Commercialization of Russian Technology in Cooperation with American Companies

Total Page:16

File Type:pdf, Size:1020Kb

Commercialization of Russian Technology in Cooperation with American Companies Stanford University CISAC Center for International Security and Cooperation The Center for International Security and Cooperation, part of Stanford University’s Institute for International Studies, is a multidisciplinary community dedicated to research and train- ing in the field of international security. The Center brings together scholars, policymakers, scientists, area specialists, members of the business community, and other experts to examine a wide range of international security issues. Center for International Security and Cooperation Stanford University Encina Hall Stanford, California 94305-6165 (415) 723-9625 http://www.stanford.edu/group/CISAC/ Commercialization of Russian Technology in Cooperation with American Companies David Bernstein June 1999 David Bernstein, an engineering research associate at Stanford University’s Center for Inter- national Security and Cooperation, participates in the Center’s Project on Industrial Restruc- turing and the Political Economy in Russia. The opinions expressed here are those of the author and do not represent positions of the Center, its supporters, or Stanford University. © 1999 by the Board of Trustees of the Leland Stanford Junior University ISBN 0-935371-53-2 i ii Contents I. Introduction 1 II. Background 5 III. Case Studies Introduction to Case Studies 17 Air Products & Chemicals, Incorporated 19 Boeing 21 Corning, Incorporated 27 Energia, Ltd. 29 NPO Energomash 33 FMC 37 General Electric 41 The State Scientific Research Institute of Aviation Systems (GosNIIAS) 43 Karpov Institute of Physical Chemistry 47 Moscow Center for SPARC Technology 51 NPO Mashinostroenia 55 Pratt & Whitney 63 Central Aerohydrodynamic Research Institute (TsAGI) 69 Typhoon Software and Santa Barbara Ltd. 75 IV. Analysis 79 V. Conclusions and Recommendations 93 iii iv Acknowledgments My thanks go to Carnegie Corporation of New York for its long-term support of CISAC’s Project on Industrial Restructuring and the Political Economy in Russia, and to the United States Department of Commerce, Technology Administration, Office of Technology Policy, for adding its support to Carnegie’s for this particular study. Many people have contributed to this research and report in many different ways. The principal contributors were the representatives of the Russian enterprises and American com- panies who were willing to be interviewed for this study and to answer follow-up communi- cations to help get the facts as correct as possible. These were all busy people who were striving to build successful ventures under difficult circumstances, and yet they gave gener- ously of their time. Without their patient cooperation this project would have been impos- sible. In many cases it became clear that they did this largely because they believed in the value of sharing information that could be of benefit to all working on the economic transi- tion in Russia. Ksenia Gonchar and Petra Opitz conducted many of the interviews in Russia. They also shared their insight on the subject from their own research and made many valuable sugges- tions during the project. David Binns and Cathleen Campbell also made several helpful sug- gestions in reviewing the draft. Richard Brody’s advice on the structure and objectives of the project was incisive. I also wish to acknowledge the help of Elaine Wai, Sarah Lenti, and Nina Olman in gath- ering research materials, helping prepare the text, and coping with my disorganized habits. Finally, CISAC’s editor, Megan Hendershott, brought it all together. To whatever extent the report is readable, she deserves the credit. The errors are all my own. v vi I. Introduction The Soviet Union placed a high priority on science and technology and built a huge assembly of research institutes, educational programs, design bureaus, and production enterprises embodying some measure of science and/or technology. This assembly concentrated over- whelmingly on military applications. Approximately three-quarters of this complex was lo- cated in Russia, but essential elements of many programs were located in other republics. The nature, structure, size, and operation of this military-industrial complex (MIC) as well as its decline and change during the Gorbachev and post-Soviet periods of economic transition have been documented in the literature.1 Starting in the Gorbachev regime there was a recognition that the economy was deteriorat- ing and that it was necessary to reduce military expenditures and increase the civilian economy. A major element of this has been the attempt to direct a much greater effort toward the development of commercial products and services based upon technologies and skills devel- oped in the MIC. This commercialization of Soviet and Russian military technology has been attempted by the Russians both independently, through conversion programs, and in coop- eration with foreign partners. The conversion programs have had very limited success. The success of attempts at cooperative commercialization by U.S. companies and Russian enter- prises have also been modest, but they illustrate workable models that could be utilized by other cooperative ventures. These cooperative commercialization ventures are the primary subject of this report.2 1 Julian Cooper, “Military Cuts and Conversion in the Defense Industry,” Soviet Economy 7, no. 2 (1991): 121–142; Julian Cooper, The Soviet Defense Industry: Conversion and Economic Reform (New York: The Royal Institute of International Affairs and Council on Foreign Relations, 1991); Clifford Gaddy, The Price of the Past: Russia’s Struggle with the Legacy of a Militarized Economy (Washington, DC: Brookings Institution Press, 1996); David Holloway, The Soviet Union and the Arms Race (New Haven: Yale University Press, 1984); Sharon Leiter, Prospects for Russian Military R&D (Santa Monica, CA: RAND, 1996); Kevin O’Prey, A Farewell to Arms? Russia’s Struggle with Defense Conversion (New York: The Twentieth Century Fund Press, 1995); Glenn Schweitzer, Experi- ments in Cooperation: Assessing U.S.-Russian Programs in Science and Technology (New York: The Twentieth Century Fund Press, 1997). 2 This research was sponsored by Carnegie Corporation of New York and the United States Depart- ment of Commerce. 1 Almost all technology in the Soviet Union resided in the military industrial and research enterprises, and these enterprises designed and produced almost all civilian products with a technological content such as civilian aircraft, consumer electronics, and household appli- ances. This was a commercialization of technology in the sense that the products came into being for commercial applications, but it was not commercialization of technology in the Western sense of attempting to use advanced technology to make products more competitive in cost or quality. In general these products were not competitive with Western ones, and the only exports of consequence were to satellite or client states. Most importantly, there was virtually no technology developed specifically and initially for civilian applications as there is in the United States, where civilian technology leads military technology in most areas both quantitatively and qualitatively. Hence there was virtually no interest in responding to a market. The advance of science and technology was not reflected in commensurate advances in civilian products. The United States also has problems with the commercialization of some advanced tech- nologies from the military sphere, but many of the problems are very different than in Russia. In the United States commercialization is an ongoing process in a strong market economy that is based heavily on civilian technology. Many of the fundamental scientific or techno- logical advances are made in response to demand from the civilian economy, which is often far more active in utilizing them than is the military. In Russia technology commercialization is one element of a broad spectrum of economic reforms that are being attempted to stimu- late a severely depressed economy.3 It is often driven by state policies to enable enterprises to stay in business, although they are de facto bankrupt, rather than by market demand. This subsidized technology push often makes it difficult to assess whether a project is a success or a failure. There can be various definitions of success in technology commercialization. One could be the establishment of a sustainable business in Russia. This is difficult to assess at this time because of the aforementioned uncertainty of the financial condition of a business, especially when it is imbedded in a larger enterprise that may be subsidized and/or de facto bankrupt. Another definition could be the acquisition of Russian technology by an American company with a resultant improvement in products or processes followed by increased exports of American products.4 This is more straightforward to assess but of less interest from the stand- point of the rebuilding of the Russian economy. A third definition could be conversion away from military activities, especially relating to weapons of mass destruction (WMD) and the potential proliferation of such technologies and/or personnel. This is also hard to assess be- cause of the inability to determine what would have happened in the absence of conversion. A venture can be successful by one definition while simultaneously a failure by the others. This also complicates the task of understanding the process itself, but it is possible to study a few cases of technology commercialization in enough detail
Recommended publications
  • The European Launchers Between Commerce and Geopolitics
    The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.
    [Show full text]
  • Signature Redacted a Uthor
    Evaluating Human-EVA Suit Injury Using Wearable Sensors MASS ACUS0 ILNSTITUTE )F TECHNOLOGY by JUN 28 2016 Ensign Sabrina Reyes, U.S. Navy IBRARIES B.S., Aerospace Engineering United States Naval Academy (2014) ARCHIVES Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2016 @ Massachusetts Institute of Technology 2016. All rights reserved. Signature redacted A uthor ............... ;....... Department of Aeronauticand Astronautics V~ \ %, \ May 19, 2016 am= Signature redacted-- Certified by.. ........... Jelfrey A. Hoffman, Ph.D. Professor of theractice, Aeronautics and Astronautics Siqnature redacted A ccepted by .................. I........ .............................. PauloI C Lozno7n PhDT Associate Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 2 Evaluating Human-EVA Suit Injury Using Wearable Sensors by Ensign Sabrina Reyes, U.S. Navy Submitted to the Department of Aeronautics and Astronautics on May 19, 2016, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics Abstract All the current flown spacesuits are gas pressurized and require astronauts to exert a substantial amount of energy in order to move the suit into a desired position. The pressurization of the suit therefore limits human mobility, causes discomfort, and leads to a variety of contact and strain injuries. While suit-related injuries have been observed for many years and some basic countermeasures have been implemented, there is still a lack of understanding of how humans move within the spacesuit. The rise of wearable technologies is changing the paradigm of biomechanics and allowing a continuous monitoring of motion performance in fields like athletics or medical re- habilitation.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Russia Missile Chronology
    Russia Missile Chronology 2007-2000 NPO MASHINOSTROYENIYA | KBM | MAKEYEV DESIGN BUREAU | MITT | ZLATOUST MACHINE-BUILDING PLANT KHRUNICHEV | STRELA PRODUCTION ASSOCIATION | AAK PROGRESS | DMZ | NOVATOR | TsSKB-PROGRESS MKB RADUGA | ENERGOMASH | ISAYEV KB KHIMMASH | PLESETSK TEST SITE | SVOBODNYY COSMODROME 1999-1996 KRASNOYARSK MACHINE-BUILDING PLANT | MAKEYEV DESIGN BUREAU | MITT | AAK PROGRESS NOVATOR | SVOBODNYY COSMODROME Last update: March 2009 This annotated chronology is based on the data sources that follow each entry. Public sources often provide conflicting information on classified military programs. In some cases we are unable to resolve these discrepancies, in others we have deliberately refrained from doing so to highlight the potential influence of false or misleading information as it appeared over time. In many cases, we are unable to independently verify claims. Hence in reviewing this chronology, readers should take into account the credibility of the sources employed here. Inclusion in this chronology does not necessarily indicate that a particular development is of direct or indirect proliferation significance. Some entries provide international or domestic context for technological development and national policymaking. Moreover, some entries may refer to developments with positive consequences for nonproliferation 2007-2000: NPO MASHINOSTROYENIYA 28 August 2007 NPO MASHINOSTROYENIYA TO FORM CORPORATION NPO Mashinostroyeniya is set to form a vertically-integrated corporation, combining producers and designers of various supply and support elements. The new holding will absorb OAO Strela Production Association (PO Strela), OAO Permsky Zavod Mashinostroitel, OAO NPO Elektromekhaniki, OAO NII Elektromekhaniki, OAO Avangard, OAO Uralskiy NII Kompositsionnykh Materialov, and OAO Kontsern Granit-Elektron. While these entities have acted in coordination for some time, formation of the new corporation has yet to be finalized.
    [Show full text]
  • Of S.P. Korolev Rocket and Space Public Corporation Energia for 2013
    OF S.P. KOROLEV ROCKET AND SPACE PUBLIC CORPORATION ENERGIA FOR 2013 This Annual Report of S.P. Korolev Rocket and Space Public Corporation Energia (also hereinafter called “OAO RSC Energia”, “RSC Energia”, “the Corporation”) by the 2013 performance is drawn up in accordance with the RF Government Decree No 1214 as of December 31, 2010 “On Improvement of the Procedure for Management of Open Joint-Stock Companies Whose Stock is in Federal Ownership and Federal State Unitary Enterprises” with due regard for the requirements set forth in the Order issued by the RF Federal Financial Markets Service No 11-46/pz-n as of October 4, 2011 “On Approval of the Provision on Information Disclosure of Issuers of Registered Securities”. This Annual Report was preliminarily approved by RSC Energia’s Board of Directors on April 29, 2014. Minutes No10 as of May 6, 2014. Accuracy of the data contained in this Annual Report was confirmed by RSC Energia’s Auditing Committee Report as of April 17, 2014. 2 TABLE OF CONTENTS KEY PERFORMANCE INDICATORS ........................................................................... 6 ON CORPORATION ACTIVITIES ................................................................................. 8 Corporation background ................................................................................................................................8 Corporation structure (its participation in subsidiary and affiliated companies) ...........................................9 Information about purchase and sale contracts for
    [Show full text]
  • Download Article
    Advances in Social Science, Education and Humanities Research, volume 331 1st International Scientific Practical Conference "The Individual and Society in the Modern Geopolitical Environment" (ISMGE 2019) Sustainable development as a prerequisite of digital transformation of enterprises in rocket and space industry Tatiana Arkhipova Margarita Afonasova Tomsk State University of Control Systems and Tomsk State University of Control Systems and Radioelectronics, Chair of Management Radioelectronics, Chair of Management Tomsk, Russia Tomsk, Russia [email protected], [email protected], https://orcid.org/0000-0002-5731-4401 https://orcid.org/0000-0002-3891-644X Abstract. The article considers key aspects of Russian the consumption activity (e-commerce, services, online rocket and space industry digital transformation and justifies search) [3]. State administration, consulting and information the appropriateness of using the principles that underlie a support, financial accounting, wholesale and retail concept of a digital enterprise in order to maintain Russian distribution, as well as the provision of different public, space industry leadership in terms of the increased private and social services refer to this sector [4]. competition. It is shown that Russian rocket and space industry is losing the competition in the world market, owing The digital economy is becoming a new gradient of the to continuing stagnation of industrial enterprises, as well as world economy based on electronic interaction and digital existing obstacles to innovative
    [Show full text]
  • Atlas V GOES-R Mission Overview
    ATLAS V GOES-R MISSION ATLAS V 541 A United Launch Alliance (ULA) Atlas V 541 rocket will deliver the One of the most powerful rockets in the Atlas V fleet, the 541 first of the Geostationary Operational Environment Satellite R-Series configuration, with four solid rocket boosters, provides the optimum (GOES-R) spacecraft to geosynchronous transfer orbit. Liftoff will occur performance to precisely deliver a range of mission types. In at Space Launch Complex-41 (SLC-41) at Cape Canaveral Air Force addition to completing two national security missions, an Atlas V 541 Station (CCAFS), Florida. configuration rocket launched NASA’s Curiosity rover on its 10-month, 354 million-mile journey to the surface of Mars. The GOES-R Series includes four satellites and is the next generation of GOES satellites that will provide continuous imagery and atmospher- First Launch: Nov. 26, 2011 ic measurements of the Earth’s Western Hemisphere. GOES-R will Launches to date: 3 Image Courtesy Lockheed Martin produce images of weather patterns and severe storms as frequently Performance to GTO: 8,290 kg (18,270 lb) as every 30 seconds, which will contribute to more accurate and reliable weather forecasts and severe weather outlooks, including thunderstorm, hurri- Performance to LEO-Reference: 17,410 kg (38,400 lb) cane and tornado tracking and intensity forecasting. GOES-R will also provide improved detection and observations of meteorological phenomena that directly impact public safety, protection of property and economic health and development. Designed and built by Lockheed Martin, the GOES-R satellite includes six instruments that fit into three classifications: Earth-pointing, solar-pointing and in-situ (near environment).
    [Show full text]
  • Risks and Mitigation Options Regarding Use of Foreign Components in U.S. Launch Vehicles
    C O R P O R A T I O N CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that helps improve policy and EDUCATION AND THE ARTS decisionmaking through research and analysis. ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE This electronic document was made available from www.rand.org as a public service INFRASTRUCTURE AND of the RAND Corporation. TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS Skip all front matter: Jump to Page 16 NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY Support RAND SCIENCE AND TECHNOLOGY Browse Reports & Bookstore TERRORISM AND Make a charitable contribution HOMELAND SECURITY For More Information Visit RAND at www.rand.org Explore RAND Testimony View document details Testimonies RAND testimonies record testimony presented by RAND associates to federal, state, or local legislative committees; government-appointed commissions and panels; and private review and oversight bodies. Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. Testimony Risks and Mitigation Options Regarding Use of Foreign Components in U.S. Launch Vehicles Yool Kim RAND Office of External Affairs CT-413 July 2014 Testimony presented before a joint hearing of the Senate Armed Services Committee, Subcommittee on Strategic Forces and Senate Commerce, Science, and Transportation Committee on July 16, 2014 This product is part of the RAND Corporation testimony series.
    [Show full text]
  • Space Security 2010
    SPACE SECURITY 2010 spacesecurity.org SPACE 2010SECURITY SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security 2010 ISBN : 978-1-895722-78-9 © 2010 SPACESECURITY.ORG Edited by Cesar Jaramillo Design and layout: Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Artist rendition of the February 2009 satellite collision between Cosmos 2251 and Iridium 33. Artwork courtesy of Phil Smith. Printed in Canada Printer: Pandora Press, Kitchener, Ontario First published August 2010 Please direct inquires to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 708 Fax: 519-888-0018 Email: [email protected] iv Governance Group Cesar Jaramillo Managing Editor, Project Ploughshares Phillip Baines Department of Foreign Affairs and International Trade, Canada Dr. Ram Jakhu Institute of Air and Space Law, McGill University John Siebert Project Ploughshares Dr. Jennifer Simons The Simons Foundation Dr. Ray Williamson Secure World Foundation Advisory Board Hon. Philip E. Coyle III Center for Defense Information Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research Dr. John Logsdon The George Washington University (Prof. emeritus) Dr. Lucy Stojak HEC Montréal/International Space University v Table of Contents TABLE OF CONTENTS PAGE 1 Acronyms PAGE 7 Introduction PAGE 11 Acknowledgements PAGE 13 Executive Summary PAGE 29 Chapter 1 – The Space Environment:
    [Show full text]
  • Risks and Mitigation Options Regarding Use of Foreign Components in U.S
    Testimony Risks and Mitigation Options Regarding Use of Foreign Components in U.S. Launch Vehicles Yool Kim RAND Office of External Affairs CT-413 July 2014 Testimony presented before a joint hearing of the Senate Armed Services Committee, Subcommittee on Strategic Forces and Senate Commerce, Science, and Transportation Committee on July 16, 2014 This product is part of the RAND Corporation testimony series. RAND testimonies record testimony presented by RAND associates to federal, state, or local legislative committees; government-appointed commissions and panels; and private review and oversight bodies. The RAND Corporation is a nonprofit research organization providing objective analysis and effective solutions that address the challenges facing the public and private sectors around the world. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. is a registered trademark. Published 2014 by the RAND Corporation 1776 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 1200 South Hayes Street, Arlington, VA 22202-5050 4570 Fifth Avenue, Suite 600, Pittsburgh, PA 15213-2665 RAND URL: http://www.rand.org/ To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002; Email: [email protected] Yool Kim1 The RAND Corporation Risks and Mitigation Options Regarding Use of Foreign Components in U.S. Launch Vehicles2 Before the Committee on Armed Services Subcommittee on Strategic Forces & Committee on Commerce, Science, and Transportation United States Senate July 16, 2014 Mr. Chairmen, Ranking Members, and distinguished Committee and Subcommittee members, thank you for the opportunity to testify before you today on this important issue.
    [Show full text]
  • The Russian Space Industry at 56: a Canadian Opportunity Mark Walker
    The Russian space industry at 56: a Canadian Opportunity Mark Walker Norman Paterson School of International Affairs, Carleton University, Ottawa, Canada 1 Abstract After stagnation in the 1990s, which saw little or no development, the space industry is once again an executive priority in Russia. This paper proposes an outline of the Russian space industry, its international engagement, and areas where a space-trading nation such as Canada can engage it. The research design is based on secondary research focusing on literature published within the last five years. First, it will examine government policies that affect the Russian space industry, as well as its areas of focus and specialization. Second, the paper will map out the international activities and engagement of the Russian space industry for a better understanding of its global integration. Lastly, future direction and developments within the industry will be considered, and what this means for Canadian businesses and policy makers. This paper will derive research from Russian and Canadian government websites, news articles, press releases and articles from peer reviewed journals. The sources used are varied in order to form the clearest perspective possible. Two scholarly journals, Astropolitics and Space Policy, are referenced in particular for their published works on Russia’s modern space industry. This paper will contribute to a broader understanding of the Russian space industry, and the opportunities it can provide a space nation like Canada. 2 In 1957, Russia launched Sputnik and took the first step into space. 56 years later, it has a well- developed and diverse space industry. In the pursuit of better technologies, business and relations, Canada, and the global space industry, must be aware of the changes that are taking place in Russia.
    [Show full text]
  • Chamber Cooling System of RD-170 Engine Family: Design, Parameters, and Hardware Investigation Data
    42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit AIAA 2006-4363 9 - 12 July 2006,Track Sacramento,ing Numb Californiaer: 54814 42nd Joint Propulsion Conference AIAA-2006-4363 9-12 July, 2006, Sacramento, CA The Chamber Cooling System of RD-170 Engine Family: Design, Parameters, and Hardware Investigation Data V. Fedorov*, V. Chvanov+, F. Chelkis#, А. Polyansky*, N. Ivanov$ NPO Energomash, 141401, Russia I. Lozino-Lozinskaya$ Keldysh Research Center, 125438, Russia А. Buryak& The Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, 119991, Russia Up to now many aspects of a multiuse booster stage for the next generation rockets still remain the subject of research and discussions. One of the issues is selection of propellant, where amongst its selection criteria is possibility of insuring reliable chamber cooling during multiple flights. This article describes the main structural elements and parameters of the chamber cooling passages for RD-170 family of LOX/kerosene engines. Also, herein are evaluation results of chamber hardware after multiple hot fire tests. I. Introduction During the period of 1976 to 1987 NPO Energomash developed the RD-171 engine for Zenit launch vehicle (LV) and its modification RD-170 for multiuse booster stage of Energiya LV. RD-171 was certified for single flight use; RD-170 – for 10x reusability. The distinguishing feature of these engines is four chambers. +Chief of Design Bureau #Chief Designer *Head of Department $Head of Sector &Head of Laboratory Copyright © 2006 by the American Institute of Aeronautics andAm Astronautics,erican Institu Inc. Allte rights of Aero reserved.nautics and Astronautics 42nd Joint Propulsion Conference AIAA-2006-4363 9-12 July, 2006, Sacramento, CA Subsequently, in 1995–2002 a 2-chamber derivative engine RD-180 was developed for Atlas LV family; in 2002–2004 – RD-171M, modification of RD-171, for Sea Launch Zenit 3SL LV; the development of single-chamber RD-191 is underway for Russian Angara LV.
    [Show full text]