Differentially Methylated Genes

Total Page:16

File Type:pdf, Size:1020Kb

Differentially Methylated Genes 10/30/2013 Disclosures Key Rheumatoid Arthritis-Associated Pathogenic Pathways Revealed by Integrative Analysis of RA Omics Datasets Consultant: IGNYTA Funding: Rheumatology Research Foundation By John W. Whitaker, Wei Wang and Gary S. Firestein DNA methylation and gene regulation The RA methylation signature in FLS DNA methylation – DNMT1 (maintaining methylation) OA – DNMT3a, 3b (de novo methylation) RA % of CpG methylation: 0% 100% Nakano et al. 2013 ARD AA06 AANAT AARS ABCA6 ABCC12 ABCG1 ABHD8 ABL2 ABR ABRA ACACA ACAN ACAP3 ACCSL ACN9 ACOT7 ACOX2 ACP5 ACP6 ACPP ACSL1 ACSL3 ACSM5 ACVRL1 ADAM10 ADAM32 ADAM33 ADAMTS12 ADAMTS15 ADAMTS19 ADAMTS4 ADAT3 ADCK4 ADCK5 ADCY2 ADCY3 ADCY6 ADORA1 ADPGK ADPRHL1 ADTRP AFAP1 AFAP1L2 AFF3 AFG3L1P AGAP11 AGER AGTR1 AGXT AIF1L AIM2 AIRE AJUBA AK4 AKAP12 AKAP2 AKR1C2 AKR1E2 AKT2 ALAS1 ALDH1L1-AS1 ALDH3A1 ALDH3B1 ALDH8A1 ALDOB ALDOC ALOX12 ALPK3 ALS2CL ALX4 AMBRA1 AMPD2 AMPD3 ANGPT1 ANGPT2 ANGPTL5 ANGPTL6 ANK1 ANKMY2 ANKRD29 ANKRD37 ANKRD53 ANO3 ANO6 ANO7 ANP32C ANXA6 ANXA8L2 AP1G1 AP2A2 AP2M1 AP5B1 APBA2 APC APCDD1 APOBEC3B APOBEC3G APOC1 APOH APOL6 APOLD1 APOM AQP1 AQP10 AQP6 AQP9 ARAP1 ARHGAP24 ARHGAP42 ARHGEF19 ARHGEF25 ARHGEF3 ARHGEF37 ARHGEF7 ARL4C ARL6IP 5 ARL8B ARMC3 ARNTL2 ARPP21 ARRB1 ARSI ASAH2B ASB10 ASB2 ASCL2 ASIC4 ASPH ATF3 ATF7 ATL1 ATL3 ATP10A ATP1A1 ATP1A4 ATP2C1 ATP5A1 ATP5EP2 ATP5L2 ATP6V0CP3 ATP6V1C1 ATP6V1E2 ATXN7L1 ATXN7L2 AVPI1 AXIN2 B3GNT7 B3GNT8 B3GNTL1 BACH1 BAG3 Differential methylated genes in RA FLS BAIAP2L2 BANP BATF BATF2 BBS2 BCAS4 BCAT1 BCL7C BDKRB2 BEGAIN BEST1 BEST3 BFSP1 BHLHE22 BICC1 BID BIRC7 BLCAP BLVRA BMP4 BMP6 BMX BPI BRD2 BRD4 BRF1 BRP44L BTBD11 BTBD19 BTBD3 BTC BTF3P11 BTG2 BTG3 BTNL2 BUD31 BZRAP1 BZRAP1-C9orf142 C9orf170 C9orf66 C9orf71 CA3 CA4 CA9 CABLES1 CABP2 CACNA1E CACNA1F CACNA1S CACNB2 CACNG1 CACNG6 CADM3 CALCRL CALHM3 CALML6 CAP2 CAPG CAPS CAPZA3 CARD11 CARD14 CARD16 CARD17 CARD6 CASKIN2 CASP8 CASQ1 CATSPERB CAV2 CAV3 CBFB CCDC105 CCDC117 CCDC129 CCDC141 CCDC164 CCDC19 CCDC22 CCDC25 CCDC62 CCDC63 CCDC8 CCDC80 CCDC83 CCDC86 CCDC91 CCL14-CCL15 CCL15 CCL18 CCL2 CCL5 CCM2 CCR10 CCR2 CCR7 CCRL2 CD109 CD164L2 CD177 CD180 CD248 CD274 CD276 CD300LB CD34 CD38 CD3EAP CD40 CD58 CD59 CD7 CD70 CD74 CD81 CD93 CD96 CDC42EP1 CDC42EP3 CDC42SE1 CDCP2 CDH11 CDH13 CDH26 CDH5 CDHR5 CDK16 CDK5 CDKL2 CDKN1C CDSN CDT1 CEBPA CELF3 CENPBD1 CEP135 CEP164 CEP85L CEP97 CETN1 CFD CHD3 CHI3L1 CHI3L2 CHIA CHID1 CHN2 CHRAC1 CHRM4 CHRM5 CHRNB1 CHRNB4 CHRNE CHST2 CHST6 CHST9 CILP CILP2 CITED4 CIZ1 CKB CKMT2 CLCF1 CLCNKA CLDN11 CLDN12 CLDN15 CLDN16 CLDN25 CLEC11A CLEC12A CLEC1A CLEC3A CLEC3B CLIC2 CLLU1 CLMP CLN5 CLPSL2 CLSTN3 CLU CLUL1 CMIP CNGA3 CNIH CNKSR1 CNP CNTFR CNTN2 CNTN6 CNTNAP4 COBL COL12A1 COL16A1 COL18A1 COL1A1 COL1A2 COL23A1 COL2A1 COL9A3 COLEC11 COLEC12 COLQ COMMD1 COMMD3 COMMD3-BMI1 COMP COMT CORIN CORO6 COX14 COX6B2 CPA1 CPM CPNE2 CPNE5 CREB5 CREM CRIM1 CRIP1 CRISPLD2 • 2,375 differentially methylated genes were compared to the CRY1 CRY2 CRYM CSF1 CSF2 CSGALNACT1 CSN3 CSNK1G2-AS1 CSNK2B CSPG4 CSRNP1 CSTB CTDSP1 CTF1 CTGF CTHRC1 CTRB1 CTSK CTTN CTXN3 CUEDC2 CUL7 CX3CL1 CXCL10 CXCL5 CXCL6 CXCR5 CXorf1 CXorf57 CXXC5 CYB561 CYB5R3 CYHR1 CYP17A1 CYP1A1 CYP21A1P CYP21A2 CYP26C1 CYP27B1 CYP2F1 CYP3A5 CYR61 CYS1 CYSLTR1 CYTIP DAB2IP DALRD3 DAOA DAPK3 DAPL1 DBH DCAF4 DCBLD1 DCC DCD DCDC2B DCHS1 DCN DCPS DCT DDAH1 DDAH2 DDR1 DDX19B DEAF1 DEF6 DEFB1 DEFB113 DEFB115 DEGS2 DERL1 DESI1 DFNB31 DGCR9 DGKA DHH DHRS12 DHRS3 DHRS4 DHRS7 DHRS7C DHRS9 DHX15 DHX16 DIO2 DIO2-AS1 DISP1 DKFZP434A062 DKFZp434J0226 DKFZP434K028 DKFZp434L192 DKFZp566F0947 DLEC1 DLG1 DLG2 DLGAP1 DLGAP2 DLK2 DLL1 DLL4 DLX3 DLX4 DLX6 DLX6-AS1 DMAP1 DMBT1 DMBX1 DMKN DMP1 DMRTA2 DNAH12 DNAH2 DNAI2 DNAJC7 DNASE1 DNMT3A DNTTIP1 DOCK3 DOCK9 DOK1 DOM3Z DONSON KEGG pathway database DOT1L DPCR1 DPEP1 DPF1 DPH1 DPYSL2 DPYSL5 DRD3 DRD4 DSCR4 DST DTHD1 DTNA DTWD2 DTYMK DUOX2 DUPD1 DUSP3 DUSP6 DUSP8 DVL1 E2F4 EDARADD EDDM3A EDIL3 EDNRB EEF1D EEF2 EFCAB4B EFHD1 EFR3A EGF EGFLAM EGOT EHD4 EIF2AK4 EIF2D EIF4G1 EIF5A2 ELANE ELAVL4 ELF1 ELF3 ELK4 ELMO1 ELMO3 EMB EMBP1 EMX2 EMX2OS ENAH ENC1 ENDOU ENKUR ENO1-AS1 ENPP3 ENPP6 EPGN EPHX2 EPPK1 EPS15 EPS8L1 EPSTI1 ERI1 ERMAP ERN1 ERRFI1 ERVFRD-1 ESAM ESCO2 ESM1 ESR1 ESRP2 ETS1 EVI2A EVPL EVX1 EVX2 EXOC3L1 EXOC3L4 FABP4 FABP5 FAIM3 FAM101A FAM106A FAM108C1 FAM109A FAM110A FAM111B FAM124A FAM124B FAM129B FAM131A FAM135B FAM13A-AS1 FAM167B FAM170B FAM176A FAM180B FAM184A FAM187B FAM19A3 FAM20B FAM213A FAM217B FAM228B FAM26E FAM27A FAM45B FAM59A FAM71B FAM71E2 FAM75E1 FAM8A1 FAM9A FARP1 FAS FBLIM1 FBN3 FBXL22 FBXO3 FBXO44 FBXW7 FCHSD1 FCRL6 FERD3L FERMT3 FGD4 FGD5 FGF1 FGF11 FGF19 FGF20 FGF5 FGFBP2 FGFR2 FGL2 FGR FHL2 FITM1 FKBP10 FKBP5 FLI1 FLI1-AS1 FLJ27354 FLJ31485 FLJ33360 FLJ35776 FLJ37505 FLJ39051 FLJ42289 FLJ42709 FLJ42969 • 20 KEGG pathways were identified as significantly enriched FLJ45079 FLNC FMN1 FMNL1 FMOD FNDC9 FOLR4 FOSL1 FOXC1 FOXD2 FOXF2 FOXG1 FOXJ1 FOXL1 FOXO1 FOXP1 FPR2 FPR3 FRAS1 FRK FRMD1 FRMD4B FRMD6 FRMD8 FSCN1 FSCN2 FTH1 FTLP10 FURIN FXYD1 FXYD3 FXYD7 FYB FYN FZD6 G6PC GAB2 GABBR1 GAL GAL3ST4 GALK1 GALNT12 GALNT6 GALNTL2 GAS2 GAS7 GATAD2B GATM GBAP1 GBX1 GC GCFC1 GCLC GCNT1 GDNF GDPD3 GEM GFAP GFI1 GGH GGT1 GIMAP4 GIPC1 GJB2 GJC2 GJD3 GLA GLDN GLIPR1 GLIS1 GLIS3 GLP2R GLT25D2 GMPR GNE GNG10 GNG12-AS1 GNG2 GNPDA1 GOLGA4 GOLGA8C GON4L GPATCH8 GPBAR1 GPC2 GPD2 GPER GPR1 GPR108 GPR133 GPR179 GPR183 GPR55 GPR62 GPR75 GPR75-ASB3 GPR84 GPR88 GPRC5A GPSM1 GPT GPT2 GPX3 GRAMD1A GRAMD1B GRAMD2 GRAMD3 GRB10 GRB7 GREB1 GREM1 GRHL3 GRIA1 GRIK1-AS1 GRIK4 GRM2 GRM8 GRXCR1 GSDMC GSDMD GSG1 GSPT1 GSTCD GTSF1 GUCY1B2 GUK1 GZF1 H6PD HAPLN1 HAUS1 HCAR1 HCG22 HCG4B HCRT HCRTR1 HDAC11 HDAC9 HDGF HEATR8 HEATR8-TTC4 HEMGN HERC5 HES5 HEYL HGS HHAT HHATL HHIP HHIP-AS1 HHIPL1 HIAT1 HIBADH HIF1A-AS2 HIGD1C HILS1 HIPK3 HIST1H1A HIST1H1T HIST1H3A HIST1H4A HIST1H4D HIST3H2BB HK2 HKDC1 HLA-DMA HLADifferentially-DMB HLA-DPA1 HLA-DPB1 HLA-DQA1 HLA-DRB1 HLA-DRB6 HLA-F-AS1 HLA-J HLX HMHA1 HMOX1 HMOX2 HMX2 HNF1A HNRNPH2 HNRNPKP3 HOMER3 HOTAIR HOXA1 HOXA 2 HOXC4 HOXD10 HPD HPSE • The KEGG RA pathway is most enriched! HRAS HRASLS5 HSD17B14 HSD3B7 HSF2BP HSPA2 HSPG2 HTR1D HTRA1 HTRA4 IBTK ICAM2 ICAM4 ICAM5 ID3 IDO2 IFI16 IFITM1 IFLTD1 IFNGR2 IFRD1 IGF1 IGF2R IGSF6 IL11RA IL12B IL12RB1 IL17RD IL17REL IL18 IL18BP IL1B IL1RAPL1 IL1RL1 IL1RN IL22RA1 IL23R IL27RA IL31RA IL32 IL6 IMMP2L IMPA2 INHA INPP5A INSR INTS12 IP6K3 IPO5 IPO9 IQCA1 IQCH-AS1 IQCJ IQCJ-SCHIP1 IRF8 IRS1 IRX3 ISG20 ISYNA1 ITGA10 ITGA4 ITGA7 ITGAE ITGB4 ITGBL1 ITIH2 ITIH6 ITPKB ITPKC IVL IZUMO1 JAZF1 JDP2 JMJD1C JPH2 JTB JUP KAL1 KANK2 KAZN KBTBD5 KCNA2 KCNA3 KCNAB1 KCNE1 KCNE3 KCNH2 KCNIP1 KCNIP3 KCNJ14 KCNJ16 KCNJ2 KCNQ1DN KCNQ1OT1 KCNS1 KCNS3 KCNT1 KCNU1 KCTD17 KCTD7 KDM2B KDM3B KHK KIAA0087 KIAA0240 KIAA0922 KIAA1644 KIAA1671 KIF7 KIFC2 KIR3DL1 KIRREL3 KIRREL3-AS2 KIRREL3-AS3 KLB KLC2 KLF8 KLHDC7A KLHL2 KLK11 KLRC2 KNCN KRT17 KRT19 KRT2 KRT23 KRT26 KRT31 KRT32 KRT34 KRT4 KRT5 KRT6A KRT6B KRT75 KRT78 KRT8 KRT83 KRT85 KRTAP1-1 KRTAP12-4 KRTAP1-5 KRTAP16-1 KRTAP17-1 KRTAP2-1 KRTAP24-1 KRTAP26-1 KRTAP3-1 KRTAP4-7 KRTAP4-9 KRTAP9-8 KTN1-AS1 KY LACTB2 LAG3 LAIR1 LAMA2 LAMA4 LAMB3 LARP1 LARP4 LASP1 LAYN LBH LBX2 LCAT LCMT1 LCN2 LCP2 LDB3 LDLR LEFTY2 LEPREL4 LFNG LGALS12 LGALS17A LGALS3BP LGI1 LGI4 LGR6 LHFPL2 LHPP LIMCH1 LIMD1 LIME1 LIMK1 LIMS2 LIN28B LIN9 LINC00114 LINC00163 LINC00189 LINC00239 LINC00242 LINC00244 LINC00293 LINC00310 LINC00410 LINC00460 LINC00467 LINC00473 LINC00478 LINC00482 LINC00514 LINC00523 LINC00605 LINC00606 LINGO4 LIPA LIPE LMBRD1 LMF1 LMNA LMO1 LMO2 LMO3 LMO7 LMX1A LNPEP LNX1 LNX1-AS2 LOC100127888 -AS1 LOXL3 LOXL4 LPCAT2 LPL LPP LPXN LRP11 LRP1B LRP5L LRRC15 LRRC27 LRRC32 LRRC33 LRRC56 LRRC8C LRRIQ4 LRRN2 LRRN4 LSM3 LTBP4 LTC4S LTF LY6D LY6G6D LY6G6E LY86-AS1 LY9 LYNX1 LYRM2 LYZL4 MACC1-AS1 MAF MAFA MAFG MAGED1 MAGI2 MAL MAL2 MALL MAP1LC3B2 MAP3K1 MAP3K8 MAP9 MAPK10 8-Mar MARCKSL1 MARK2 MARVELD1 MAST2 MATN2 MATR3 MBD4 MBL2 MBNL1 MBP MC3R MCC MCCD1 MCF2 MCM3AP MCM3AP-AS1 MCMDC2 MDC1 ME3 MEFV MEOX1 METAP1 METRN MFAP2 MFSD6L MGARP MGAT1 MGAT3 MGAT4B MGAT4C MGAT5B MGC12916 MGC12982 MGC2889 MGP MGST1 MGST2 MIA MIA2 MIA-RAB4B MICALCL MID1 MIR103A2 MIR103B2 MIR1180 MIR1182 MIR1200 MIR1203 MIR1204 MIR1228 MIR1231 MIR1248 MIR125B1 MIR125B2 MIR1260B MIR1276 MIR1282 MIR128-2 MIR1286 MIR1306 MIR130B MIR137 MIR141 MIR143HG MIR146A MIR146B MIR153-2 MIR155 MIR155HG MIR185 MIR190A MIR191 MIR1915 MIR192 MIR193A MIR194-2 MIR195 MIR1976 MIR199B MIR200C MIR2052 MIR205HG MIR206 MIR208A MIR21 MIR210 MIR210HG MIR2117 MIR214 MIR216B MIR219-1 MIR2276 MIR2682 MIR26A1 MIR296 MIR298 MIR29C MIR301B MIR3120 MIR3154 MIR3176 MIR320B1 MIR329-1 MIR329-2 MIR3605 MIR3615 MIR3618 MIR365A MIR3676 MIR3677 MIR3684 MIR425 MIR4254 MIR4269 MIR4270 MIR4437 MIR4456 MIR4470 MIR4489 MIR4513 MIR4646 MIR4648 MIR4655 MIR4669 MIR4686 MIR4692 MIR4708 MIR4710 MIR4740 MIR4761 MIR4784 MIR4787 MIR497 MIR5191 MIR523 MIR525 MIR548AV MIR548C MIR548F2 MIR549 MIR5699 MIR572 MIR591 MIR600HG MIR620 MIR623 MIR641 MIR648 MIR885 MIR938 MIR940 MIR941-1 MIR941-2 MIR941-3 MIR941-4 MIR99A MIRLET7BHG MIRLET7C MIRLET7I MITF MKX MLLT4 MMP13 MMP19 MMP27 MMP3 MMRN1 MMRN2 MOV10 MPP4 MPPE1 MRPL23-AS1 MRPL34 MRPL42P5 MRPL55 MRPS28 MRPS30 MS 4A3 MSGN1 MSI2 MSMP MSRB3 MST1P9 MSX2 MT1G MT1HMethylated MT1L MTA1 MTHFD1 MTHFSD MTIF3 MTMR11 MTO1 MTSS1L MUC12 MUC2 MUC6 MUM1 MUSTN1 MX2 MXRA5 MXRA8 MYBPC1 MYBPH MYEF2 MYEOV 2 MYF5 MYF6 MYH1 MYH10 MYH15 MYH7 MYL10 MYL5 MYL9 MYLK2 MYO15A MYO18A MYO1C MYO1G MYOC MYOG MYOM1 MYOZ2 MYOZ3 MYPN NADK NALCN NAPG NAV1 NAV2 NBL1 NCAM2 NCCRP1 NCEH1 NCKAP5 NCOA6 NCOA7 NCS1 NDRG1 NDUFAF3 NDUFS2 NEDD1 NEDD4 NEDD4L NEK6 NEURL3 NEUROD6 NEXN NFATC1 NFATC3 NFIA
Recommended publications
  • Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception
    bioRxiv preprint doi: https://doi.org/10.1101/212431; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic variation across the human olfactory receptor repertoire alters odor perception Casey Trimmer1,*, Andreas Keller2, Nicolle R. Murphy1, Lindsey L. Snyder1, Jason R. Willer3, Maira Nagai4,5, Nicholas Katsanis3, Leslie B. Vosshall2,6,7, Hiroaki Matsunami4,8, and Joel D. Mainland1,9 1Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA 2Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, USA 3Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA 4Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 5Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil 6Howard Hughes Medical Institute, New York, New York, USA 7Kavli Neural Systems Institute, New York, New York, USA 8Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA 9Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA *[email protected] ABSTRACT The human olfactory receptor repertoire is characterized by an abundance of genetic variation that affects receptor response, but the perceptual effects of this variation are unclear. To address this issue, we sequenced the OR repertoire in 332 individuals and examined the relationship between genetic variation and 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity.
    [Show full text]
  • Genetics of Interleukin 1 Receptor-Like 1 in Immune and Inflammatory Diseases
    Current Genomics, 2010, 11, 591-606 591 Genetics of Interleukin 1 Receptor-Like 1 in Immune and Inflammatory Diseases Loubna Akhabir and Andrew Sandford* Department of Medicine, University of British Columbia, UBC James Hogg Research Centre, Providence Heart + Lung Institute, Room 166, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada Abstract: Interleukin 1 receptor-like 1 (IL1RL1) is gaining in recognition due to its involvement in immune/inflamma- tory disorders. Well-designed animal studies have shown its critical role in experimental allergic inflammation and human in vitro studies have consistently demonstrated its up-regulation in several conditions such as asthma and rheumatoid ar- thritis. The ligand for IL1RL1 is IL33 which emerged as playing an important role in initiating eosinophilic inflammation and activating other immune cells resulting in an allergic phenotype. An IL1RL1 single nucleotide polymorphism (SNP) was among the most significant results of a genome-wide scan inves- tigating eosinophil counts; in the same study, this SNP associated with asthma in 10 populations. The IL1RL1 gene resides in a region of high linkage disequilibrium containing interleukin 1 receptor genes as well as in- terleukin 18 receptor and accessory genes. This poses a challenge to researchers interested in deciphering genetic associa- tion signals in the region as all of the genes represent interesting candidates for asthma and allergic disease. The IL1RL1 gene and its resulting soluble and receptor proteins have emerged as key regulators of the inflammatory proc- ess implicated in a large variety of human pathologies We review the function and expression of the IL1RL1 gene.
    [Show full text]
  • IL-22 Binding Protein Promotes the Disease Process in Multiple Sclerosis Hannes Lindahl, André O
    IL-22 Binding Protein Promotes the Disease Process in Multiple Sclerosis Hannes Lindahl, André O. Guerreiro-Cacais, Sahl Khalid Bedri, Mathias Linnerbauer, Magdalena Lindén, Nada This information is current as Abdelmagid, Karolina Tandre, Claire Hollins, Lorraine of September 24, 2021. Irving, Colin Glover, Clare Jones, Lars Alfredsson, Lars Rönnblom, Ingrid Kockum, Mohsen Khademi, Maja Jagodic and Tomas Olsson J Immunol published online 10 July 2019 Downloaded from http://www.jimmunol.org/content/early/2019/07/09/jimmun ol.1900400 Supplementary http://www.jimmunol.org/content/suppl/2019/07/10/jimmunol.190040 http://www.jimmunol.org/ Material 0.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 24, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published
    [Show full text]
  • Overlap of Vitamin a and Vitamin D Target Genes with CAKUT- Related Processes [Version 1; Peer Review: 1 Approved with Reservations]
    F1000Research 2021, 10:395 Last updated: 21 JUL 2021 BRIEF REPORT Overlap of vitamin A and vitamin D target genes with CAKUT- related processes [version 1; peer review: 1 approved with reservations] Ozan Ozisik1, Friederike Ehrhart 2,3, Chris T Evelo 2, Alberto Mantovani4, Anaı̈s Baudot 1,5 1Aix Marseille University, Inserm, MMG, Marseille, 13385, France 2Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6200 MD, The Netherlands 3Department of Bioinformatics, NUTRIM/MHeNs, Maastricht University, Maastricht, 6200 MD, The Netherlands 4Istituto Superiore di Sanità, Rome, 00161, Italy 5Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain v1 First published: 18 May 2021, 10:395 Open Peer Review https://doi.org/10.12688/f1000research.51018.1 Latest published: 18 May 2021, 10:395 https://doi.org/10.12688/f1000research.51018.1 Reviewer Status Invited Reviewers Abstract Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are a 1 group of abnormalities affecting the kidneys and their outflow tracts, which include the ureters, the bladder, and the urethra. CAKUT version 1 patients display a large clinical variability as well as a complex 18 May 2021 report aetiology, as only 5% to 20% of the cases have a monogenic origin. It is thereby suspected that interactions of both genetic and 1. Elena Menegola, Università degli Studi di environmental factors contribute to the disease. Vitamins are among the environmental factors that are considered for CAKUT aetiology. In Milano, Milan, Italy this study, we collected vitamin A and vitamin D target genes and Any reports and responses or comments on the computed their overlap with CAKUT-related gene sets.
    [Show full text]
  • The Development of Asthma and Atopy Reijmerink, Naomi Elizabeth
    University of Groningen A search for missing pieces of the puzzle; the development of asthma and atopy Reijmerink, Naomi Elizabeth IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2009 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Reijmerink, N. E. (2009). A search for missing pieces of the puzzle; the development of asthma and atopy: innate immunity genes and environment. [s.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 Chapter 3 Association of IL1RL1, IL18R1 and IL18RAP gene cluster polymorphisms with asthma and atopy Naomi E. Reijmerink Dirkje S. Postma Marcel Bruinenberg Ilja M. Nolte Deborah A. Meyers Eugene R. Bleecker Gerard H. Koppelman J Allergy Clin Immunol. 2008 Sep;122(3):651-4.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Oncostatin M Exhibit Elevated Responsiveness to IL-31 Receptor
    IL-31 Receptor (IL-31RA) Knockout Mice Exhibit Elevated Responsiveness to Oncostatin M This information is current as Janine Bilsborough, Sherri Mudri, Eric Chadwick, Brandon of September 28, 2021. Harder and Stacey R. Dillon J Immunol 2010; 185:6023-6030; Prepublished online 18 October 2010; doi: 10.4049/jimmunol.0902769 http://www.jimmunol.org/content/185/10/6023 Downloaded from References This article cites 29 articles, 6 of which you can access for free at: http://www.jimmunol.org/content/185/10/6023.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IL-31 Receptor (IL-31RA) Knockout Mice Exhibit Elevated Responsiveness to Oncostatin M Janine Bilsborough,1 Sherri Mudri,1 Eric Chadwick,2 Brandon Harder,3 and Stacey R. Dillon IL-31 signals through the heterodimeric receptor IL-31RA and oncostatin M receptor (OSMR), and has been linked with the development of atopic dermatitis, a Th2 cytokine-associated disease in humans.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Inactive X Chromosome Is Epigenetically Unstable and Transcriptionally Labile in Breast Cancer
    Supplemental Information The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer Ronan Chaligné1,2,3,8, Tatiana Popova1,4, Marco-Antonio Mendoza-Parra5, Mohamed-Ashick M. Saleem5 , David Gentien1,6, Kristen Ban1,2,3,8, Tristan Piolot1,7, Olivier Leroy1,7, Odette Mariani6, Hinrich Gronemeyer*5, Anne Vincent-Salomon*1,4,6,8, Marc-Henri Stern*1,4,6 and Edith Heard*1,2,3,8 Extended Experimental Procedures Cell Culture Human Mammary Epithelial Cells (HMEC, Invitrogen) were grown in serum-free medium (HuMEC, Invitrogen). WI- 38, ZR-75-1, SK-BR-3 and MDA-MB-436 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) containing 10% fetal bovine serum (FBS). DNA Methylation analysis. We bisulfite-treated 2 µg of genomic DNA using Epitect bisulfite kit (Qiagen). Bisulfite converted DNA was amplified with bisulfite primers listed in Table S3. All primers incorporated a T7 promoter tag, and PCR conditions are available upon request. We analyzed PCR products by MALDI-TOF mass spectrometry after in vitro transcription and specific cleavage (EpiTYPER by Sequenom®). For each amplicon, we analyzed two independent DNA samples and several CG sites in the CpG Island. Design of primers and selection of best promoter region to assess (approx. 500 bp) were done by a combination of UCSC Genome Browser (http://genome.ucsc.edu) and MethPrimer (http://www.urogene.org). All the primers used are listed (Table S3). NB: MAGEC2 CpG analysis have been done with a combination of two CpG island identified in the gene core. Analysis of RNA allelic expression profiles (based on Human SNP Array 6.0) DNA and RNA hybridizations were normalized by Genotyping console.
    [Show full text]
  • Transcriptome Analysis of Gravitational Effects on Mouse Skeletal Muscles Under Microgravity and Artificial 1 G Onboard Environm
    www.nature.com/scientificreports OPEN Transcriptome analysis of gravitational efects on mouse skeletal muscles under microgravity and artifcial 1 g onboard environment Risa Okada1,2, Shin‑ichiro Fujita3,4, Riku Suzuki5,6, Takuto Hayashi3,5, Hirona Tsubouchi5, Chihiro Kato5,7, Shunya Sadaki5, Maho Kanai5,6, Sayaka Fuseya3,5, Yuri Inoue3,5, Hyojung Jeon5, Michito Hamada5, Akihiro Kuno5,6, Akiko Ishii8, Akira Tamaoka8, Jun Tanihata9, Naoki Ito10, Dai Shiba1,2, Masaki Shirakawa1,2, Masafumi Muratani1,4, Takashi Kudo1,5* & Satoru Takahashi1,5* Spacefight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artifcial earth‑gravity (artifcial 1 g; AG) and microgravity (μg; MG), to investigate whether artifcial 1 g exposure prevents muscle atrophy at the molecular level. Our main fndings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fber type composition but also in the alteration of gene expression profles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy‑related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms. Gravity is the most constant factor afecting the entire process of evolution of organisms on Earth. As adapting to a changing environment is key for any organism’s survival, the constant mechanical stimulus of gravitational force has been shared by all organisms on Earth through evolution 1.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Identification of the Key Micrornas and Mirna- Mrna Interaction Networks During the Ovarian Development of Hens
    Article Identification of the Key microRNAs and miRNA- mRNA Interaction Networks During the Ovarian Development of Hens Jing Li †, Chong Li †, Qi Li, Wen-Ting Li, Hong Li, Guo-Xi Li, Xiang-Tao Kang, Xiao-Jun Liu and Ya-Dong Tian * College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; [email protected] (J.L.); [email protected] (C.L.); [email protected] (Q.L.); [email protected] (W.-T.L.); [email protected] (H.L.); [email protected] (G.-X.L.); [email protected] (X.-T.K.); [email protected] (X.-J.L.) * Correspondence: [email protected] † These two authors contributed equally to this work. Received: 27 July 2020; Accepted: 15 September 2020; Published: date Supplementary Material Animals 2020, 10, x; doi: www.mdpi.com/journal/animals Animals 2020, 10, x 2 of 24 Table 1. The list of the interaction network, the expression levels and Pearson’s correlation coefficient of DE miRNAs and DE mRNAs. Expression Level ( TPM) Expression Level ( FPKM) sRNA Transcript Id Gene Id Gene Name Correlatio 15W 20W 30W 68W 15W 20W 30W 68W gga-miR-1560-3p 3.253 6.030 4.295 2.565 ENSGALT00000087050 ENSGALG00000005902 RAB7A 17.832 0.031 6.674 0.077 -0.324 gga-miR-143-3p 25118.987 49390.256 87681.664 32277.275 ENSGALT00000069072 ENSGALG00000041760 CLTCL1 2.189 0.000 1.321 1.252 -0.268 gga-miR-7472-5p 0.054 0.264 0.466 0.000 ENSGALT00000066785 ENSGALG00000014582 CADM1 6.810 2.342 0.000 0.000 -0.394 gga-miR-7472-5p 0.054 0.264 0.466 0.000 ENSGALT00000033172 ENSGALG00000008121 CYP17A1 722.987
    [Show full text]