis [6] (based on Schmieden–Laugwitz [7]; see also [8]), as well as by Terry Tao in his “cheap nonstandard analysis” [9]. These frameworks are based upon the identification of real sequences whenever they are eventually equal.1 A precursor of this approach is found in the work of Giuseppe Peano. In his 1910 paper [10] (see also [11]) he introduced the notion of the end (fine; pl. -
1 CS Peirce's Classification of Dyadic Relations: Exploring The
C.S. Peirce’s Classification of Dyadic Relations: Exploring the Relevance for Logic and Mathematics Jeffrey Downard1 In “The Logic of Mathematics; an Attempt to Develop my Categories from Within” [CP 1.417-520] Charles S. Peirce develops a scheme for classifying different kinds of monadic, dyadic and triadic relations. His account of these different classes of relations figures prominently in many parts of his philosophical system, including the phenomenological account of the categories of experience, the semiotic account of the relations between signs, objects and the metaphysical explanations of the nature of such things as chance, brute existence, law-governed regularities and the making and breaking of habits. Our aim in this essay is to reconstruct and examine central features of the classificatory system that he develops in this essay. Given the complexity of the system, we will focus our attention in this essay mainly on different classes of degenerate and genuine dyadic relations, and we will take up the discussion of triadic relations in a companion piece. One of our reasons for wanting to explore Peirce’s philosophical account of relations is to better understand how it might have informed the later development of relations as 1 Associate Professor, Department of Philosophy, Northern Arizona University. 2 In what follows, I will refer to Peirce’s essay “The Logic of Mathematics; An Attempt to Develop my Categories from Within” using the abbreviated title “The Logic of Mathematics.” 3 One reason to retain all of the parts of the figures—including the diamonds that represent the saturated bonds—is that it makes it possible to study more closely the combinatorial possibilities of the system. -
Peano 441 Peano
PEANO PEANO On his life and work, see M . Berthelot, "Necrologie," his position at the military academy but retained his in Bulletin . Societe chindque de France, A5 (1863), 226- professorship at the university until his death in 1932, 227 ; J. R. Partington, A History of Chemistry, IV (London, having transferred in 1931 to the chair of complemen- 1964), 584-585 ; and F. Szabadvary, History of Analytical tary mathematics. He was elected to a number of Chemistry (Oxford, 1966), 251 . scientific societies, among them the Academy of F . SZABADVARY Sciences of Turin, in which he played a very active role . He was also a knight of the Order of the Crown of Italy and of the Order of Saint Maurizio and PEANO, GIUSEPPE (b . Spinetta, near Cuneo, Italy, Saint Lazzaro. Although lie was not active politically, 27 August 1858 ; d. Turin, Italy, 20 April 1932), his views tended toward socialism ; and lie once invited mathematics, logic . a group of striking textile workers to a party at his Giuseppe Peano was the second of the five children home. During World War I he advocated a closer of Bartolomeo Peano and Rosa Cavallo . His brother federation of the allied countries, to better prosecute Michele was seven years older . There were two the war and, after the peace, to form the nucleus of a younger brothers, Francesco and Bartolomeo, and a world federation . Peano was a nonpracticing Roman sister, Rosa . Peano's first home was the farm Tetto Catholic . Galant, near the village of Spinetta, three miles from Peano's father died in 1888 ; his mother, in 1910. -
FORCING and the INDEPENDENCE of the CONTINUUM HYPOTHESIS Contents 1. Preliminaries 2 1.1. Set Theory 2 1.2. Model Theory 3 2. Th
FORCING AND THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS F. CURTIS MASON Abstract. The purpose of this article is to develop the method of forcing and explain how it can be used to produce independence results. We first remind the reader of some basic set theory and model theory, which will then allow us to develop the logical groundwork needed in order to ensure that forcing constructions can in fact provide proper independence results. Next, we develop the basics of forcing, in particular detailing the construction of generic extensions of models of ZFC and proving that those extensions are themselves models of ZFC. Finally, we use the forcing notions Cκ and Kα to prove that the Continuum Hypothesis is independent from ZFC. Contents 1. Preliminaries 2 1.1. Set Theory 2 1.2. Model Theory 3 2. The Logical Justification for Forcing 4 2.1. The Reflection Principle 4 2.2. The Mostowski Collapsing Theorem and Countable Transitive Models 7 2.3. Basic Absoluteness Results 8 3. The Logical Structure of the Argument 9 4. Forcing Notions 9 5. Generic Extensions 12 6. The Forcing Relation 14 7. The Independence of the Continuum Hypothesis 18 Acknowledgements 23 References 23 The Continuum Hypothesis (CH) is the assertion that there are no cardinalities strictly in between that of the natural numbers and that of the reals, or more for- @0 mally, 2 = @1. In 1940, Kurt G¨odelshowed that both the Axiom of Choice and the Continuum Hypothesis are relatively consistent with the axioms of ZF ; he did this by constructing a so-called inner model L of the universe of sets V such that (L; 2) is a (class-sized) model of ZFC + CH. -
Sainsbury, M., Thinking About Things. Oxford: Oxford University Press, 2018, Pp
Sainsbury, M., Thinking About Things. Oxford: Oxford University Press, 2018, pp. ix + 199. Mark Sainsbury’s last book is about “aboutness”. It is widely recognised that in- tentionality—conceived as a peculiar property of mental states, i.e. their being about something—posits some of the most difficult philosophical issues. Moreo- ver, this mental phenomenon seems to be closely related to the linguistic phe- nomenon of intensionality, which has been extensively discussed in many areas of philosophy. Both intentionality and intensionality have something to do with nonexistent things, in so far as we can think and talk about things that do not exist—as fictional characters, mythical beasts, and contents of dreams and hal- lucinations. But how is it possible? And, more generally, how do intentional mental states actually work? In his book, Sainsbury addresses these fundamental problems within the framework of a representational theory of mind. Representations are nothing but what we think with (and, at least in typical cases, not what we think about). They can be characterised as concepts which behave “like words in the language of thought” (1). According to this view, in- tentional states are essentially related to representations, namely to concepts, and it seems quite intuitive to assume that not all concepts have objects: as a consequence, contra Brentano’s thesis,1 we should concede that some intentional states lack intentional objects. Now, Sainsbury raises four main questions about intentionality: 1. How are intentional mental states attributed? 2. What does their “aboutness" consist in? 3. Are they (always) relational? 4. Does any of them require there to be nonexistent things? Given what we just said, Sainsbury’s answer to (4) will reasonably be negative. -
What Is Mathematics: Gödel's Theorem and Around. by Karlis
1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27