EELV Reliability: Building on Experience First Quarter 2002

Total Page:16

File Type:pdf, Size:1020Kb

EELV Reliability: Building on Experience First Quarter 2002 First Quarter 2002 Quarterly Launch Report 8 EELV Reliability: Building on Experience The National Space Transportation Policy, short term, with a good chance of achieving signed by President Clinton on August 5, superior reliability over the long term. 1994, gave the National Aeronautics and Space Administration (NASA) responsibility for LAUNCH VEHICLE RELIABILITY reusable launch vehicle development, while AND THE IMPACT OF EXPERIENCE tasking the Department of Defense (DoD) with improving expendable launch vehicles Launch vehicles are complex devices, and (ELV) and the nation's existing launch infra- like any complex device, it takes time to structure. This goal resulted in the initiation refine them. The ideal way to "wring out" a of the Evolved Expendable Launch Vehicle design's flaws and thus bolster a vehicle's (EELV) program. Under this program DoD reliability is to follow a thorough testing was to partner with industry to develop a process. Vehicle developers routinely conduct national launch capability to satisfy both ground tests of vehicle components and government and commercial payload require- systems before a complete vehicle ever flies. ments and reduce the cost of space access by While these tests certainly are critical to at least 25 percent. Four companies initially increasing a vehicle's chances of flight suc- competed for DoD contracts to develop these cess, they do not guarantee that a vehicle will vehicles and ultimately, Lockheed Martin fly flawlessly. Optimally, ground tests would Corporation and The Boeing Company were be followed by many dedicated test flights awarded EELV production and service con- of the vehicle carrying a mass simulator or tracts for their respective Atlas 5 and Delta 4 dummy payload. Repeat numbers of test vehicles. flights would allow vehicle engineers to analyze the vehicle's performance, make With a focus on the Atlas and Delta families, modifications to enhance performance, and the Fourth Quarter 2001 Quarterly Launch fly the vehicle to test the performance with Report special report addressed the process by design alterations. which launch vehicles become more reliable and capable over time. The present report For early ballistic missiles, the testing process augments the prior one, examining in greater did involve a large number of flights: the Atlas depth the EELV program's effort to produce Intercontinental Ballistic Missile (ICBM), for highly reliable vehicles in a relatively short period of time. The first part of this report Number of Test shows that vehicle reliability tends to increase Vehicle Flights with testing and flight experience, and that Ariane 1 1 later variants within a launch vehicle family Ariane 2 0 tend to be more reliable than earlier ones. The Ariane 3 0 second part of the report describes the Ariane 4 1 approaches, many of which were taken to Ariane 5 3 improve earlier vehicles' reliability that Space Shuttle 4 Boeing and Lockheed Martin are now using Atlas 1 & 2 0 to bolster reliability and reduce technical Delta 3 1 risk of their respective EELVs. The report Zenit 3SL 1 suggests that if past is prologue, the Atlas 5 and Delta 4 EELVs are on track to exceed the Table 1: Numbers of Test Launches for initial reliability of their predecessors in the Launch Vehicles First Quarter 2002 Quarterly Launch Report 9 one, made 82 test flights between 1957 and the Proton's NPO Energomash 11D58M have 1962, while the Titan ICBM made around 100 caused launch failures because changes in test flights. In contrast to missiles, launch vehi- manufacturing procedures resulted in flawed cles generally make far fewer test flights (see engines. Once these failures occurred, the Table 1). While this, in part, is because many problems were identified and corrected, but launch vehicles are based on ballistic missiles these cases serve to illustrate that launch vehi- and benefit from the testing carried out on cles require constant attention to keep them the missiles, it is also because numerous test reliable. flights can be cost- and schedule-prohibitive for vehicle manufacturers. As a result, it is not THE CASES OF ARIANE, ATLAS, AND uncommon for the first flight of a launch vehi- PROTON cle to carry a functional payload, as opposed to a mass simulator or test equipment. Regardless To explore the development of vehicle of whether or not a vehicle is formally in test reliability over time, this report considers status, however, continuous operations, analy- members of three vehicle families: Ariane 1-4, sis of performance, and subsequent design pre-Atlas-3 Atlas vehicles, and pre-Proton-M improvements are key to raising a design's Proton vehicles (Proton M and Atlas 3 vehicles reliability1. differ too much from there respective prede- cessors to make their inclusion meaningful). Moreover, constant monitoring of vehicle These vehicles were chosen to compare the performance is necessary to maintain a high development histories of three representative degree of reliability once it has been vehicles of major spacefaring nations. achieved: even proven systems may lose reli- Although other vehicles, such as the Delta ability as a result of changes in manufacturing and Soyuz, also have lengthy development or operating procedures. For example, both histories, the three vehicles chosen are all the Pratt and Whitney RL-10 engine, used on similar in mass class and compete for the the Delta 3 and the Centaur upper stage, and same basic market. 100% 80% 60% 40% Ariane Atlas Proton 20% Cumulative Vehicle Reliability Vehicle Cumulative 0% 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Launches Figure 1: Cumulative Vehicle Reliability for the First 100 Launches First Quarter 2002 Quarterly Launch Report 10 Ariane 1-4 Atlas Proton Success Success Success Launch Rate (for Launch Rate (for Launch Rate (for Number Interval) Change Number Interval) Change Number Interval) Change 1 1-50 88% N/A 1-50 74% N/A 1-50 70% N/A 2 51-100 94% 6% 51-100 84% 10% 51-100 86% 16% 3 101-136 100% 6% 101-150 88% 4% 101-150 96% 10% 4 151-200 90% 2% 151-200 96% 0% 5 201-250 88% -2% 201-250 92% -4% 6 251-300 100% 12% 251-284 94% 2% 7 301-306 100% 0% Table 2: Vehicle Reliability by Chronological Intervals of Fifty As can be seen in Figure 1, a vehicle's first ten The success rate of each set of 50 launches is launches are generally the most problematic. based on the experience in that set of launch- For both Ariane and Atlas, the worst cumula- es; it is not cumulative. As such, Table 2 and tive reliability occurred during the first ten Figure 2 provide vehicle reliability data for launches. The Russian Proton deviates from distinct 50-launch increments and illustrate this pattern, having made 22 flights before its differences in reliability among different reliability began to improve. This late turning periods (for instance, the difference between point reflects the Russian design methodology, the reliability of launches 1 through 50 as which calls for flight testing earlier in the compared to launches 51 through 100). Note design process than would be considered that the size of the final interval varies among appropriate by a Western designer. Despite the vehicles, as none of them have been this testing process, the Proton still begins launched an even multiple of fifty times. to improve early in its lifetime. By the 100th launch, Atlas and Proton achieved nearly Table 2 and Figure 2 show that these vehicles identical cumulative reliabilities. continue to improve for at least the first 100 to 150 launches, with reliability reaching the In order to portray early reliability gains in a 90- to 100-percent range. As long as a vehicle's different light, Table 2 and Figure 2 show reliability is under 100 percent, however, there vehicle success rates by increments of 50. is the possibility of further improvement. This 100% 95% 90% 85% Ariane 80% Atlas Proton 75% 70% Vehicle Reliability Vehicle Reliability Vehicle 65% 60% 1-50 51-100 101-150 151-200 201-250 251-300 301-306 Number ofof Launches Launches (in (in increments increments of 50)of 50) Figure 2: Vehicle Reliability by Chronological Intervals of Fifty First Quarter 2002 Quarterly Launch Report 11 is demonstrated by the improvement shown already been made; thus, reliability gains will by the Atlas vehicle in its final two incre- be harder to achieve. ments (flights 251 through 306). There is also the possibility that a vehicle may For Ariane, reliability improvement ceased manifest new problems and suffer a decrease when it achieved a perfect record in its last in reliability as it ages. In some cases, this interval of 36 launches. This achievement is occurs because components become obsolete even more striking considering that the actual or unavailable, forcing changes in a vehicle number of successful consecutive Ariane that may cause failures. In other cases, design launches was 65, from 1995 to the present. As or manufacturing changes in proven compo- of the first quarter of 2002, Ariane vehicles nents and systems may result in new bugs to (excluding the Ariane 5) have cumulative replace the old ones that had been carefully reliability of 94 percent. removed from the launch vehicle system. Still, even in cases where reliability does Proton improved throughout its first 150 decline, the vehicle's reliability remains better launches, then showed no improvement dur- than during its initial period of operation: ing its fourth increment and declined by two single or even multiple, failures later in a percent in its fifth increment. The sixth set of vehicle's life have less of an impact as the launches is promising, returning to the third number of successful launches grows.
Recommended publications
  • Ariane-5 Completes Flawless Third Test Flight
    r bulletin 96 — november 1998 Ariane-5 Completes Flawless Third Test Flight A launch-readiness review conducted on Friday engine shut down and Maqsat-3 was 16 and Monday 19 October had given the go- successfully injected into GTO. The orbital ahead for the final countdown for a launch just parameters at that point were: two days later within a 90-minute launch Perigee: 1027 km, compared with the window between 13:00 to 14:30 Kourou time. 1028 ± 3 km predicted The launcher’s roll-out from the Final Assembly Apogee: 35 863 km, compared with the Building to the Launch Zone was therefore 35 898 ± 200 km predicted scheduled for Tuesday 20 October at 09:30 Inclination: 6.999 deg, compared with the Kourou time. 6.998 ± 0.05 deg predicted. On 21 October, Europe reconfirmed its lead in providing space Speaking in Kourou immediately after the flight, transportation systems for the 21st Century. Ariane-5, on its third Fredrik Engström, ESA’s Director of Launchers qualification flight, left no doubts as to its ability to deliver payloads and the Ariane-503 Flight Director, confirmed reliably and accurately to Geostationary Transfer Orbit (GTO). The new that: “The third Ariane-5 flight has been a heavy-lift launcher lifted off in glorious sunshine from the Guiana complete success. It qualifies Europe’s new Space Centre, Europe’s spaceport in Kourou, French Guiana, at heavy-lift launcher and vindicates the 13:37:21 local time (16:37:21 UT). technological options chosen by the European Space Agency.” This third Ariane-5 test flight was intended ESA’s Director
    [Show full text]
  • Call for M5 Missions
    ESA UNCLASSIFIED - For Official Use M5 Call - Technical Annex Prepared by SCI-F Reference ESA-SCI-F-ESTEC-TN-2016-002 Issue 1 Revision 0 Date of Issue 25/04/2016 Status Issued Document Type Distribution ESA UNCLASSIFIED - For Official Use Table of contents: 1 Introduction .......................................................................................................................... 3 1.1 Scope of document ................................................................................................................................................................ 3 1.2 Reference documents .......................................................................................................................................................... 3 1.3 List of acronyms ..................................................................................................................................................................... 3 2 General Guidelines ................................................................................................................ 6 3 Analysis of some potential mission profiles ........................................................................... 7 3.1 Introduction ............................................................................................................................................................................. 7 3.2 Current European launchers ...........................................................................................................................................
    [Show full text]
  • Project Number: JMW-USC1
    Project Number: JMW-USC1 Department of Social Science and Policy Studies THE FUTURE OF UNMANNED SPACE: A SPECULATIVE ANALYSIS OF THE COMMERCIAL MARKET An Interactive Qualifying Project Report: Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by ______________________________ Peter Brayshaw ______________________________ Brooks Farnham ______________________________ Jon Leslie December 16, 2004 _____________________________ ________________________________ Professor John M. Wilkes, Advisor Professor Peter Campisano, Co-Advisor Abstract: This report is one of many which deal with the unmanned space race. It is a prediction of who will have the greatest competitive advantage in the commercial market over the next 25 years, based on historical analogy. Background information on Russia, China, Japan, the United States and the European Space Agency, including the launch vehicles and launch services each provides, is covered. The new prospect of space platforms is also investigated. 2 Table of Contents Abstract: ...................................................................................................... 2 Table of Contents ......................................................................................... 3 Introduction ................................................................................................. 5 Literature Review ...................................................................................... 5 Project
    [Show full text]
  • Atlas Launch System Mission Planner's Guide, Atlas V Addendum
    ATLAS Atlas Launch System Mission Planner’s Guide, Atlas V Addendum FOREWORD This Atlas V Addendum supplements the current version of the Atlas Launch System Mission Plan- ner’s Guide (AMPG) and presents the initial vehicle capabilities for the newly available Atlas V launch system. Atlas V’s multiple vehicle configurations and performance levels can provide the optimum match for a range of customer requirements at the lowest cost. The performance data are presented in sufficient detail for preliminary assessment of the Atlas V vehicle family for your missions. This guide, in combination with the AMPG, includes essential technical and programmatic data for preliminary mission planning and spacecraft design. Interface data are in sufficient detail to assess a first-order compatibility. This guide contains current information on Lockheed Martin’s plans for Atlas V launch services. It is subject to change as Atlas V development progresses, and will be revised peri- odically. Potential users of Atlas V launch service are encouraged to contact the offices listed below to obtain the latest technical and program status information for the Atlas V development. For technical and business development inquiries, contact: COMMERCIAL BUSINESS U.S. GOVERNMENT INQUIRIES BUSINESS INQUIRIES Telephone: (691) 645-6400 Telephone: (303) 977-5250 Fax: (619) 645-6500 Fax: (303) 971-2472 Postal Address: Postal Address: International Launch Services, Inc. Commercial Launch Services, Inc. P.O. Box 124670 P.O. Box 179 San Diego, CA 92112-4670 Denver, CO 80201 Street Address: Street Address: International Launch Services, Inc. Commercial Launch Services, Inc. 101 West Broadway P.O. Box 179 Suite 2000 MS DC1400 San Diego, CA 92101 12999 Deer Creek Canyon Road Littleton, CO 80127-5146 A current version of this document can be found, in electronic form, on the Internet at: http://www.ilslaunch.com ii ATLAS LAUNCH SYSTEM MISSION PLANNER’S GUIDE ATLAS V ADDENDUM (AVMPG) REVISIONS Revision Date Rev No.
    [Show full text]
  • Study of a 100Kwe Space Reactor for Exploration Missions
    Preliminary study of a 100 kWe space reactor concept for exploration missions Elisa CLIQUET, Jean-Marc RUAULT 1), Jean-Pierre ROUX, Laurent LAMOINE, Thomas RAMEE 2), Christine POINOT-SALANON, Alexey LOKHOV, Serge PASCAL 3) 1) CNES Launchers Directorate,Evry, France 2) AREVA TA, Aix en Provence, France 3) CEA DEN/DM2S, F-91191 Gif-sur-Yvette, France NETS 2011 Overview ■ General context of the study ■ Requirements ■ Methodology of the study ■ Technologies selected for final trade-off ■ Reactor trade-off ■ Conversion trade-off ■ Critical technologies and development philosophy ■ Conclusion and perspectives CNES Directorate of Launchers Space transportation division of the French space agency ■ Responsible for the development of DIAMANT, ARIANE 1 to 4, ARIANE 5, launchers ■ System Architect for the Soyuz at CSG program ■ Development of VEGA launcher first stage (P80) ■ Future launchers preparation activities Multilateral and ESA budgets • To adapt the current launchers to the needs for 2015-2020 • To prepare launcher evolutions for 2025 - 2030, if needed • To prepare the new generation of expandable launchers (2025-2030) • To prepare the long future after 2030 with possible advanced launch vehicles ■ Future space transportation prospective activities, such as Exploration needs (including in particular OTV missions) Advanced propulsion technologies investigation General context ■ Background Last French studies on space reactors : • ERATO (NEP) in the 80’s, • MAPS (NTP) in the 90’s • OPUS (NEP) 2002-2004 ■ Since then Nuclear safe orbit
    [Show full text]
  • Building and Maintaining the International Space Station (ISS)
    / Building and maintaining the International Space Station (ISS) is a very complex task. An international fleet of space vehicles launches ISS components; rotates crews; provides logistical support; and replenishes propellant, items for science experi- ments, and other necessary supplies and equipment. The Space Shuttle must be used to deliver most ISS modules and major components. All of these important deliveries sustain a constant supply line that is crucial to the development and maintenance of the International Space Station. The fleet is also responsible for returning experiment results to Earth and for removing trash and waste from the ISS. Currently, transport vehicles are launched from two sites on transportation logistics Earth. In the future, the number of launch sites will increase to four or more. Future plans also include new commercial trans- ports that will take over the role of U.S. ISS logistical support. INTERNATIONAL SPACE STATION GUIDE TRANSPORTATION/LOGISTICS 39 LAUNCH VEHICLES Soyuz Proton H-II Ariane Shuttle Roscosmos JAXA ESA NASA Russia Japan Europe United States Russia Japan EuRopE u.s. soyuz sL-4 proton sL-12 H-ii ariane 5 space shuttle First launch 1957 1965 1996 1996 1981 1963 (Soyuz variant) Launch site(s) Baikonur Baikonur Tanegashima Guiana Kennedy Space Center Cosmodrome Cosmodrome Space Center Space Center Launch performance 7,150 kg 20,000 kg 16,500 kg 18,000 kg 18,600 kg payload capacity (15,750 lb) (44,000 lb) (36,400 lb) (39,700 lb) (41,000 lb) 105,000 kg (230,000 lb), orbiter only Return performance
    [Show full text]
  • The European Launchers Between Commerce and Geopolitics
    The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.
    [Show full text]
  • Commercialization of Russian Technology in Cooperation with American Companies
    Stanford University CISAC Center for International Security and Cooperation The Center for International Security and Cooperation, part of Stanford University’s Institute for International Studies, is a multidisciplinary community dedicated to research and train- ing in the field of international security. The Center brings together scholars, policymakers, scientists, area specialists, members of the business community, and other experts to examine a wide range of international security issues. Center for International Security and Cooperation Stanford University Encina Hall Stanford, California 94305-6165 (415) 723-9625 http://www.stanford.edu/group/CISAC/ Commercialization of Russian Technology in Cooperation with American Companies David Bernstein June 1999 David Bernstein, an engineering research associate at Stanford University’s Center for Inter- national Security and Cooperation, participates in the Center’s Project on Industrial Restruc- turing and the Political Economy in Russia. The opinions expressed here are those of the author and do not represent positions of the Center, its supporters, or Stanford University. © 1999 by the Board of Trustees of the Leland Stanford Junior University ISBN 0-935371-53-2 i ii Contents I. Introduction 1 II. Background 5 III. Case Studies Introduction to Case Studies 17 Air Products & Chemicals, Incorporated 19 Boeing 21 Corning, Incorporated 27 Energia, Ltd. 29 NPO Energomash 33 FMC 37 General Electric 41 The State Scientific Research Institute of Aviation Systems (GosNIIAS) 43 Karpov Institute
    [Show full text]
  • Paper Session II-A-Current Status of the Ariane 4 Program and of The
    1994 (31st) Space Exploration and Utilization The Space Congress® Proceedings for the Good of the World Apr 27th, 1:00 PM - 4:00 PM Paper Session II-A - Current Status of the Ariane 4 Program and of the Ariane 5 Development James R. Youdale Arianespace Inc. Washington, D.C. Douglas A. Heydon Arianespace Inc. Washington, D.C. Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Youdale, James R. and Heydon, Douglas A., "Paper Session II-A - Current Status of the Ariane 4 Program and of the Ariane 5 Development" (1994). The Space Congress® Proceedings. 16. https://commons.erau.edu/space-congress-proceedings/proceedings-1994-31st/april-27-1994/16 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Current Status of the Ariane 4 Program and of the Ariane 5 Development James R. Youdale1 and Douglas A. Heyden~ Arianespace Inc. Washington, D.C. Abstract This paper provides an overview of the commercial siruation of Arianespace, a general update regarding its technical and operational activities and its near and medium term prospects. A summary of the Ariane 4 "track record" is given and the latest improvement to its third staae the HIO III, is presented. Operational improvements that reduce the interval between two = ' consecutive laWlches are also addressed. The ratiollale for going to Ariane 5 is discussed and the current status of the Ariane 5 development program is reviewed.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Introduction to Satellite Communication 3Rd Edition
    Introduction to Satellite Communication Third Edition For a listing of recent titles in the Artech House Space Application Series, turn to the back of this book. Introduction to Satellite Communication Third Edition Bruce R. Elbert Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. ISBN-13: 978-1-59693-210-4 Cover design by Yekaterina Ratner 2008 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. 10987654321 Contents Preface xi CHAPTER 1 Fundamentals of Satellite Systems 1 1.1 Basic Characteristics of Satellites 1 1.1.1 Advantages of Satellite Communication 7 1.1.2 Use of Microwave Frequencies 11 1.1.3 Digital Transmission, Compression, and Routing 12 1.1.4 Improved Space Platforms and Launching Systems 13 1.1.5 Integration with Terrestrial
    [Show full text]
  • Russia Missile Chronology
    Russia Missile Chronology 2007-2000 NPO MASHINOSTROYENIYA | KBM | MAKEYEV DESIGN BUREAU | MITT | ZLATOUST MACHINE-BUILDING PLANT KHRUNICHEV | STRELA PRODUCTION ASSOCIATION | AAK PROGRESS | DMZ | NOVATOR | TsSKB-PROGRESS MKB RADUGA | ENERGOMASH | ISAYEV KB KHIMMASH | PLESETSK TEST SITE | SVOBODNYY COSMODROME 1999-1996 KRASNOYARSK MACHINE-BUILDING PLANT | MAKEYEV DESIGN BUREAU | MITT | AAK PROGRESS NOVATOR | SVOBODNYY COSMODROME Last update: March 2009 This annotated chronology is based on the data sources that follow each entry. Public sources often provide conflicting information on classified military programs. In some cases we are unable to resolve these discrepancies, in others we have deliberately refrained from doing so to highlight the potential influence of false or misleading information as it appeared over time. In many cases, we are unable to independently verify claims. Hence in reviewing this chronology, readers should take into account the credibility of the sources employed here. Inclusion in this chronology does not necessarily indicate that a particular development is of direct or indirect proliferation significance. Some entries provide international or domestic context for technological development and national policymaking. Moreover, some entries may refer to developments with positive consequences for nonproliferation 2007-2000: NPO MASHINOSTROYENIYA 28 August 2007 NPO MASHINOSTROYENIYA TO FORM CORPORATION NPO Mashinostroyeniya is set to form a vertically-integrated corporation, combining producers and designers of various supply and support elements. The new holding will absorb OAO Strela Production Association (PO Strela), OAO Permsky Zavod Mashinostroitel, OAO NPO Elektromekhaniki, OAO NII Elektromekhaniki, OAO Avangard, OAO Uralskiy NII Kompositsionnykh Materialov, and OAO Kontsern Granit-Elektron. While these entities have acted in coordination for some time, formation of the new corporation has yet to be finalized.
    [Show full text]