PDF Output of CLIC (Clustering by Inferred Co-Expression)

Total Page:16

File Type:pdf, Size:1020Kb

PDF Output of CLIC (Clustering by Inferred Co-Expression) PDF Output of CLIC (clustering by inferred co-expression) Dataset: Num of genes in input gene set: 7 Total number of genes: 16493 CLIC PDF output has three sections: 1) Overview of Co-Expression Modules (CEMs) Heatmap shows pairwise correlations between all genes in the input query gene set. Red lines shows the partition of input genes into CEMs, ordered by CEM strength. Each row shows one gene, and the brightness of squares indicates its correlations with other genes. Gene symbols are shown at left side and on the top of the heatmap. 2) Details of each CEM and its expansion CEM+ Top panel shows the posterior selection probability (dataset weights) for top GEO series datasets. Bottom panel shows the CEM genes (blue rows) as well as expanded CEM+ genes (green rows). Each column is one GEO series dataset, sorted by their posterior probability of being selected. The brightness of squares indicates the gene's correlations with CEM genes in the corresponding dataset. CEM+ includes genes that co-express with CEM genes in high-weight datasets, measured by LLR score. 3) Details of each GEO series dataset and its expression profile: Top panel shows the detailed information (e.g. title, summary) for the GEO series dataset. Bottom panel shows the background distribution and the expression profile for CEM genes in this dataset. Overview of Co-Expression Modules (CEMs) with Dataset Weighting Scale of average Pearson correlations Num of Genes in Query Geneset: 7. Num of CEMs: 1. 0.0 0.2 0.4 0.6 0.8 1.0 Polr3h Polr3g Polr3a Polr3f Polr3d Polr3c Polr3k Polr3h Polr3g Polr3a Polr3f CEM 1 (36 datasets) Polr3d Polr3c Polr3k Symbol Num ofCEMGenes:7.Predicted1401.SelectedDatasets:36.Strength:0.2 CEM 1,Geneset"[G]DNA-directedRNApolymeraseIIIcomplex",Page1 Zmynd19 Mybbp1a Pdcd11 Mettl13 Dnttip2 Rsl1d1 Polr1b Cirh1a Polr3d Polr3g Polr3h Polr3k Polr3c Polr3a Mak16 Bend3 Nop56 Aimp2 Wdr74 Nop16 Ddx27 Ddx18 Eif2b1 Eif2b3 Rrp15 Polr3f Utp20 Nol11 Nif3l1 Nat10 Pus7l Elac2 Pwp2 Pwp1 Nhp2 Wdr3 Dph2 Nop2 Wdr4 Pop1 Ppan Xpo5 Ftsj3 Imp4 Rrp8 Rrp9 Rrs1 Tsr1 Bysl Nifk 0.0 1.0 GSE31313 [22] GSE13874 [14] GSE38031 [8] Only showingfirst200datasets-Seetxtoutputforfulldetails. GSE20954 [14] GSE39458 [6] GSE19885 [9] GSE7050 [18] GSE26096 [10] GSE17316 [12] GSE18135 [18] GSE10273 [9] GSE46724 [6] GSE15155 [12] GSE12498 [12] GSE30561 [6] GSE28593 [9] GSE6837 [8] GSE21033 [12] GSE13408 [14] GSE33942 [12] GSE39886 [24] GSE7012 [13] GSE28025 [18] GSE20391 [11] GSE51483 [45] GSE12993 [6] GSE27378 [8] GSE39592 [8] GSE46091 [8] GSE21491 [9] GSE41925 [8] GSE8091 [16] GSE48935 [12] GSE53403 [16] GSE13611 [8] GSE27261 [8] GSE28093 [6] GSE27786 [20] GSE32598 [11] GSE13235 [9] GSE10902 [6] GSE7069 [8] GSE27114 [6] GSE56542 [8] GSE3463 [12] GSE29929 [14] GSE34279 [30] GSE39771 [10] GSE7342 [12] GSE13693 [9] GSE21299 [12] GSE6785 [9] GSE15161 [26] GSE33156 [18] GSE5976 [12] GSE28389 [20] GSE11220 [44] GSE16364 [6] GSE44175 [18] GSE14415 [31] GSE24813 [10] GSE16874 [12] GSE44355 [10] GSE46090 [12] GSE10535 [6] GSE14478 [7] GSE21272 [44] GSE55356 [6] GSE32277 [33] GSE40282 [6] GSE21041 [6] GSE34723 [101] GSE42049 [8] GSE10587 [6] GSE51608 [6] GSE27605 [8] GSE5671 [18] GSE20696 [8] GSE9760 [12] GSE9717 [6] GSE16691 [12] GSE54490 [12] GSE12908 [10] GSE1435 [27] GSE6689 [12] GSE5334 [19] GSE26568 [6] GSE34618 [7] GSE30868 [8] GSE48204 [6] GSE51213 [16] GSE22251 [9] GSE7838 [9] GSE49346 [6] GSE38335 [9] GSE40856 [8] GSE45744 [12] GSE31744 [8] GSE7324 [10] GSE46606 [30] GSE48203 [9] GSE16925 [15] GSE31166 [6] GSE7309 [12] GSE17553 [16] GSE3962 [8] GSE23781 [6] GSE52220 [6] GSE34206 [8] GSE48790 [8] GSE6065 [100] GSE12465 [14] GSE2527 [6] GSE31570 [6] GSE39391 [21] GSE10904 [6] GSE50603 [12] GSE11990 [20] GSE36392 [9] GSE25737 [6] GSE15871 [18] GSE4193 [8] GSE12464 [23] GSE37431 [6] GSE18586 [9] GSE6085 [43] GSE44923 [16] GSE48382 [10] GSE12499 [10] GSE6196 [9] GSE5332 [12] GSE30138 [51] GSE25778 [6] GSE13547 [12] GSE14007 [8] GSE24121 [9] GSE39273 [6] GSE30745 [12] GSE14769 [24] GSE25825 [8] GSE31028 [6] GSE32624 [6] GSE22073 [6] GSE55855 [6] GSE15267 [8] GSE22841 [12] GSE7897 [60] GSE13129 [12] GSE52597 [7] GSE11484 [6] GSE15580 [14] GSE46242 [12] GSE9735 [9] GSE12881 [6] CEM+ CEM GSE35091 [11] GSE15330 [27] GSE39082 [6] GSE52357 [8] GSE46185 [6] GSE2197 [6] 0.0 GSE5425 [6] GSE21063 [24] GSE16751 [6] Scale ofaveragePearsoncorrelations GSE19875 [12] GSE22418 [8] GSE16585 [31] GSE46723 [6] GSE39583 [21] GSE34215 [6] 0.2 GSE16454 [24] GSE19687 [9] GSE31598 [12] GSE25088 [24] GSE37316 [31] GSE27708 [9] GSE6030 [6] GSE25257 [6] GSE43825 [31] 0.4 GSE10113 [12] GSE10262 [18] GSE39897 [36] GSE1871 [12] GSE11222 [42] GSE31776 [10] GSE27159 [8] GSE30160 [6] GSE32214 [6] 0.6 GSE12810 [6] GSE18064 [12] GSE35543 [6] GSE30855 [6] GSE18745 [6] GSE7141 [6] GSE31208 [8] GSE12950 [6] GSE8660 [6] 0.8 GSE6526 [16] GSE16048 [6] GSE34324 [12] GSE14012 [24] Score 26.04 26.04 26.06 26.16 26.19 26.20 26.22 26.26 26.28 26.28 26.29 26.37 26.42 26.45 26.46 26.48 26.65 26.70 26.71 26.72 26.74 26.81 26.84 26.84 26.87 26.96 27.10 27.39 27.39 27.40 27.46 27.49 27.49 27.58 27.82 27.85 27.90 28.10 28.26 28.94 28.95 29.28 29.73 1.0 Notes Mphosph10 Symbol Num ofCEMGenes:7.Predicted1401.SelectedDatasets:36.Strength:0.2 CEM 1,Geneset"[G]DNA-directedRNApolymeraseIIIcomplex",Page2 Mphosph6 Rps19bp1 Thumpd1 Wbscr22 Mrps18b Slc19a1 Exosc2 Exosc1 Ruvbl1 Rbm19 Smyd5 Gtf2h2 Grwd1 Polr2h Polr1e Wdr46 Wdr77 Wdr43 Nsun2 Apex1 Sdad1 Ddx51 Dhx33 Ddx56 Rpl7l1 Prmt5 Pprc1 Dimt1 Dus1l Noc4l Noc2l Gpn1 Surf6 Nob1 Eif3g Cdk8 Pno1 Pus7 Pus1 Rcc1 Dkc1 Pes1 Lsg1 Abt1 Ppat Nip7 Pfas Srm Atic 0.0 1.0 GSE31313 [22] GSE13874 [14] GSE38031 [8] Only showingfirst200datasets-Seetxtoutputforfulldetails. GSE20954 [14] GSE39458 [6] GSE19885 [9] GSE7050 [18] GSE26096 [10] GSE17316 [12] GSE18135 [18] GSE10273 [9] GSE46724 [6] GSE15155 [12] GSE12498 [12] GSE30561 [6] GSE28593 [9] GSE6837 [8] GSE21033 [12] GSE13408 [14] GSE33942 [12] GSE39886 [24] GSE7012 [13] GSE28025 [18] GSE20391 [11] GSE51483 [45] GSE12993 [6] GSE27378 [8] GSE39592 [8] GSE46091 [8] GSE21491 [9] GSE41925 [8] GSE8091 [16] GSE48935 [12] GSE53403 [16] GSE13611 [8] GSE27261 [8] GSE28093 [6] GSE27786 [20] GSE32598 [11] GSE13235 [9] GSE10902 [6] GSE7069 [8] GSE27114 [6] GSE56542 [8] GSE3463 [12] GSE29929 [14] GSE34279 [30] GSE39771 [10] GSE7342 [12] GSE13693 [9] GSE21299 [12] GSE6785 [9] GSE15161 [26] GSE33156 [18] GSE5976 [12] GSE28389 [20] GSE11220 [44] GSE16364 [6] GSE44175 [18] GSE14415 [31] GSE24813 [10] GSE16874 [12] GSE44355 [10] GSE46090 [12] GSE10535 [6] GSE14478 [7] GSE21272 [44] GSE55356 [6] GSE32277 [33] GSE40282 [6] GSE21041 [6] GSE34723 [101] GSE42049 [8] GSE10587 [6] GSE51608 [6] GSE27605 [8] GSE5671 [18] GSE20696 [8] GSE9760 [12] GSE9717 [6] GSE16691 [12] GSE54490 [12] GSE12908 [10] GSE1435 [27] GSE6689 [12] GSE5334 [19] GSE26568 [6] GSE34618 [7] GSE30868 [8] GSE48204 [6] GSE51213 [16] GSE22251 [9] GSE7838 [9] GSE49346 [6] GSE38335 [9] GSE40856 [8] GSE45744 [12] GSE31744 [8] GSE7324 [10] GSE46606 [30] GSE48203 [9] GSE16925 [15] GSE31166 [6] GSE7309 [12] GSE17553 [16] GSE3962 [8] GSE23781 [6] GSE52220 [6] GSE34206 [8] GSE48790 [8] GSE6065 [100] GSE12465 [14] GSE2527 [6] GSE31570 [6] GSE39391 [21] GSE10904 [6] GSE50603 [12] GSE11990 [20] GSE36392 [9] GSE25737 [6] GSE15871 [18] GSE4193 [8] GSE12464 [23] GSE37431 [6] GSE18586 [9] GSE6085 [43] GSE44923 [16] GSE48382 [10] GSE12499 [10] GSE6196 [9] GSE5332 [12] GSE30138 [51] GSE25778 [6] GSE13547 [12] GSE14007 [8] GSE24121 [9] GSE39273 [6] GSE30745 [12] GSE14769 [24] GSE25825 [8] GSE31028 [6] GSE32624 [6] GSE22073 [6] GSE55855 [6] GSE15267 [8] GSE22841 [12] GSE7897 [60] GSE13129 [12] GSE52597 [7] GSE11484 [6] GSE15580 [14] GSE46242 [12] GSE9735 [9] GSE12881 [6] CEM+ CEM GSE35091 [11] GSE15330 [27] GSE39082 [6] GSE52357 [8] GSE46185 [6] GSE2197 [6] 0.0 GSE5425 [6] GSE21063 [24] GSE16751 [6] Scale ofaveragePearsoncorrelations GSE19875 [12] GSE22418 [8] GSE16585 [31] GSE46723 [6] GSE39583 [21] GSE34215 [6] 0.2 GSE16454 [24] GSE19687 [9] GSE31598 [12] GSE25088 [24] GSE37316 [31] GSE27708 [9] GSE6030 [6] GSE25257 [6] GSE43825 [31] 0.4 GSE10113 [12] GSE10262 [18] GSE39897 [36] GSE1871 [12] GSE11222 [42] GSE31776 [10] GSE27159 [8] GSE30160 [6] GSE32214 [6] 0.6 GSE12810 [6] GSE18064 [12] GSE35543 [6] GSE30855 [6] GSE18745 [6] GSE7141 [6] GSE31208 [8] GSE12950 [6] GSE8660 [6] 0.8 GSE6526 [16] GSE16048 [6] GSE34324 [12] GSE14012 [24] Score 24.16 24.21 24.26 24.27 24.30 24.36 24.50 24.54 24.56 24.62 24.63 24.65 24.72 24.73 24.74 24.75 24.76 24.77 24.79 24.81 24.84 24.92 24.94 25.03 25.14 25.20 25.23 25.28 25.30 25.32 25.46 25.51 25.59 25.59 25.66 25.67 25.68 25.69 25.69 25.77 25.77 25.80 25.81 25.82 25.93 25.96 25.97 25.98 25.98 26.03 1.0 Notes Symbol Num ofCEMGenes:7.Predicted1401.SelectedDatasets:36.Strength:0.2 CEM 1,Geneset"[G]DNA-directedRNApolymeraseIIIcomplex",Page3 BC027231 Ebna1bp2 Fam203a Tomm40 Fastkd5 Gemin5 Nudcd1 Rbmxl1 Sssca1 Alkbh1 Stoml2 Psmg1 Psmg3 Prpf31 Armc6 C1qbp Polr1a Rpp40 Wdr18 Wdr55 Nop58 Ncbp1 Nup85 Abce1 Ddx31 Thoc3 Rrp1b Tbrg4 Trmt6 Emg1 Cse1l Sf3a3 Ttc27 Gpn2 Strap Nop9 Bop1 Trnt1 Rps9 Shq1 Exo1 Rae1 Qtrt1 Gnl3 Dctd Dis3 Tsr2 Ltv1 Gart Nkrf 0.0 1.0 GSE31313 [22] GSE13874 [14] GSE38031 [8] Only showingfirst200datasets-Seetxtoutputforfulldetails. GSE20954 [14] GSE39458 [6] GSE19885 [9] GSE7050 [18] GSE26096 [10] GSE17316 [12] GSE18135 [18] GSE10273 [9] GSE46724 [6] GSE15155 [12] GSE12498 [12] GSE30561 [6] GSE28593 [9] GSE6837 [8] GSE21033 [12] GSE13408 [14] GSE33942 [12] GSE39886 [24] GSE7012 [13] GSE28025 [18] GSE20391 [11] GSE51483 [45] GSE12993 [6] GSE27378 [8] GSE39592 [8] GSE46091 [8] GSE21491 [9] GSE41925
Recommended publications
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Figure S1. DMD Module Network. the Network Is Formed by 260 Genes from Disgenet and 1101 Interactions from STRING. Red Nodes Are the Five Seed Candidate Genes
    Figure S1. DMD module network. The network is formed by 260 genes from DisGeNET and 1101 interactions from STRING. Red nodes are the five seed candidate genes. Figure S2. DMD module network is more connected than a random module of the same size. It is shown the distribution of the largest connected component of 10.000 random modules of the same size of the DMD module network. The green line (x=260) represents the DMD largest connected component, obtaining a z-score=8.9. Figure S3. Shared genes between BMD and DMD signature. A) A meta-analysis of three microarray datasets (GSE3307, GSE13608 and GSE109178) was performed for the identification of differentially expressed genes (DEGs) in BMD muscle biopsies as compared to normal muscle biopsies. Briefly, the GSE13608 dataset included 6 samples of skeletal muscle biopsy from healthy people and 5 samples from BMD patients. Biopsies were taken from either biceps brachii, triceps brachii or deltoid. The GSE3307 dataset included 17 samples of skeletal muscle biopsy from healthy people and 10 samples from BMD patients. The GSE109178 dataset included 14 samples of controls and 11 samples from BMD patients. For both GSE3307 and GSE10917 datasets, biopsies were taken at the time of diagnosis and from the vastus lateralis. For the meta-analysis of GSE13608, GSE3307 and GSE109178, a random effects model of effect size measure was used to integrate gene expression patterns from the two datasets. Genes with an adjusted p value (FDR) < 0.05 and an │effect size│>2 were identified as DEGs and selected for further analysis. A significant number of DEGs (p<0.001) were in common with the DMD signature genes (blue nodes), as determined by a hypergeometric test assessing the significance of the overlap between the BMD DEGs and the number of DMD signature genes B) MCODE analysis of the overlapping genes between BMD DEGs and DMD signature genes.
    [Show full text]
  • Type of the Paper (Article
    Supplementary Material A Proteomics Study on the Mechanism of Nutmeg-induced Hepatotoxicity Wei Xia 1, †, Zhipeng Cao 1, †, Xiaoyu Zhang 1 and Lina Gao 1,* 1 School of Forensic Medicine, China Medical University, Shenyang 110122, P. R. China; lessen- [email protected] (W.X.); [email protected] (Z.C.); [email protected] (X.Z.) † The authors contributed equally to this work. * Correspondence: [email protected] Figure S1. Table S1. Peptide fraction separation liquid chromatography elution gradient table. Time (min) Flow rate (mL/min) Mobile phase A (%) Mobile phase B (%) 0 1 97 3 10 1 95 5 30 1 80 20 48 1 60 40 50 1 50 50 53 1 30 70 54 1 0 100 1 Table 2. Liquid chromatography elution gradient table. Time (min) Flow rate (nL/min) Mobile phase A (%) Mobile phase B (%) 0 600 94 6 2 600 83 17 82 600 60 40 84 600 50 50 85 600 45 55 90 600 0 100 Table S3. The analysis parameter of Proteome Discoverer 2.2. Item Value Type of Quantification Reporter Quantification (TMT) Enzyme Trypsin Max.Missed Cleavage Sites 2 Precursor Mass Tolerance 10 ppm Fragment Mass Tolerance 0.02 Da Dynamic Modification Oxidation/+15.995 Da (M) and TMT /+229.163 Da (K,Y) N-Terminal Modification Acetyl/+42.011 Da (N-Terminal) and TMT /+229.163 Da (N-Terminal) Static Modification Carbamidomethyl/+57.021 Da (C) 2 Table S4. The DEPs between the low-dose group and the control group. Protein Gene Fold Change P value Trend mRNA H2-K1 0.380 0.010 down Glutamine synthetase 0.426 0.022 down Annexin Anxa6 0.447 0.032 down mRNA H2-D1 0.467 0.002 down Ribokinase Rbks 0.487 0.000
    [Show full text]
  • 9-Azido Analogs of Three Sialic Acid Forms for Metabolic Remodeling Of
    Supporting Information 9-Azido Analogs of Three Sialic Acid Forms for Metabolic Remodeling of Cell-Surface Sialoglycans Bo Cheng,†,‡ Lu Dong,†,§ Yuntao Zhu,†,‡ Rongbing Huang,†,‡ Yuting Sun,†,‖ Qiancheng You,†,‡ Qitao Song,†,§ James C. Paton, ∇ Adrienne W. Paton,∇ and Xing Chen*,†,‡,§,⊥,# †College of Chemistry and Molecular Engineering, ‡Beijing National Laboratory for Molecular Sciences, §Peking−Tsinghua Center for Life Sciences,‖Academy for Advanced Interdisciplinary Studies, ⊥Synthetic and Functional Biomolecules Center, and #Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China ∇Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia Page S1 Table of Contents: Scheme S1.……………………………………………………….........……………. S3 Figure S1……………………………………………………..………..……………. S3 Figure S2……………………………………………………..………..…………… S4 Figure S3……………………………………………………..………..…………… S4 Figure S4……………………………………………………..………..…………… S5 Figure S5……………………………………………………..………..…………… S6 Figure S6……………………………………………………..………..…………….S7 Figure S7……………………………………………………..………..…………….S8 Figure S8……………………………………………………..………..…………….S9 Experimental Procedures……………………………….…........…………....S10-S27 Table S1………………………………………………..………..…………….S28-S48 Supporting Reference……………………………………………….......………...S49 Page S2 Scheme S1. Synthesis of 9AzNeu5Gc Figure S1: a, b, c, d) Representative scatter plots (FSC vs. SSC) and histograms of flow cytometry analysis
    [Show full text]
  • Epistasis-Driven Identification of SLC25A51 As a Regulator of Human
    ARTICLE https://doi.org/10.1038/s41467-020-19871-x OPEN Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import Enrico Girardi 1, Gennaro Agrimi 2, Ulrich Goldmann 1, Giuseppe Fiume1, Sabrina Lindinger1, Vitaly Sedlyarov1, Ismet Srndic1, Bettina Gürtl1, Benedikt Agerer 1, Felix Kartnig1, Pasquale Scarcia 2, Maria Antonietta Di Noia2, Eva Liñeiro1, Manuele Rebsamen1, Tabea Wiedmer 1, Andreas Bergthaler1, ✉ Luigi Palmieri2,3 & Giulio Superti-Furga 1,4 1234567890():,; About a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction- driven functional gene deorphanization. 1 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. 2 Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics,
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Download (PDF)
    Supplemental Information Biological and Pharmaceutical Bulletin Promoter Methylation Profiles between Human Lung Adenocarcinoma Multidrug Resistant A549/Cisplatin (A549/DDP) Cells and Its Progenitor A549 Cells Ruiling Guo, Guoming Wu, Haidong Li, Pin Qian, Juan Han, Feng Pan, Wenbi Li, Jin Li, and Fuyun Ji © 2013 The Pharmaceutical Society of Japan Table S1. Gene categories involved in biological functions with hypomethylated promoter identified by MeDIP-ChIP analysis in lung adenocarcinoma MDR A549/DDP cells compared with its progenitor A549 cells Different biological Genes functions transcription factor MYOD1, CDX2, HMX1, THRB, ARNT2, ZNF639, HOXD13, RORA, FOXO3, HOXD10, CITED1, GATA1, activity HOXC6, ZGPAT, HOXC8, ATOH1, FLI1, GATA5, HOXC4, HOXC5, PHTF1, RARB, MYST2, RARG, SIX3, FOXN1, ZHX3, HMG20A, SIX4, NR0B1, SIX6, TRERF1, DDIT3, ASCL1, MSX1, HIF1A, BAZ1B, MLLT10, FOXG1, DPRX, SHOX, ST18, CCRN4L, TFE3, ZNF131, SOX5, TFEB, MYEF2, VENTX, MYBL2, SOX8, ARNT, VDR, DBX2, FOXQ1, MEIS3, HOXA6, LHX2, NKX2-1, TFDP3, LHX6, EWSR1, KLF5, SMAD7, MAFB, SMAD5, NEUROG1, NR4A1, NEUROG3, GSC2, EN2, ESX1, SMAD1, KLF15, ZSCAN1, VAV1, GAS7, USF2, MSL3, SHOX2, DLX2, ZNF215, HOXB2, LASS3, HOXB5, ETS2, LASS2, DLX5, TCF12, BACH2, ZNF18, TBX21, E2F8, PRRX1, ZNF154, CTCF, PAX3, PRRX2, CBFA2T2, FEV, FOS, BARX1, PCGF2, SOX15, NFIL3, RBPJL, FOSL1, ALX1, EGR3, SOX14, FOXJ1, ZNF92, OTX1, ESR1, ZNF142, FOSB, MIXL1, PURA, ZFP37, ZBTB25, ZNF135, HOXC13, KCNH8, ZNF483, IRX4, ZNF367, NFIX, NFYB, ZBTB16, TCF7L1, HIC1, TSC22D1, TSC22D2, REXO4, POU3F2, MYOG, NFATC2, ENO1,
    [Show full text]
  • Genomic and Transcriptome Analysis Revealing an Oncogenic Functional Module in Meningiomas
    Neurosurg Focus 35 (6):E3, 2013 ©AANS, 2013 Genomic and transcriptome analysis revealing an oncogenic functional module in meningiomas XIAO CHANG, PH.D.,1 LINGLING SHI, PH.D.,2 FAN GAO, PH.D.,1 JONATHAN RUssIN, M.D.,3 LIYUN ZENG, PH.D.,1 SHUHAN HE, B.S.,3 THOMAS C. CHEN, M.D.,3 STEVEN L. GIANNOTTA, M.D.,3 DANIEL J. WEISENBERGER, PH.D.,4 GAbrIEL ZADA, M.D.,3 KAI WANG, PH.D.,1,5,6 AND WIllIAM J. MAck, M.D.1,3 1Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; 2GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; 3Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; 4USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California; 5Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California Object. Meningiomas are among the most common primary adult brain tumors. Although typically benign, roughly 2%–5% display malignant pathological features. The key molecular pathways involved in malignant trans- formation remain to be determined. Methods. Illumina expression microarrays were used to assess gene expression levels, and Illumina single- nucleotide polymorphism arrays were used to identify copy number variants in benign, atypical, and malignant me- ningiomas (19 tumors, including 4 malignant ones). The authors also reanalyzed 2 expression data sets generated on Affymetrix microarrays (n = 68, including 6 malignant ones; n = 56, including 3 malignant ones).
    [Show full text]
  • Differentially Methylated Genes
    10/30/2013 Disclosures Key Rheumatoid Arthritis-Associated Pathogenic Pathways Revealed by Integrative Analysis of RA Omics Datasets Consultant: IGNYTA Funding: Rheumatology Research Foundation By John W. Whitaker, Wei Wang and Gary S. Firestein DNA methylation and gene regulation The RA methylation signature in FLS DNA methylation – DNMT1 (maintaining methylation) OA – DNMT3a, 3b (de novo methylation) RA % of CpG methylation: 0% 100% Nakano et al. 2013 ARD AA06 AANAT AARS ABCA6 ABCC12 ABCG1 ABHD8 ABL2 ABR ABRA ACACA ACAN ACAP3 ACCSL ACN9 ACOT7 ACOX2 ACP5 ACP6 ACPP ACSL1 ACSL3 ACSM5 ACVRL1 ADAM10 ADAM32 ADAM33 ADAMTS12 ADAMTS15 ADAMTS19 ADAMTS4 ADAT3 ADCK4 ADCK5 ADCY2 ADCY3 ADCY6 ADORA1 ADPGK ADPRHL1 ADTRP AFAP1 AFAP1L2 AFF3 AFG3L1P AGAP11 AGER AGTR1 AGXT AIF1L AIM2 AIRE AJUBA AK4 AKAP12 AKAP2 AKR1C2 AKR1E2 AKT2 ALAS1 ALDH1L1-AS1 ALDH3A1 ALDH3B1 ALDH8A1 ALDOB ALDOC ALOX12 ALPK3 ALS2CL ALX4 AMBRA1 AMPD2 AMPD3 ANGPT1 ANGPT2 ANGPTL5 ANGPTL6 ANK1 ANKMY2 ANKRD29 ANKRD37 ANKRD53 ANO3 ANO6 ANO7 ANP32C ANXA6 ANXA8L2 AP1G1 AP2A2 AP2M1 AP5B1 APBA2 APC APCDD1 APOBEC3B APOBEC3G APOC1 APOH APOL6 APOLD1 APOM AQP1 AQP10 AQP6 AQP9 ARAP1 ARHGAP24 ARHGAP42 ARHGEF19 ARHGEF25 ARHGEF3 ARHGEF37 ARHGEF7 ARL4C ARL6IP 5 ARL8B ARMC3 ARNTL2 ARPP21 ARRB1 ARSI ASAH2B ASB10 ASB2 ASCL2 ASIC4 ASPH ATF3 ATF7 ATL1 ATL3 ATP10A ATP1A1 ATP1A4 ATP2C1 ATP5A1 ATP5EP2 ATP5L2 ATP6V0CP3 ATP6V1C1 ATP6V1E2 ATXN7L1 ATXN7L2 AVPI1 AXIN2 B3GNT7 B3GNT8 B3GNTL1 BACH1 BAG3 Differential methylated genes in RA FLS BAIAP2L2 BANP BATF BATF2 BBS2 BCAS4 BCAT1 BCL7C BDKRB2 BEGAIN BEST1 BEST3
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • Supplemental Data
    Article TCF7L2 is a master regulator of insulin production and processing ZHOU, Yuedan, et al. Abstract Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of [...] Reference ZHOU, Yuedan, et al. TCF7L2 is a master regulator of insulin production and processing. Human Molecular Genetics, 2014, vol. 23, no. 24, p. 6419-6431 DOI : 10.1093/hmg/ddu359 PMID : 25015099 Available at: http://archive-ouverte.unige.ch/unige:45177 Disclaimer: layout of this document may differ from the published
    [Show full text]