Axiomatic Foundations of Mathematics Ryan Melton Dr

Total Page:16

File Type:pdf, Size:1020Kb

Axiomatic Foundations of Mathematics Ryan Melton Dr Axiomatic Foundations of Mathematics Ryan Melton Dr. Clint Richardson, Faculty Advisor Stephen F. Austin State University As Bertrand Russell once said, Gödel's Method Pure mathematics is the subject in which we Consider the expression First, Gödel assigned a unique natural number to do not know what we are talking about, or each of the logical symbols and numbers. 2 + 3 = 5 whether what we are saying is true. Russell’s statement begs from us one major This expression is mathematical; it belongs to the field For example: if the symbol '0' corresponds to we call arithmetic and is composed of basic arithmetic question: the natural number 1, '+' to 2, and '=' to 3, then symbols. '0 = 0' '0 + 0 = 0' What is Mathematics founded on? On the other hand, the sentence and '2 + 3 = 5' is an arithmetical formula. 1 3 1 1 2 1 3 1 so each expression corresponds to a sequence. Axioms and Axiom Systems is metamathematical; it is constructed outside of mathematics and labels the expression above as a Then, for this new sequence x1x2x3…xn of formula in arithmetic. An axiom is a belief taken without proof, and positive integers, we associate a Gödel number thus an axiom system is a set of beliefs as follows: x1 x2 x3 xn taken without proof. enc( x1x2x3...xn ) = 2 3 5 ... pn Since Principia Mathematica was such a bold where the encoding is the product of n factors, Consistent? Complete? leap in the right direction--although proving each of which is found by raising the j-th prime nothing about consistency--several attempts at to the xj power. An axiom system is: proving consistency were made by other ---consistent if no valid statement in the mathematicians of the time, the most notable of Thus, '0 = 0' corresponds to 1, 3, 1 theory is both provably true and provably these was… which is encoded as 1 3 1 false. Kurt Gödel! 2 3 5 = 270 ---complete if each valid statement in the and theory is provably true or provably false. Kurt Gödel (1906 - 1978) '0 + 0 = 0' corresponds to 1, 2, 1, 3, 1 was a German logician, which is encoded as The Issue and a personal friend of 21 32 51 73 111 = 339,570. Einstein. As a refugee Can an axiomatic system be both from the Nazi Party, By the Fundamental Theorem of Arithmetic, Gödel fled to the United consistent and complete? this representation as a product of powers of States, and came to the primes is unique. Institute of Advanced Study in New Jersey. The answer (first attempt): There, he proceeded to develop a fascinating Thus, any formula can be uniquely represented Principia Mathematica! proof that would amaze all who were struggling as a Gödel number, and any given Gödel with a solution to consistency. number can be used to produce the original The NEW Issue formula. At its heart, Gödel's argument hinges on the This allowed Gödel to show a correspondence following question: However, according to Principia between statements about natural numbers and Mathematica, the consistency of a given statements about the provability of theorems Can Metamathematics be discussed system relies on the consistency of formal in the context of mathematics? about natural numbers; this the key observation logic itself. of the proof. That is, Ultimately, metamathematics could be Thus, we (still) know NOTHING about addressed in the context of arithmetic! consistency! Can you speak ABOUT mathematics WITH mathematics? CONCLUSION What is Metamathematics? References Gödel's final result was the fact that no According to Hilbert, metamathematics is Goldstein, Rebecca. Incompleteness: The Proof and Paradox of Kurt Gödel. New axiom system that could support arithmetic the language ABOUT mathematics. York: W.W. Norton & Company, 2005. Print. could be both consistent and complete. Nagel, Ernest and James Newman. Gödel's Proof. New York: New York University Metamathematical statements are Press, 2001. Print. Weisstein, Eric W. "Complete Axiomatic Theory." From MathWorld--A Wolfram Web Thus, consistency and completeness cannot statements about the signs occuring within a Resource 3 Mar 2010. Web. 20 Mar 2010. formalized mathematical system. Weisstein, Eric W. "Consistency." From MathWorld--A Wolfram Web Resource. 3 Mar 2010. coexist within the foundations of axiomatic Web. 20 Mar 2010. mathematics. However, the goal is to understand that foundation. .
Recommended publications
  • “The Church-Turing “Thesis” As a Special Corollary of Gödel's
    “The Church-Turing “Thesis” as a Special Corollary of Gödel’s Completeness Theorem,” in Computability: Turing, Gödel, Church, and Beyond, B. J. Copeland, C. Posy, and O. Shagrir (eds.), MIT Press (Cambridge), 2013, pp. 77-104. Saul A. Kripke This is the published version of the book chapter indicated above, which can be obtained from the publisher at https://mitpress.mit.edu/books/computability. It is reproduced here by permission of the publisher who holds the copyright. © The MIT Press The Church-Turing “ Thesis ” as a Special Corollary of G ö del ’ s 4 Completeness Theorem 1 Saul A. Kripke Traditionally, many writers, following Kleene (1952) , thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing ’ s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis — what Turing (1936) calls “ argument I ” — has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing himself in what he calls “ argument II. ” The idea is that computation is a special form of math- ematical deduction. Assuming the steps of the deduction can be stated in a first- order language, the Church-Turing thesis follows as a special case of G ö del ’ s completeness theorem (first-order algorithm theorem). I propose this idea as an alternative foundation for the Church-Turing thesis, both for human and machine computation. Clearly the relevant assumptions are justified for computations pres- ently known.
    [Show full text]
  • The Metamathematics of Putnam's Model-Theoretic Arguments
    The Metamathematics of Putnam's Model-Theoretic Arguments Tim Button Abstract. Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted mod- els. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I exam- ine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to meta- mathematical challenges. Copyright notice. This paper is due to appear in Erkenntnis. This is a pre-print, and may be subject to minor changes. The authoritative version should be obtained from Erkenntnis, once it has been published. Hilary Putnam famously attempted to use model theory to draw metaphys- ical conclusions. Specifically, he attacked metaphysical realism, a position characterised by the following credo: [T]he world consists of a fixed totality of mind-independent objects. (Putnam 1981, p. 49; cf. 1978, p. 125). Truth involves some sort of correspondence relation between words or thought-signs and external things and sets of things. (1981, p. 49; cf. 1989, p. 214) [W]hat is epistemically most justifiable to believe may nonetheless be false. (1980, p. 473; cf. 1978, p. 125) To sum up these claims, Putnam characterised metaphysical realism as an \externalist perspective" whose \favorite point of view is a God's Eye point of view" (1981, p. 49). Putnam sought to show that this externalist perspective is deeply untenable. To this end, he treated correspondence in terms of model-theoretic satisfaction.
    [Show full text]
  • Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
    Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness .
    [Show full text]
  • Pure Mathematics Professors Teaching and Leading Research CO-OP OR REGULAR 28
    PURE MATHEMATICS Pure Mathematics professors teaching and leading research CO-OP OR REGULAR 28 Mathematician ranked among top 10 TOP 10 jobs from 2011-2017 – Comcast.com of grads are employed Search for a deeper 96.6% within 2 years understanding of mathematics Pure mathematics is at the foundation of all mathematical reasoning. If first-year calculus ALEX teaches you how to drive the car, Pure Mathematics teaches you how to build one. 3B, PURE MATHEMATICS AND Mathematicians know that there could be no general relativity without differential COMBINATORICS AND geometry, and no computer security without advanced number theory. OPTIMIZATION Pure Mathematics at Waterloo is a small, cohesive, and challenging program that will open countless doors for you. Our graduates have used the program as a springboard into careers WHAT DO YOU LOVE ABOUT in information technology, finance, business, science, education, and insurance, often by way PURE MATHEMATICS? The satisfaction from understanding of some of the most prestigious graduate programs in the world. an idea at a deeper level and tying together unrelated branches of ALEX’S FAVOURITE COURSES mathematics or physics for the › PMATH 320 Euclidean Geometry: This course is everything you love about Geometry: first time is the most rewarding Euclid’s axioms, isometries of the Euclidean plane and of Euclidean space, polygons, part of learning and understanding polyhedral, polytopes, and the kissing problem. mathematics. What I really enjoy is › PMATH 351 Real Analysis: It’s a very intuitive and natural approach to real analysis, and the developing a deep understanding of complexity of the course builds very naturally to the end of the semester.
    [Show full text]
  • Some First-Order Probability Logics
    Theoretical Computer Science 247 (2000) 191–212 www.elsevier.com/locate/tcs View metadata, citation and similar papers at core.ac.uk brought to you by CORE Some ÿrst-order probability logics provided by Elsevier - Publisher Connector Zoran Ognjanovic a;∗, Miodrag RaÄskovic b a MatematickiÄ institut, Kneza Mihaila 35, 11000 Beograd, Yugoslavia b Prirodno-matematickiÄ fakultet, R. Domanovicaà 12, 34000 Kragujevac, Yugoslavia Received June 1998 Communicated by M. Nivat Abstract We present some ÿrst-order probability logics. The logics allow making statements such as P¿s , with the intended meaning “the probability of truthfulness of is greater than or equal to s”. We describe the corresponding probability models. We give a sound and complete inÿnitary axiomatic system for the most general of our logics, while for some restrictions of this logic we provide ÿnitary axiomatic systems. We study the decidability of our logics. We discuss some of the related papers. c 2000 Elsevier Science B.V. All rights reserved. Keywords: First order logic; Probability; Possible worlds; Completeness 1. Introduction In recent years there is a growing interest in uncertainty reasoning. A part of inves- tigation concerns its formal framework – probability logics [1, 2, 5, 6, 9, 13, 15, 17–20]. Probability languages are obtained by adding probability operators of the form (in our notation) P¿s to classical languages. The probability logics allow making formulas such as P¿s , with the intended meaning “the probability of truthfulness of is greater than or equal to s”. Probability models similar to Kripke models are used to give semantics to the probability formulas so that interpreted formulas are either true or false.
    [Show full text]
  • Pure Mathematics
    Why Study Mathematics? Mathematics reveals hidden patterns that help us understand the world around us. Now much more than arithmetic and geometry, mathematics today is a diverse discipline that deals with data, measurements, and observations from science; with inference, deduction, and proof; and with mathematical models of natural phenomena, of human behavior, and social systems. The process of "doing" mathematics is far more than just calculation or deduction; it involves observation of patterns, testing of conjectures, and estimation of results. As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than on observation as its standard of truth, yet employs observation, simulation, and even experimentation as means of discovering truth. The special role of mathematics in education is a consequence of its universal applicability. The results of mathematics--theorems and theories--are both significant and useful; the best results are also elegant and deep. Through its theorems, mathematics offers science both a foundation of truth and a standard of certainty. In addition to theorems and theories, mathematics offers distinctive modes of thought which are both versatile and powerful, including modeling, abstraction, optimization, logical analysis, inference from data, and use of symbols. Mathematics, as a major intellectual tradition, is a subject appreciated as much for its beauty as for its power. The enduring qualities of such abstract concepts as symmetry, proof, and change have been developed through 3,000 years of intellectual effort. Like language, religion, and music, mathematics is a universal part of human culture.
    [Show full text]
  • Truth Definitions and Consistency Proofs
    TRUTH DEFINITIONS AND CONSISTENCY PROOFS BY HAO WANG 1. Introduction. From investigations by Carnap, Tarski, and others, we know that given a system S, we can construct in some stronger system S' a criterion of soundness (or validity) for 5 according to which all the theorems of 5 are sound. In this way we obtain in S' a consistency proof for 5. The consistency proof so obtained, which in no case with fairly strong systems could by any stretch of imagination be called constructive, is not of much interest for the purpose of understanding more clearly whether the system S is reliable or whether and why it leads to no contradictions. However, it can be of use in studying the interconnection and relative strength of different systems. For example, if a consistency proof for 5 can be formalized in S', then, according to Gödel's theorem that such a proof cannot be formalized in 5 itself, parts of the argument must be such that they can be formalized in S' but not in S. Since S can be a very strong system, there arises the ques- tion as to what these arguments could be like. For illustration, the exact form of such arguments will be examined with respect to certain special systems, by applying Tarski's "theory of truth" which provides us with a general method for proving the consistency of a given system 5 in some stronger system S'. It should be clear that the considerations to be presented in this paper apply to other systems which are stronger than or as strong as the special systems we use below.
    [Show full text]
  • Open-Logic-Enderton Rev: C8c9782 (2021-09-28) by OLP/ CC–BY
    An Open Mathematical Introduction to Logic Example OLP Text `ala Enderton Open Logic Project open-logic-enderton rev: c8c9782 (2021-09-28) by OLP/ CC{BY Contents I Propositional Logic7 1 Syntax and Semantics9 1.0 Introduction............................ 9 1.1 Propositional Wffs......................... 10 1.2 Preliminaries............................ 11 1.3 Valuations and Satisfaction.................... 12 1.4 Semantic Notions ......................... 14 Problems ................................. 14 2 Derivation Systems 17 2.0 Introduction............................ 17 2.1 The Sequent Calculus....................... 18 2.2 Natural Deduction......................... 19 2.3 Tableaux.............................. 20 2.4 Axiomatic Derivations ...................... 22 3 Axiomatic Derivations 25 3.0 Rules and Derivations....................... 25 3.1 Axiom and Rules for the Propositional Connectives . 26 3.2 Examples of Derivations ..................... 27 3.3 Proof-Theoretic Notions ..................... 29 3.4 The Deduction Theorem ..................... 30 1 Contents 3.5 Derivability and Consistency................... 32 3.6 Derivability and the Propositional Connectives......... 32 3.7 Soundness ............................. 33 Problems ................................. 34 4 The Completeness Theorem 35 4.0 Introduction............................ 35 4.1 Outline of the Proof........................ 36 4.2 Complete Consistent Sets of Sentences ............. 37 4.3 Lindenbaum's Lemma....................... 38 4.4 Construction of a Model
    [Show full text]
  • Arxiv:1205.6044V1 [Math.HO] 28 May 2012 Prescriptive/Prohibitive Context
    FOUNDATIONS AS SUPERSTRUCTURE1 (Reflections of a practicing mathematician) Yuri I. Manin Max–Planck–Institut f¨ur Mathematik, Bonn, Germany, ABSTRACT. This talk presents foundations of mathematics as a historically variable set of principles appealing to various modes of human intuition and de- void of any prescriptive/prohibitive power. At each turn of history, foundations crystallize the accepted norms of interpersonal and intergenerational transfer and justification of mathematical knowledge. Introduction Foundations vs Metamathematics. In this talk, I will interpret the idea of Foundations in the wide sense. For me, Foundations at each turn of history embody currently recognized, but historically variable, principles of organization of mathematical knowledge and of the interpersonal/transgenerational transferral of this knowledge. When these principles are studied using the tools of mathematics itself, we get a new chapter of mathematics, metamathematics. Modern philosophy of mathematics is often preoccupied with informal interpre- tations of theorems, proved in metamathematics of the XX–th century, of which the most influential was probably G¨odel’s incompleteness theorem that aroused considerable existential anxiety. In metamathematics, G¨odel’s theorem is a discovery that a certain class of finitely arXiv:1205.6044v1 [math.HO] 28 May 2012 generated structures (statements in a formal language) contains substructures that are not finitely generated (those statements that are true in a standard interpreta- tion). It is no big deal for an algebraist, but certainly interesting thanks to a new context. Existential anxiety can be alleviated if one strips “Foundations” from their rigid prescriptive/prohibitive, or normative functions and considers various foundational 1Talk at the international interdisciplinary conference “Philosophy, Mathematics, Linguistics: Aspects of Interaction” , Euler Mathematical Institute, May 22–25, 2012.
    [Show full text]
  • Mechanism, Mentalism, and Metamathematics Synthese Library
    MECHANISM, MENTALISM, AND METAMATHEMATICS SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Managing Editor: JAAKKO HINTIKKA, Florida State University Editors: ROBER T S. COHEN, Boston University DONALD DAVIDSON, University o/Chicago GABRIEL NUCHELMANS, University 0/ Leyden WESLEY C. SALMON, University 0/ Arizona VOLUME 137 JUDSON CHAMBERS WEBB Boston University. Dept. 0/ Philosophy. Boston. Mass .• U.S.A. MECHANISM, MENT ALISM, AND MET AMA THEMA TICS An Essay on Finitism i Springer-Science+Business Media, B.V. Library of Congress Cataloging in Publication Data Webb, Judson Chambers, 1936- CII:J Mechanism, mentalism, and metamathematics. (Synthese library; v. 137) Bibliography: p. Includes indexes. 1. Metamathematics. I. Title. QA9.8.w4 510: 1 79-27819 ISBN 978-90-481-8357-9 ISBN 978-94-015-7653-6 (eBook) DOl 10.1007/978-94-015-7653-6 All Rights Reserved Copyright © 1980 by Springer Science+Business Media Dordrecht Originally published by D. Reidel Publishing Company, Dordrecht, Holland in 1980. Softcover reprint of the hardcover 1st edition 1980 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage and retrieval system, without written permission from the copyright owner TABLE OF CONTENTS PREFACE vii INTRODUCTION ix CHAPTER I / MECHANISM: SOME HISTORICAL NOTES I. Machines and Demons 2. Machines and Men 17 3. Machines, Arithmetic, and Logic 22 CHAPTER II / MIND, NUMBER, AND THE INFINITE 33 I. The Obligations of Infinity 33 2. Mind and Philosophy of Number 40 3. Dedekind's Theory of Arithmetic 46 4.
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • B.S. in Mathematics - Pure Math Emphasis, 2020-2021
    B.S. in Mathematics - Pure Math Emphasis, 2020-2021 Course Title Cr. Sched. Prerequisites Required Quantitative Lit. MATH 1210 - Calculus I 4 F/S/Su MATH 1050 & 1060 or ACT 26+ GE Course Other GE Courses are required to graduate with a Bachelor’s Degree from SUU.* MATH 1220 Calculus II 4 F/S/Su MATH 1210 MATH 2210 Calculus III 4 F/S/Su MATH 1220 MATH 2270 Linear Algebra 3 F/S/Su MATH 1220 MATH 2280 Differential Equations 3 S MATH 1220 & 2270** Math Core MATH 3120 Transition to Advanced Math 3 F/S MATH 1220 & MATH 2270 Courses MATH 3250 Complex Variables 3 S-Odd MATH 2210 MATH 3700 Probability and Statistics 4 F/S/Su MATH 1220 MATH 4220 Abstract Algebra I 3 F MATH 3120 MATH 4400 Advanced Calculus I 3 F MATH 2210 & 3120 Choose 1 MATH 4230 Abstract Algebra II 3 S-Even MATH 4220 Advanced Class MATH 4410 Advanced Calculus II 3 S-Odd MATH 4400 Choose 1 CS 1400 Fundamentals of Programming 3 F/S CSIS 1030 or MATH 1050 or Permission Program- ming Class CS 1410 Object Oriented Programming 3 F/S/Su CS 1400 MATH 3130 Modern Geometries 3 S MATH 3120 MATH 3160 Number Theory 3 F-Odd MATH 3120 MATH 3500 Actuarial Mathematics 3 S-Even MATH 1100 or MATH 1210 MATH 3600 Numerical Analysis 3 S-Even MATH 2250 or 2280 & comp. knowledge Math MATH 3770 Mathematical Modeling 3 S-Odd MATH 3700 Elective MATH 3800 Partial Differential Equations 3 F-Odd MATH 2210 and 2250 or 2280 Credits (15 total Instructor Permissission; may repeat up MATH 3990 Undergraduate Research 1-3 *** credits to 5 cr.
    [Show full text]