Deciphering and Expending Clostridium Formicoaceticum Metabolism Based on Whole Genome Sequencing THESIS

Total Page:16

File Type:pdf, Size:1020Kb

Deciphering and Expending Clostridium Formicoaceticum Metabolism Based on Whole Genome Sequencing THESIS Deciphering and Expending Clostridium formicoaceticum Metabolism Based on Whole Genome Sequencing THESIS Presented in Partial Fulfillment of Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Teng Bao Graduate Program in Chemical Engineering The Ohio State University 2016 Master’s Examination Committee: Shang-Tian Yang, Advisor Jeffrey Chalmers Copyrighted by Teng Bao 2016 Abstract Clostridium formicoaceticum is a Gram-negative homoacetogenic bacterium for acetic acid production and is also considered as a promising heterologous host for biofuel production. Here, its genome has been completely sequenced and consists of a 4.5-Mbp chromosome without containing any plasmid. The results of sequence analysis indicate that C. formicoaceticum is able to grow on several sugars and other organic substrates. In addition, it also exhibits a highly conserved Wood-Ljungdahl pathway gene cluster, which shows an identical arrangement as that in other autotrophic acetogens, such as Clostridium aceticum, Clostridium carboxidivorans, and Clostridium ljungdahlii. Differently from these homoacetogens, C. formicoaceticum contains a Na+- translocating ATPase and Rnf system for energy conversion. Such ATP generation system has also been sufficiently elucidated in Acetobacterium woodii. However, no growth defects were observed when C. formicoaceticum was grown on the heterotrophic and autotrophic medium under low sodium ion concentration, respectively. Otherwise, unlike Moorella thermoacetica and C. aceticum, neither completely cytochromes nor quinones synthesis genes are identified in the genome. Therefore, like C. ljungdahlii, C. formicoaceticum generates proton gradient via Rnf system and belongs to a H+-type homoacetogen. Moreover, ethanol formation may proceed by acetaldehyde dehydrogenases, alcohol dehydrogenases, and reversible ii aldehyde oxidoreductases under excessive reducing equivalent condition. Such information will be valuable in developing strategies for fermentation and metabolic engineering to produce bio-based chemicals and fuels in C. formicoaceticum. iii Dedication This document is dedicated to my family and friends. iv Vita 2008….B.S. Biological Engineering, Zhejiang University of Science & Technology 2012………………….………….M.S. Biological Engineering, Jiangnan University 2015 to present…………Graduate, Chemical Engieering, The Ohio State University Field of Study Major Field: Chemical Engineering v Table of Contents Abstract ......................................................................................................................... ii Dedication .................................................................................................................... iv Vita ................................................................................................................................ v List of Tables .............................................................................................................. viii List of Figures .............................................................................................................. ix Chapter 1: Introduction ................................................................................................ 1 1.1 Biofuels ........................................................................................................................... 1 1.2 Clostridial Fermentation ................................................................................................. 3 1.3 The First-generation and the Second-generation Biofuels .............................................. 4 1.4 Clostridium formicoaceticum .......................................................................................... 6 Chapter 2: Material and Methods ................................................................................. 8 2.1 Strains and Plasmids ....................................................................................................... 8 2.2 Cultural Media and Growth Condition ............................................................................ 8 2.2 Analytical Methods ....................................................................................................... 10 2.3 Sequencing, Gene Prediction, and Annotation .............................................................. 10 2.4 Characterization of the Restriction Modification System by Restriction Assay ........... 11 2.5 Nucleotide Sequence Accession Number ...................................................................... 12 Chapter 3: Deciphering and Expending C. formicoaceticum Metabolism Based on Whole Genome Sequencing ....................................................................................... 13 3.1 General Features of the C. formicoaceticum Genome ................................................... 13 3.2 Wood-Ljungdahl Pathway ............................................................................................. 16 3.3 Acetate, Ethanol, and Butanol Production and Utilization ............................................ 20 3.4 Substrate Utilization ...................................................................................................... 23 vi 3.5 Energy Conservation ..................................................................................................... 27 3.6 Intermediary Metabolism .............................................................................................. 31 3.7 Restriction Modification System Analysis .................................................................... 32 Chapter 4: Discussion ................................................................................................. 38 Chapter 5: Conclusions and Future Study .................................................................. 47 5.1 Constructing Transformation System in C. formicoaceticum ....................................... 47 5.2 Expression of Ethanol or n-Butanol Biosynthesis Pathway in C. formicoaceticum ...... 48 5.3 Increasing the Intracellular NADH Availability in C. formicoaceticum ....................... 49 Reference ................................................................................................................... 51 vii List of Tables Table 1. Chemical structural of butanol……….……….……….……………....…….2 Table 2. The application of butanol in different industries areas……….…………….2 Table 3. The bacteria and plasmids used in this study. …………….……..…………8 Table 4. General features of the Clostridium formicoaceticum ATCC 27076 genome…………………………………………………………………………….....15 Table 5. COG categories of C. formicoaceticum ATCC 27076. ……………...……..16 Table 6. Genes attributable to ethanol production in C. formicoaceticum ATCC 27076…........................................................................................................................21 Table 7. Genomic analysis of restriction modification systems in C. formicoaceticum……………………………………………………………………..33 Table 8. Number of predicted restriction sites in PMTL80000 plasmids susceptible to digestion by C. formicoaceticum...……..………..……..……..………..……..….…37 Table 9. Number of sites on important components of PMTL80000 plasmids digested by C. formicoaceticum. ……..……..………..…..……..………..……..……...…..…37 viii List of Figures Figure 1. ABE fermentation pathways of C. acetobutylicum…………………………4 Figure 2. Genomic map representation of the C. formicoaceticum chromosome…...14 Figure 3. KEGG categories of C. formicoaceticum ATCC 27076. ……….…………15 Figure 4. The Wood-Ljungdahl pathway in C. formicoaceticum……..……………..19 Figure 5. The comparison of the Wood-Ljungdahl pathway gene cluster of C. formicoaceticum with other sequenced acetogens……...……………………………19 Figure 6. Acetate and ethanol metabolic pathway in C. formicoaceticum..………….20 Figure 7. Butanol metabolic pathway in C. formicoaceticum ……………….………22 Figure 8. The EMP pathway and relevant enzymes in C. formicoacetium……..……24 Figure 9. The PPP pathway and relevant enzymes in C. formicoacetium……………24 Figure 10. The glycerol metabolic pathway in C. formicoacetium……...……….…..26 Figure 11. Energy conservation types in Homoacetogens…...……….……….……..28 Figure 12. Cytochrome/menaquinone system in C. formicoaceticum…...……….…29 Figure 13. F1F0 ATPase in C. formicoaceticum………….……….……..……….…30 Figure 14. Alignment of the deduced amino acid sequence of the proteolipids of C. formicoaceticum with proteolipids of other organisms…………………………….30 Figure 15. Rnf system in C. formicoaceticum…………………………….……….31 ix Figure 16. Digestion of several plasmids by crude cell extract of C. formicoaceticum at 12 h.. …………………………..………………………………………..…….…35 Figure 17. Digestion of several plasmids by crude cell extract of C. formicoaceticum at 24 h. ……………………………………………………………………..………36 Figure 18. Phylogenetic tree of C. formicoaceticum ATCC 27076. ……….………40 Figure 19. The Wood-Ljungdahl pathway in A. woodii. …………………..………41 Figure 20. The Wood-Ljungdahl pathway in C. formicoaceticum..………………..41 Figure 21. The reductive glycine pathway in C. formicoaceticum..………………..41 Figure 22. Batch fermentations of C. formicoaceticum with fructose (A), formate (B), and glycerol (C) as substrate in serum bottles…………………………………...….44 Figure 23. Batch fermentations of C. formicoaceticum with ethanol (A) and butanol (B) as substrate in serum bottles.………………………………...……………….…45 Figure 24. Gas fermentations of C. formicoaceticum at the optimum growth pH 7.6 in serum bottles..………………………………..….…………………………….……45 Figure 25. Constructing ethanol or
Recommended publications
  • Microbial Insights of Enhanced Anaerobic Conversion of Syngas
    Liu et al. Biotechnol Biofuels (2020) 13:53 https://doi.org/10.1186/s13068-020-01694-z Biotechnology for Biofuels RESEARCH Open Access Microbial insights of enhanced anaerobic conversion of syngas into volatile fatty acids by co-fermentation with carbohydrate-rich synthetic wastewater Chao Liu1,2, Wen Wang1* , Sompong O‑Thong2,3, Ziyi Yang1, Shicheng Zhang2,4, Guangqing Liu1 and Gang Luo2,4* Abstract Background: The co‑fermentation of syngas (mainly CO, H2 and CO2) and diferent concentrations of carbohydrate/ protein synthetic wastewater to produce volatile fatty acids (VFAs) was conducted in the present study. Results: It was found that co‑fermentation of syngas with carbohydrate‑rich synthetic wastewater could enhance the conversion efciency of syngas and the most efcient conversion of syngas was obtained by co‑fermentation of syngas with 5 g/L glucose, which resulted in 25% and 43% increased conversion efciencies of CO and H2, compared to syngas alone. The protein‑rich synthetic wastewater as co‑substrate, however, had inhibition on syngas conver‑ sion due to the presence of high concentration of NH4+‑N (> 900 mg/L) produced from protein degradation. qPCR analysis found higher concentration of acetogens, which could use CO and H2, was present in syngas and glucose co‑fermentation system, compared to glucose solo‑fermentation or syngas solo‑fermentation. In addition, the known acetogen Clostridium formicoaceticum, which could utilize both carbohydrate and CO/H2 was enriched in syngas solo‑ fermentation and syngas with glucose co‑fermentation. In addition, butyrate was detected in syngas and glucose co‑fermentation system, compared to glucose solo‑fermentation. The detected n‑butyrate could be converted from acetate and lactate/ethanol which produced from glucose in syngas and glucose co‑fermentation system supported by label‑free quantitative proteomic analysis.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Figure S1. Differentially abundant spots between the mid-log phase cells grown on xylan or xylose. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. The identities of the circled spots are summarized in Table 3. Figure S2. Differentially abundant spots between the stationary phase cells grown on xylan or xylose. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. The identities of the circled spots are summarized in Table 4. S2 Table S1. Summary of the non-polysaccharide degrading proteins identified in the B. proteoclasticus cytosol by 2DE/MALDI-TOF. Protein Locus Location Score pI kDa Pep. Cov. Amino Acid Biosynthesis Acetylornithine aminotransferase, ArgD Bpr_I1809 C 1.7 × 10−4 5.1 43.9 11 34% Aspartate/tyrosine/aromatic aminotransferase Bpr_I2631 C 3.0 × 10−14 4.7 43.8 15 46% Aspartate-semialdehyde dehydrogenase, Asd Bpr_I1664 C 7.6 × 10−18 5.5 40.1 17 50% Branched-chain amino acid aminotransferase, IlvE Bpr_I1650 C 2.4 × 10−12 5.2 39.2 13 32% Cysteine synthase, CysK Bpr_I1089 C 1.9 × 10−13 5.0 32.3 18 72% Diaminopimelate dehydrogenase Bpr_I0298 C 9.6 × 10−16 5.6 35.8 16 49% Dihydrodipicolinate reductase, DapB Bpr_I2453 C 2.7 × 10−6 4.9 27.0 9 46% Glu/Leu/Phe/Val dehydrogenase Bpr_I2129 C 1.2 × 10−30 5.4 48.6 31 64% Imidazole glycerol phosphate synthase Bpr_I1240 C 8.0 × 10−3 4.7 22.5 8 44% glutamine amidotransferase subunit Ketol-acid reductoisomerase, IlvC Bpr_I1657 C 3.8 × 10−16
    [Show full text]
  • From Sporulation to Intracellular Offspring Production: Evolution
    FROM SPORULATION TO INTRACELLULAR OFFSPRING PRODUCTION: EVOLUTION OF THE DEVELOPMENTAL PROGRAM OF EPULOPISCIUM A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by David Alan Miller January 2012 © 2012 David Alan Miller FROM SPORULATION TO INTRACELLULAR OFFSPRING PRODUCTION: EVOLUTION OF THE DEVELOPMENTAL PROGRAM OF EPULOPISCIUM David Alan Miller, Ph. D. Cornell University 2012 Epulopiscium sp. type B is an unusually large intestinal symbiont of the surgeonfish Naso tonganus. Unlike most other bacteria, Epulopiscium sp. type B has never been observed to undergo binary fission. Instead, to reproduce, it forms multiple intracellular offspring. We believe this process is related to endospore formation, an ancient and complex developmental process performed by certain members of the Firmicutes. Endospore formation has been studied for over 50 years and is best characterized in Bacillus subtilis. To study the evolution of endospore formation in the Firmicutes and the relatedness of this process to intracellular offspring formation in Epulopiscium, we have searched for sporulation genes from the B. subtilis model in all of the completed genomes of members of the Firmicutes, in addition to Epulopiscium sp. type B and its closest relative, the spore-forming Cellulosilyticum lentocellum. By determining the presence or absence of spore genes, we see the evolution of endospore formation in closely related bacteria within the Firmicutes and begin to predict if 19 previously characterized non-spore-formers have the genetic capacity to form a spore. We can also map out sporulation-specific mechanisms likely being used by Epulopiscium for offspring formation.
    [Show full text]
  • Supporting Information
    Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs.
    [Show full text]
  • A Systems-Level Investigation of the Metabolism of Dehalococcoides Mccartyi and the Associated Microbial Community
    A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community by Mohammad Ahsanul Islam A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Mohammad Ahsanul Islam 2014 A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community Mohammad Ahsanul Islam Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract Dehalococcoides mccartyi are a group of strictly anaerobic bacteria important for the detoxification of man-made chloro-organic solvents, most of which are ubiquitous, persistent, and often carcinogenic ground water pollutants. These bacteria exclusively conserve energy for growth from a pollutant detoxification reaction through a novel metabolic process termed organohalide respiration. However, this energy harnessing process is not well elucidated at the level of D. mccartyi metabolism. Also, the underlying reasons behind their robust and rapid growth in mixed consortia as compared to their slow and inefficient growth in pure isolates are unknown. To obtain better insight on D. mccartyi physiology and metabolism, a detailed pan- genome-scale constraint-based mathematical model of metabolism was developed. The model highlighted the energy-starved nature of these bacteria, which probably is linked to their slow growth in isolates. The model also provided a useful framework for subsequent analysis and visualization of high-throughput transcriptomic data of D. mccartyi. Apart from confirming expression of the majority genes of these bacteria, this analysis helped review the annotations of ii metabolic genes.
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]
  • Detoxification of Lignocellulose-Derived Microbial Inhibitory Compounds by Clostridium Beijerinckii NCIMB 8052 During Acetone-Butanol-Ethanol Fermentation
    Detoxification of Lignocellulose-derived Microbial Inhibitory Compounds by Clostridium beijerinckii NCIMB 8052 during Acetone-Butanol-Ethanol Fermentation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yan Zhang Graduate Program in Animal Sciences The Ohio State University 2013 Dissertation Committee: Thaddeus C. Ezeji, Advisor Steven C. Loerch Sandra G. Velleman Zhongtang Yu Venkat Gopalan Copyrighted by Yan Zhang 2013 Abstract Pretreatment and hydrolysis of lignocellulosic biomass to fermentable sugars generate a complex mixture of microbial inhibitors such as furan aldehydes (e.g., furfural), which at sublethal concentration in the fermentation medium can be tolerated or detoxified by acetone butanol ethanol (ABE)-producing Clostridium beijerinckii NCIMB 8052. The response of C. beijerinckii to furfural at the molecular level, however, has not been directly studied. Therefore, this study was to elucidate mechanism employed by C. beijerinckii to detoxify lignocellulose-derived microbial inhibitors and use this information to develop inhibitor-tolerant C. beijerinckii. Towards the long-term goal of developing inhibitor-tolerant Clostridium strains, the first objective was to evaluate ABE fermentation by C. beijerinckii using different proportions of Miscanthus giganteus hydrolysates as carbon source. Compared to the growth of C. beijerinckii in control medium, C. beijerinckii experienced different degrees of inhibition. The degree of inhibition was dose-dependent, and C. beijerinckii did not grow in P2 medium with greater than 25% (v/v) Miscanthus giganteus hydrolysates. To improve tolerance of C. beijerinckii to inhibitors, supplementation of P2 medium with undiluted (100%) Miscanthus giganteus hydrolysates with 4 g/L CaCO3 resulted in successful growth of and ABE production by C.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Serpentinicella Alkaliphila Gen. Nov., Sp. Nov., a Novel
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 4464–4470 DOI 10.1099/ijsem.0.001375 Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony hydrothermal field, New Caledonia. Nan Mei,1 Anne Postec,1 Gael Erauso,1 Manon Joseph,1 Bernard Pelletier,2 Claude Payri,2 Bernard Ollivier1 and Marianne Quem eneur 1 Correspondence 1Aix Marseille Univ, Universite de Toulon, CNRS, IRD, MIO, Marseille, France Marianne Quemeneur 2Centre IRD de Noumea, 101 Promenade Roger Laroque, BP A5 - 98848 Noumea cedex, , New [email protected] Caledonia A novel anaerobic, alkaliphilic, Gram-stain-positive, spore-forming bacterium was isolated from a carbonaceous hydrothermal chimney in Prony Bay, New Caledonia. This bacterium, designated strain 3bT, grew at temperatures from 30 to 43 C (optimum 37 C) and at pH between 7.8 and 10.1 (optimum 9.5). Added NaCl was not required for growth (optimum 0–0.2 %, w/v), but was tolerated at up to 4 %. Yeast extract was required for growth. Strain 3bT utilized crotonate, lactate and pyruvate, but not sugars. Crotonate was dismutated to acetate and butyrate. Lactate was disproportionated to acetate and propionate. Pyruvate was degraded to acetate plus trace amounts of hydrogen. Growth on lactate was improved by the addition of fumarate, which was used as an electron acceptor and converted to succinate. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate, nitrite, FeCl3, Fe(III)-citrate, Fe(III)-EDTA, chromate, arsenate, selenate and DMSO were not used as terminal electron acceptors. The G+C content of the genomic DNA was 33.2 mol%.
    [Show full text]
  • Trash to Treasure: Production of Biofuels and Commodity Chemicals Via Syngas Fermenting Microorganisms
    Available online at www.sciencedirect.com ScienceDirect Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms 1 2 2 1,2 Haythem Latif , Ahmad A Zeidan , Alex T Nielsen and Karsten Zengler Fermentation of syngas is a means through which unutilized billion gallons of biofuels by 2022 [2]. The biological organic waste streams can be converted biologically into conversion of renewable lignocellulosic biomass such as biofuels and commodity chemicals. Despite recent advances, wheat straw, spruce, switchgrass, and poplar to biofuels is several issues remain which limit implementation of industrial- expected to play a prominent role in achieving these scale syngas fermentation processes. At the cellular level, the goals. These forms of biomass address many of the con- energy conservation mechanism of syngas fermenting cerns associated with the production of first-generation microorganisms has not yet been entirely elucidated. biofuels [3,4]. However, 10–35% of lignocellulosic bio- Furthermore, there was a lack of genetic tools to study and mass is composed of lignin [5–7], which is highly resistant ultimately enhance their metabolic capabilities. Recently, to breakdown by the vast majority of microorganisms [8]. substantial progress has been made in understanding the Thus, if the EU and US cellulosic biofuel targets are intricate energy conservation mechanisms of these realized, land allocation for biofuel production will microorganisms. Given the complex relationship between increase and megatons of organic waste will be generated. energy conservation and metabolism, strain design greatly benefits from systems-level approaches. Numerous genetic This organic waste provides a significant resource of manipulation tools have also been developed, paving the way biomass that can be utilized for producing biofuels as for the use of metabolic engineering and systems biology well as commodity chemicals.
    [Show full text]
  • Production of Butyric Acid and Hydrogen by Metabolically Engineered Mutants of Clostridium Tyrobutyricum
    PRODUCTION OF BUTYRIC ACID AND HYDROGEN BY METABOLICALLY ENGINEERED MUTANTS OF CLOSTRIDIUM TYROBUTYRICUM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Xiaoguang Liu, M.S. ***** The Ohio State University 2005 Dissertation committee: Approved by Professor Shang-Tian Yang, Adviser Professor Barbara E Wyslouzil Adviser Professor Hua Wang Department of Chemical Engineering ABSTRACT Butyric acid has many applications in chemical, food and pharmaceutical industries. The production of butyric acid by fermentation has become an increasingly attractive alternative to current petroleum-based chemical synthesis. Clostridium tyrobutyricum is an anaerobic bacterium producing butyric acid, acetic acid, hydrogen and carbon dioxide as its main products. Hydrogen, as an energy byproduct, can add value to the fermentation process. The goal of this project was to develop novel bioprocess to produce butyric acid and hydrogen economically by Clostridial mutants. Conventional fermentation technologies for butyric acid and hydrogen production are limited by low reactor productivity, product concentration and yield. In this project, novel engineered mutants of C. tyrobutyricum were created by gene manipulation and cell adaptation. Fermentation process was also optimized using immobilizing cells in the fibrous-bed bioreactor (FBB) to enhance butyric acid and hydrogen production. First, metabolic engineered mutants with knocked-out acetate formation pathway were created and characterized. Gene inactivation technology was used to delete the genes of phosphotransacetylase (PTA) and acetate kinase (AK), two key enzymes in the acetate-producing pathway of C. tyrobutyricum, through homologous recombination. The metabolic engineered mutants were characterized by Southern hybridization, enzyme assay, protein expression and metabolites production.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]