219 Lesson 14: an Axiom System for Geometry We Are Now Ready To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness . -
Some First-Order Probability Logics
Theoretical Computer Science 247 (2000) 191–212 www.elsevier.com/locate/tcs View metadata, citation and similar papers at core.ac.uk brought to you by CORE Some ÿrst-order probability logics provided by Elsevier - Publisher Connector Zoran Ognjanovic a;∗, Miodrag RaÄskovic b a MatematickiÄ institut, Kneza Mihaila 35, 11000 Beograd, Yugoslavia b Prirodno-matematickiÄ fakultet, R. Domanovicaà 12, 34000 Kragujevac, Yugoslavia Received June 1998 Communicated by M. Nivat Abstract We present some ÿrst-order probability logics. The logics allow making statements such as P¿s , with the intended meaning “the probability of truthfulness of is greater than or equal to s”. We describe the corresponding probability models. We give a sound and complete inÿnitary axiomatic system for the most general of our logics, while for some restrictions of this logic we provide ÿnitary axiomatic systems. We study the decidability of our logics. We discuss some of the related papers. c 2000 Elsevier Science B.V. All rights reserved. Keywords: First order logic; Probability; Possible worlds; Completeness 1. Introduction In recent years there is a growing interest in uncertainty reasoning. A part of inves- tigation concerns its formal framework – probability logics [1, 2, 5, 6, 9, 13, 15, 17–20]. Probability languages are obtained by adding probability operators of the form (in our notation) P¿s to classical languages. The probability logics allow making formulas such as P¿s , with the intended meaning “the probability of truthfulness of is greater than or equal to s”. Probability models similar to Kripke models are used to give semantics to the probability formulas so that interpreted formulas are either true or false. -
Finding an Interpretation Under Which Axiom 2 of Aristotelian Syllogistic Is
Finding an interpretation under which Axiom 2 of Aristotelian syllogistic is False and the other axioms True (ignoring Axiom 3, which is derivable from the other axioms). This will require a domain of at least two objects. In the domain {0,1} there are four ordered pairs: <0,0>, <0,1>, <1,0>, and <1,1>. Note first that Axiom 6 demands that any member of the domain not in the set assigned to E must be in the set assigned to I. Thus if the set {<0,0>} is assigned to E, then the set {<0,1>, <1,0>, <1,1>} must be assigned to I. Similarly for Axiom 7. Note secondly that Axiom 3 demands that <m,n> be a member of the set assigned to E if <n,m> is. Thus if <1,0> is a member of the set assigned to E, than <0,1> must also be a member. Similarly Axiom 5 demands that <m,n> be a member of the set assigned to I if <n,m> is a member of the set assigned to A (but not conversely). Thus if <1,0> is a member of the set assigned to A, than <0,1> must be a member of the set assigned to I. The problem now is to make Axiom 2 False without falsifying Axiom 1 as well. The solution requires some experimentation. Here is one interpretation (call it I) under which all the Axioms except Axiom 2 are True: Domain: {0,1} A: {<1,0>} E: {<0,0>, <1,1>} I: {<0,1>, <1,0>} O: {<0,0>, <0,1>, <1,1>} It’s easy to see that Axioms 4 through 7 are True under I. -
Set-Theoretic Foundations1
To appear in A. Caicedo et al, eds., Foundations of Mathematics, (Providence, RI: AMS). Set-theoretic Foundations1 It’s more or less standard orthodoxy these days that set theory - - ZFC, extended by large cardinals -- provides a foundation for classical mathematics. Oddly enough, it’s less clear what ‘providing a foundation’ comes to. Still, there are those who argue strenuously that category theory would do this job better than set theory does, or even that set theory can’t do it at all, and that category theory can. There are also those insist that set theory should be understood, not as the study of a single universe, V, purportedly described by ZFC + LCs, but as the study of a so-called ‘multiverse’ of set-theoretic universes -- while retaining its foundational role. I won’t pretend to sort out all these complex and contentious matters, but I do hope to compile a few relevant observations that might help bring illumination somewhat closer to hand. 1 It’s an honor to be included in this 60th birthday tribute to Hugh Woodin, who’s done so much to further, and often enough to re-orient, research on the fundamentals of contemporary set theory. I’m grateful to the organizers for this opportunity, and especially, to Professor Woodin for his many contributions. 2 I. Foundational uses of set theory The most common characterization of set theory’s foundational role, the characterization found in textbooks, is illustrated in the opening sentences of Kunen’s classic book on forcing: Set theory is the foundation of mathematics. All mathematical concepts are defined in terms of the primitive notions of set and membership. -
Axiomatic Set Teory P.D.Welch
Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L. -
The Axiom of Choice and Its Implications
THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial. -
Open-Logic-Enderton Rev: C8c9782 (2021-09-28) by OLP/ CC–BY
An Open Mathematical Introduction to Logic Example OLP Text `ala Enderton Open Logic Project open-logic-enderton rev: c8c9782 (2021-09-28) by OLP/ CC{BY Contents I Propositional Logic7 1 Syntax and Semantics9 1.0 Introduction............................ 9 1.1 Propositional Wffs......................... 10 1.2 Preliminaries............................ 11 1.3 Valuations and Satisfaction.................... 12 1.4 Semantic Notions ......................... 14 Problems ................................. 14 2 Derivation Systems 17 2.0 Introduction............................ 17 2.1 The Sequent Calculus....................... 18 2.2 Natural Deduction......................... 19 2.3 Tableaux.............................. 20 2.4 Axiomatic Derivations ...................... 22 3 Axiomatic Derivations 25 3.0 Rules and Derivations....................... 25 3.1 Axiom and Rules for the Propositional Connectives . 26 3.2 Examples of Derivations ..................... 27 3.3 Proof-Theoretic Notions ..................... 29 3.4 The Deduction Theorem ..................... 30 1 Contents 3.5 Derivability and Consistency................... 32 3.6 Derivability and the Propositional Connectives......... 32 3.7 Soundness ............................. 33 Problems ................................. 34 4 The Completeness Theorem 35 4.0 Introduction............................ 35 4.1 Outline of the Proof........................ 36 4.2 Complete Consistent Sets of Sentences ............. 37 4.3 Lindenbaum's Lemma....................... 38 4.4 Construction of a Model -
Lecture Notes: Axiomatic Set Theory
Lecture Notes: Axiomatic Set Theory Asaf Karagila Last Update: May 14, 2018 Contents 1 Introduction 3 1.1 Why do we need axioms?...............................3 1.2 Classes and sets.....................................4 1.3 The axioms of set theory................................5 2 Ordinals, recursion and induction7 2.1 Ordinals.........................................8 2.2 Transfinite induction and recursion..........................9 2.3 Transitive classes.................................... 10 3 The relative consistency of the Axiom of Foundation 12 4 Cardinals and their arithmetic 15 4.1 The definition of cardinals............................... 15 4.2 The Aleph numbers.................................. 17 4.3 Finiteness........................................ 18 5 Absoluteness and reflection 21 5.1 Absoluteness...................................... 21 5.2 Reflection........................................ 23 6 The Axiom of Choice 25 6.1 The Axiom of Choice.................................. 25 6.2 Weak version of the Axiom of Choice......................... 27 7 Sets of Ordinals 31 7.1 Cofinality........................................ 31 7.2 Some cardinal arithmetic............................... 32 7.3 Clubs and stationary sets............................... 33 7.4 The Club filter..................................... 35 8 Inner models of ZF 37 8.1 Inner models...................................... 37 8.2 Gödel’s constructible universe............................. 39 1 8.3 The properties of L ................................... 41 8.4 Ordinal definable sets................................. 42 9 Some combinatorics on ω1 43 9.1 Aronszajn trees..................................... 43 9.2 Diamond and Suslin trees............................... 44 10 Coda: Games and determinacy 46 2 Chapter 1 Introduction 1.1 Why do we need axioms? In modern mathematics, axioms are given to define an object. The axioms of a group define the notion of a group, the axioms of a Banach space define what it means for something to be a Banach space. -
Equivalents to the Axiom of Choice and Their Uses A
EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper. -
The Logic of Sheaves, Sheaf Forcing and the Independence of The
The logic of sheaves, sheaf forcing and the independence of the Continuum Hypothesis J. Benavides∗ Abstract An introduction is given to the logic of sheaves of structures and to set theoretic forcing constructions based on this logic. Using these tools, it is presented an alternative proof of the independence of the Continuum Hypothesis; which simplifies and unifies the classical boolean and intuitionistic approaches, avoiding the difficulties linked to the categorical machinery of the topoi based approach. Introduction The first of the 10 problems that Hilbert posed in his famous conference the 1900 in Paris 1, the problem of the Continuum Hypothesis (CH for short), which asserts that every subset of the real numbers is either enumerable or has the cardinality of the Continuum; was the origin of probably one of the greatest achievements in Mathematics of the second half of the XX century: The forcing technique created by Paul Cohen during the sixties. Using this technique Cohen showed that the CH is independent (i.e. it cannot be proved or disproved) from the axioms of Zermelo-Fraenkel plus the Axiom of Choice (ZF C). At the beginning Cohen approached the problem in a pure syntactic way, he defined a procedure to find a contradiction in ZF C given a contradiction in ZF C + ¬CH; which implies that Con(ZF C) → Con(ZF C + ¬CH) (The consistency of ZF C implies the con- sistency of ZF C + ¬CH). However this approach was a non-constructivist one, for it was not given a model of ZF C + ¬CH. Nevertheless in his publish papers Cohen developed two arXiv:1111.5854v3 [math.LO] 7 Feb 2012 other approaches more constructivist. -
Axiomatic Systems for Geometry∗
Axiomatic Systems for Geometry∗ George Francisy composed 6jan10, adapted 27jan15 1 Basic Concepts An axiomatic system contains a set of primitives and axioms. The primitives are Adaptation to the object names, but the objects they name are left undefined. This is why the primi- current course is in tives are also called undefined terms. The axioms are sentences that make assertions the margins. about the primitives. Such assertions are not provided with any justification, they are neither true nor false. However, every subsequent assertion about the primitives, called a theorem, must be a rigorously logical consequence of the axioms and previ- ously proved theorems. There are also formal definitions in an axiomatic system, but these serve only to simplify things. They establish new object names for complex combinations of primitives and previously defined terms. This kind of definition does not impart any `meaning', not yet, anyway. See Lesson A6 for an elaboration. If, however, a definite meaning is assigned to the primitives of the axiomatic system, called an interpretation, then the theorems become meaningful assertions which might be true or false. If for a given interpretation all the axioms are true, then everything asserted by the theorems also becomes true. Such an interpretation is called a model for the axiomatic system. In common speech, `model' is often used to mean an example of a class of things. In geometry, a model of an axiomatic system is an interpretation of its primitives for ∗From textitPost-Euclidean Geometry: Class Notes and Workbook, UpClose Printing & Copies, Champaign, IL 1995, 2004 yProf. George K. -
Axioms and Theorems for Plane Geometry (Short Version)
Axioms and theorems for plane geometry (Short Version) Basic axioms and theorems Axiom 1. If A; B are distinct points, then there is exactly one line containing both A and B. Axiom 2. AB = BA. Axiom 3. AB = 0 iff A = B. Axiom 4. If point C is between points A and B, then AC + BC = AB. Axiom 5. (The triangle inequality) If C is not between A and B, then AC + BC > AB. ◦ Axiom 6. Part (a): m(\BAC) = 0 iff B; A; C are collinear and A is not between B and C. Part (b): ◦ m(\BAC) = 180 iff B; A; C are collinear and A is between B and C. Axiom 7. Whenever two lines meet to make four angles, the measures of those four angles add up to 360◦. Axiom 8. Suppose that A; B; C are collinear points, with B between A and C, and that X is not collinear with A, B and C. Then m(\AXB) + m(\BXC) = m(\AXC). Moreover, m(\ABX) + m(\XBC) = m(\ABC). Axiom 9. Equals can be substituted for equals. Axiom 10. Given a point P and a line `, there is exactly one line through P parallel to `. Axiom 11. If ` and `0 are parallel lines and m is a line that meets them both, then alternate interior angles have equal measure, as do corresponding angles. Axiom 12. For any positive whole number n, and distinct points A; B, there is some C between A; B such that n · AC = AB. Axiom 13. For any positive whole number n and angle \ABC, there is a point D between A and C such that n · m(\ABD) = m(\ABC).