A Systems-Level Investigation of the Metabolism of Dehalococcoides Mccartyi and the Associated Microbial Community

Total Page:16

File Type:pdf, Size:1020Kb

A Systems-Level Investigation of the Metabolism of Dehalococcoides Mccartyi and the Associated Microbial Community A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community by Mohammad Ahsanul Islam A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Mohammad Ahsanul Islam 2014 A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community Mohammad Ahsanul Islam Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract Dehalococcoides mccartyi are a group of strictly anaerobic bacteria important for the detoxification of man-made chloro-organic solvents, most of which are ubiquitous, persistent, and often carcinogenic ground water pollutants. These bacteria exclusively conserve energy for growth from a pollutant detoxification reaction through a novel metabolic process termed organohalide respiration. However, this energy harnessing process is not well elucidated at the level of D. mccartyi metabolism. Also, the underlying reasons behind their robust and rapid growth in mixed consortia as compared to their slow and inefficient growth in pure isolates are unknown. To obtain better insight on D. mccartyi physiology and metabolism, a detailed pan- genome-scale constraint-based mathematical model of metabolism was developed. The model highlighted the energy-starved nature of these bacteria, which probably is linked to their slow growth in isolates. The model also provided a useful framework for subsequent analysis and visualization of high-throughput transcriptomic data of D. mccartyi. Apart from confirming expression of the majority genes of these bacteria, this analysis helped review the annotations of ii metabolic genes. Revised annotations of two such metabolic genes — NADP+-isocitrate dehydrogenase and phosphomannose isomerase — were then experimentally verified. Finally, growth experiments were performed with a D. mccartyi-containing anaerobic mixed enrichment culture to explore the effects of exogenous vitamin omission from the growth medium on D. mccartyi and the associated microbial community. The experiments showed how nutritional requirements of these bacteria changed the composition and dynamics of their associated microbial community. Overall, a systems-level approach was used in this research to obtain a fundamental and critical understanding of the metabolism and physiology of D. mccartyi in isolates, as well as in microbial communities they naturally inhabit. The results presented in this thesis, therefore, will help design effective strategies for future bioremediation efforts by D. mccartyi. iii Acknowledgements I would like to take this opportunity to thank many fascinating people who helped me complete this very long but exciting journey! It was, indeed, a life changing experience! Fisrt of all, my sincere thanks goes to my supervisors, Dr. Radhakrishnan (Krishna) Mahadevan and Dr. Elizabeth A. Edwards — both of whom are extremely caring mentors, knowledgeable scholars, and great personalities. It was their contagious enthusiasm and passion about any scientific matter, tireless inquisitive minds, and critical thinking that shaped me as a researcher during my stay at UofT. They provided me with all kinds of support and help over these many years without which this thesis wouldn’t be possible. I’m eternally grateful to both Krishna and Elizabeth for giving me such rare opportunities as to work in the amazing world of microbial metabolism. I would like to thank all past and present members of both LMSE (Laboratory for Metabolic Systems Engineering) and EdLab, including Jiao, Karthik, Bahareh, Nadeera, Nick B, Peter, Kai, Laurence, Nik, Fahime, Srinath, Pratish, Sarat, Victor, Chris, Ariel, Alison, Eve, Roya, Anna, Winnie, Max, Jennifer, Laura, Marie, Alfredo, Torsten, Jine Jine, Cheryl, Ivy, Shuiquan, Fei, Wendy, Luz, Sarah, and Olivia. These are the people with whom I shared some of the most treasured moments of my life. You are truly the most talented, enthusiastic, and beloved coworkers that I have ever worked with. I also want to express my humble gratitude to my committee members, Dr. Nicholas J. Provart and Dr. Emma R. Master. Their guidance, support, critical comments, and careful directions were some of the most influential factors that worked behind materializing this thesis. I feel fortunate to have these powerful scientific minds and fantastic personalities as my committee members. Likewise, I express my gratitude to Dr. David S. Guttman and Dr. Boris Steipe for teaching me bioinformatics, without which I wouldn’t be able to even start my research. Thanks to Dr. Alexander F. Yakunin and Dr. Alexei Savchenko for sharing your expertise in enzymology and proteomics with someone like me who is so naïve in those areas. Thanks also to Dr. Melanie Duhamel, the BioZone Assistant Director and Project Manager, for being a friend iv and “oracle” of KB-1 related challenges, as well as of monetary issues. Also, thank you to Endang Susilawati (Susie) and Angelika Duffy, the BioZone Lab Manager and Assistant Lab Manager. Susie’s motherly touch made my office-stay feel like home-stay, and Angelika’s warm support helped me steer through difficult times more easily. I am also very grateful to Anatoli Tchigvintsev and Greg Brown, the two knowledgeable technicians and biochemists, without whom my enzyme work would only be a dream! Thank you to Leticia Gutierrez and Gorette Silva for being so supportive in solving administrative matters, and always greeting with cordial smiles. Thanks to Pauline Martini and Joan Chen at the Chemical Engineering Graduate office for making the “bureaucratic part” of my graduate life easy, and providing essential information for all scholarship and funding related matters. Thanks so much to Julie Mendonca for keeping my head straight about payroll and tax related issues. Thanks also to Daniel Tomchyshyn and Weijun Gao, the Departmental and BioZone computer geeks, for providing and solving all IT supports and problems. I am truly indebted to my parents, Shamsun Nahar and Shamsul Alam, for bringing me into this spectacular world of microbes. It was their lifelong teaching, their simple yet powerful philosophies about life in general, and their intrinsic novel qualities that shaped me as a human being. Without their love, devotion, encouragement, and continuous prayers, I wouldn’t imagine to come this far. I am also extremely grateful to my parents-in-law, Shamima Ali and Mazed Ali, for their love and prayers, and most importantly, for giving me their daughter, Rutba, my wife and my eternal love. Rutba is an inspirational teacher, guide, and philosopher without whom I couldn’t even imagine to embark on this PhD journey. So, equal credit goes to Rutba on successful completion of this journey, and I dedicate this thesis to her — my best friend with whom I’m looking forward to spending many more fun-filled years. The acknowledgements remain incomplete if I don’t mention the most precious gift of my life, Manar, my daughter. Her smile and warmth of calling “Baba” refresh me every single day. Finally, I want to thank my funding agencies for their generous support during my graduate study: Government of Ontario, Genome Canada, Ontario Genomics Institute, Natural Sciences and Engineering Research Council of Canada, US Department of Defense Strategic Environmental Research and Development Program, and the University of Toronto. v Table of Contents Abstract ........................................................................................................................................... ii Acknowledgements ........................................................................................................................ iv Table of Contents ........................................................................................................................... vi List of Tables ................................................................................................................................. ix List of Figures ................................................................................................................................. x List of Appendices ........................................................................................................................ xii List of Non-Standard Abbreviations Used ................................................................................... xiv Chapter 1: Introduction ................................................................................................................... 1 1.1. Motivation ............................................................................................................................ 1 1.2. Research objectives .............................................................................................................. 3 1.3. Thesis outline ....................................................................................................................... 4 1.4. Statement of authorship and publication status .................................................................... 7 Chapter 2: General overview ........................................................................................................ 11 2.1. Systems biology ................................................................................................................. 11 2.2. Modeling microbial metabolism
Recommended publications
  • Detection of a Bacterial Group Within the Phylum Chloroflexi And
    Microbes Environ. Vol. 21, No. 3, 154–162, 2006 http://wwwsoc.nii.ac.jp/jsme2/ Detection of a Bacterial Group within the Phylum Chloroflexi and Reductive-Dehalogenase-Homologous Genes in Pentachlorobenzene- Dechlorinating Estuarine Sediment from the Arakawa River, Japan KYOSUKE SANTOH1, ATSUSHI KOUZUMA1, RYOKO ISHIZEKI2, KENICHI IWATA1, MINORU SHIMURA3, TOSHIO HAYAKAWA3, TOSHIHIRO HOAKI4, HIDEAKI NOJIRI1, TOSHIO OMORI2, HISAKAZU YAMANE1 and HIROSHI HABE1*† 1 Biotechnology Research Center, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan 2 Department of Industrial Chemistry, Faculty of Engineering, Shibaura Institute of Technology, Minato-ku, Tokyo 108–8548, Japan 3 Environmental Biotechnology Laboratory, Railway Technical Research Institute, 2–8–38 Hikari-cho, Kokubunji-shi, Tokyo 185–8540, Japan 4 Technology Research Center, Taisei Corporation, 344–1 Nase, Totsuka-ku, Yokohama 245–0051, Japan (Received April 21, 2006—Accepted June 12, 2006) We enriched a pentachlorobenzene (pentaCB)-dechlorinating microbial consortium from an estuarine-sedi- ment sample obtained from the mouth of the Arakawa River. The sediment was incubated together with a mix- ture of four electron donors and pentaCB, and after five months of incubation, the microbial community structure was analyzed. Both DGGE and clone library analyses showed that the most expansive phylogenetic group within the consortium was affiliated with the phylum Chloroflexi, which includes Dehalococcoides-like bacteria. PCR using a degenerate primer set targeting conserved regions in reductive-dehalogenase-homologous (rdh) genes from Dehalococcoides species revealed that DNA fragments (approximately 1.5–1.7 kb) of rdh genes were am- plified from genomic DNA of the consortium. The deduced amino acid sequences of the rdh genes shared sever- al characteristics of reductive dehalogenases.
    [Show full text]
  • Supplementary Information
    1 Supplementary Information 2 Electron transfer complexes in the gut dictate high abundance circulating 3 metabolites 4 Yuanyuan Liu1,2, William Van Treuren2, Bi-Huei Hou1,2, Steven K. Higginbottom2, Justin 5 L. Sonnenburg2,3,4, and Dylan Dodd1,2† 6 7 1Department of Pathology Stanford University School of Medicine, Stanford, CA, USA; 8 2Department of Microbiology and Immunology, Stanford University School of Medicine, 9 Stanford, CA, USA; 3Chan Zuckerburg Biohub, San Francisco, CA, USA; 4Center for 10 Human Microbiome Studies, Stanford, CA, USA. 11 12 † Correspondence: [email protected] 13 14 Supplementary Tables Supplementary Table 1. Estimates of ATP levels during Stickland metabolism of Phe. Phenylalanine disproportionation Considerations Oxidative Pathway Reductive Pathway Stoichiometry for redox 1 mole Phe 2 moles Phe balance NADH reducing equivalents 2 NADH produced (total) 2 NADH produced 4 NADH consumed Net: 2 NADH consumed ATP from substrate level 1 ATP phosphorylation Ferredoxin reduced (2 e- 1 mole Fdred 2 moles Fdred reduction) Protons translocated through Rnf complex 2 protons 4 protons (assuming 2 protons per mole Fdred)a ATP from ETP (assuming 4 0.5 ATP 1 ATP protons per mole ATP)a Total ATP 1.5 ATP 1 ATP Percentage of total ATP 60% 40% a Estimates are from Buckel and Thauer25. 15 16 Supplementary Table 2. Homologs of electron transfer complexes identified by BLASTp Query (% identity # hits # Phyla (Phylum names) # Families (family names) cutoff)a,b,c Clostridium 551 5 phyla (Firmicutes, 19 families (Clostridiaceae, Lachnospiraceae,
    [Show full text]
  • CENSUS® – Reductive Dechlorination
    CENSUS® – Reductive Dechlorination CENSUS Detect and quantify Dehalococcoides and other bacteria capable of reductive dechlorination Under anaerobic conditions, certain bacteria can use chlorinated ethenes Successful reductive dechlorination can be hindered by a few site-specific (PCE, TCE, DCE, and VC) as electron acceptors in a process called reductive factors that cannot be evaluated with chemical and geochemical tests including: dechlorination. The net result is the sequential dechlorination of PCE and • a lack of a key dechlorinating bacteria including Dehalococcoides, the TCE through daughter products DCE and VC to non-toxic ethene, which only known bacteria that completely dechlorinates PCE and TCE to volatilizes or can be further metabolized. non-toxic ethene • reasons for incomplete dechlorination and the accumulation of daughter PCE TCE cis-DCE VC Ethene products (DCE stall) CENSUS® provides the most direct avenue to investigate the potentials and limitations to implementing corrective action plan decisions and to target a variety of organisms involved in the reductive dechlorination pathway. Target Code Contaminants Environmental Relevance / Data Interpretation Dehalococcoides qDHC PCE, TCE, Only known group of bacteria capable of complete dechlorination of PCE and/or TCE to ethene DCE, VC Absence of Dehalococcoides suggests dechlorination of DCE and VC is improbable and accumulation of daughter products is likely The presence of Dehalococcoides even in low copy numbers indicates the potential for complete reductive dechlorination
    [Show full text]
  • Microbial Diversity of Drilling Fluids from 3000 M Deep Koyna Pilot
    Science Reports Sci. Dril., 27, 1–23, 2020 https://doi.org/10.5194/sd-27-1-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Microbial diversity of drilling fluids from 3000 m deep Koyna pilot borehole provides insights into the deep biosphere of continental earth crust Himadri Bose1, Avishek Dutta1, Ajoy Roy2, Abhishek Gupta1, Sourav Mukhopadhyay1, Balaram Mohapatra1, Jayeeta Sarkar1, Sukanta Roy3, Sufia K. Kazy2, and Pinaki Sar1 1Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India 2Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India 3Ministry of Earth Sciences, Borehole Geophysics Research Laboratory, Karad, 415114, Maharashtra, India Correspondence: Pinaki Sar ([email protected], [email protected]) Received: 24 June 2019 – Revised: 25 September 2019 – Accepted: 16 December 2019 – Published: 27 May 2020 Abstract. Scientific deep drilling of the Koyna pilot borehole into the continental crust up to a depth of 3000 m below the surface at the Deccan Traps, India, provided a unique opportunity to explore microbial life within the deep granitic bedrock of the Archaean Eon. Microbial communities of the returned drilling fluid (fluid re- turned to the mud tank from the underground during the drilling operation; designated here as DF) sampled during the drilling operation of the Koyna pilot borehole at a depth range of 1681–2908 metres below the surface (m b.s.) were explored to gain a glimpse of the deep biosphere underneath the continental crust. Change of pH 2− to alkalinity, reduced abundance of Si and Al, but enrichment of Fe, Ca and SO4 in the samples from deeper horizons suggested a gradual infusion of elements or ions from the crystalline bedrock, leading to an observed geochemical shift in the DF.
    [Show full text]
  • Advances in Anaerobic Benzene Bioremediation: Microbes, Mechanisms, and Biotechnologies
    Advances in Anaerobic Benzene Bioremediation: Microbes, Mechanisms, and Biotechnologies Sandra Dworatzek, Phil Dennis and Jeff Roberts RemTech, Virtual October 15, 2020 Introduction and Acknowledgements • Sandra Dworatzek, Jennifer Webb (SiREM, Guelph, ON) • Elizabeth Edwards, Nancy Bawa, Shen Guo and Courtney Toth (University of Toronto, Toronto, ON) • Kris Bradshaw and Rachel Peters (Federated Co-operatives Ltd., Saskatoon, SK) • Krista Stevenson (Imperial Oil, Sarnia, ON) The Landscape of Hydrocarbon Bioremediation: A Lot Has Changed… Microbial bioremediation is currently the most common technology used to remediate petroleum hydrocarbons Microbial Remediation Phytoremediation Chemical Treatment Contain and Excavate Pump and Treat Other Near Cold Lake, Alberta Adapted from Elekwachi et al., 2014 (J Bioremed Biodeg 5) What Sites are Currently Being Targeted for Hydrocarbon Bioremediation? 4 Shallow Soils and Groundwater 1 2 (aerobic) Offshore Spills Ex situ Bioreactors (mostly aerobic) (mostly aerobic) 3 Tailings Ponds 5 Deeper Groundwater (aerobic and anaerobic) (intrinsically anaerobic) Groundwater Bioremediation Technologies Focusing on Anaerobic Microbial Processes Natural Attenuation Biostimulation Bioaugmentation unsaturated zone aquifer 3- PO4 sugars Plume source - 2- NO3 SO4 VFAs GW flow aquitard Bioaugmentation for anaerobic sites works! Dehalococcoides (Dhc) bioaugmentation is widely accepted to improve reductive dehalogenation of chlorinated ethenes 1 Month Post KB-1® Bioaugmentation Dhc TCE Bioaugmentation for anaerobic
    [Show full text]
  • Trash to Treasure: Production of Biofuels and Commodity Chemicals Via Syngas Fermenting Microorganisms
    Available online at www.sciencedirect.com ScienceDirect Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms 1 2 2 1,2 Haythem Latif , Ahmad A Zeidan , Alex T Nielsen and Karsten Zengler Fermentation of syngas is a means through which unutilized billion gallons of biofuels by 2022 [2]. The biological organic waste streams can be converted biologically into conversion of renewable lignocellulosic biomass such as biofuels and commodity chemicals. Despite recent advances, wheat straw, spruce, switchgrass, and poplar to biofuels is several issues remain which limit implementation of industrial- expected to play a prominent role in achieving these scale syngas fermentation processes. At the cellular level, the goals. These forms of biomass address many of the con- energy conservation mechanism of syngas fermenting cerns associated with the production of first-generation microorganisms has not yet been entirely elucidated. biofuels [3,4]. However, 10–35% of lignocellulosic bio- Furthermore, there was a lack of genetic tools to study and mass is composed of lignin [5–7], which is highly resistant ultimately enhance their metabolic capabilities. Recently, to breakdown by the vast majority of microorganisms [8]. substantial progress has been made in understanding the Thus, if the EU and US cellulosic biofuel targets are intricate energy conservation mechanisms of these realized, land allocation for biofuel production will microorganisms. Given the complex relationship between increase and megatons of organic waste will be generated. energy conservation and metabolism, strain design greatly benefits from systems-level approaches. Numerous genetic This organic waste provides a significant resource of manipulation tools have also been developed, paving the way biomass that can be utilized for producing biofuels as for the use of metabolic engineering and systems biology well as commodity chemicals.
    [Show full text]
  • Biochemistry and Physiology of Halorespiration by Desulfitobacterium Dehalogenans
    Biochemistry and Physiology of Halorespiration by Desulfitobacterium dehalogenans ..?.^TJ?*LE_ LANDBOUWCATALOGU S 0000 0807 1728 Promotor: Dr.W.M . deVo s hoogleraar in de microbiologie Co-promotoren: Dr.ir .A.J.M .Stam s universitair hoofddocent bij deleerstoelgroe p Microbiologie Dr.ir . G. Schraa universitair docent bij deleerstoelgroe p Microbiologie Stellingen 1. Halorespiratie is een weinig efficiente wijze van ademhalen. Dit proefschrift 2. Halorespiratie moet worden opgevat als verbreding en niet als specialisatie van het genus Desulfitobacterium. Dit proefschrift 3. Reductieve dehalogenases zijn geen nieuwe enzymen. 4. 16S-rRNA probes zijn minder geschikt voor het aantonen van specifieke metabole activiteiten in een complex ecosysteem. Loffler etal. (2000) AEM66 : 1369;Gottscha l &Kroonema n (2000)Bode m3 : 102 5. Het "twin-arginine" transportsysteem wordt niet goed genoeg begrepen om op basis van het voorkomen van het "twin-arginine" motief enzymen te lokaliseren. Berks etal. (2000)Mol .Microbiol .35 : 260 6. Asbesthoudende bodem is niet verontreinigd. 7. Biologische groente is een pleonasme. Stellingen behorende bij het proefschrift 'Biochemistry and physiology of halorespiration by Desulfitobacterium dehalogenans' van Bram A. van de Pas Wageningen, 6 december 2000 MJOQ^O \lZ°]0 ^ Biochemistry and Physiology of Halorespiration by Desulfitobacterium dehalogenans BramA. van de Pas Proefschrift ter verkrijging van de graad van doctor op gezag van derecto r magnificus van Wageningen Universiteit, dr. ir. L. Speelman, in het openbaar
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • Wedding Higher Taxonomic Ranks with Metabolic Signatures Coded in Prokaryotic Genomes
    Wedding higher taxonomic ranks with metabolic signatures coded in prokaryotic genomes Gregorio Iraola*, Hugo Naya* Corresponding authors: E-mail: [email protected], [email protected] This PDF file includes: Supplementary Table 1 Supplementary Figures 1 to 4 Supplementary Methods SUPPLEMENTARY TABLES Supplementary Tab. 1 Supplementary Tab. 1. Full prediction for the set of 108 external genomes used as test. genome domain phylum class order family genus prediction alphaproteobacterium_LFTY0 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Unknown candidatus_nasuia_deltocephalinicola_PUNC_CP013211 Bacteria Proteobacteria Gammaproteobacteria Unknown Unknown Unknown candidatus_sulcia_muelleri_PUNC_CP013212 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales NA Candidatus Sulcia deinococcus_grandis_ATCC43672_BCMS0 Bacteria Deinococcus-Thermus Deinococci Deinococcales Deinococcaceae Deinococcus devosia_sp_H5989_CP011300 Bacteria Proteobacteria Unknown Unknown Unknown Unknown micromonospora_RV43_LEKG0 Bacteria Actinobacteria Actinobacteria Micromonosporales Micromonosporaceae Micromonospora nitrosomonas_communis_Nm2_CP011451 Bacteria Proteobacteria Betaproteobacteria Nitrosomonadales Nitrosomonadaceae Unknown nocardia_seriolae_U1_BBYQ0 Bacteria Actinobacteria Actinobacteria Corynebacteriales Nocardiaceae Nocardia nocardiopsis_RV163_LEKI01 Bacteria Actinobacteria Actinobacteria Streptosporangiales Nocardiopsaceae Nocardiopsis oscillatoriales_cyanobacterium_MTP1_LNAA0 Bacteria Cyanobacteria NA Oscillatoriales
    [Show full text]
  • Changes of the Proteome and Acetylome During Transition Into the Stationary Phase in the Organohalide-Respiring Dehalococcoides Mccartyi Strain CBDB1
    microorganisms Article Changes of the Proteome and Acetylome during Transition into the Stationary Phase in the Organohalide-Respiring Dehalococcoides mccartyi Strain CBDB1 Franziska Greiner-Haas 1, Martin von Bergen 2, Gary Sawers 1, Ute Lechner 1,* and Dominique Türkowsky 2,* 1 Institute of Biology/Microbiology, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; [email protected] (F.G.-H.); [email protected] (G.S.) 2 Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research–UFZ, 04318 Leipzig, Germany; [email protected] * Correspondence: [email protected] (U.L.); [email protected] (D.T.) Abstract: The strictly anaerobic bactGIerium Dehalococcoides mccartyi obligatorily depends on organohalide respiration for energy conservation and growth. The bacterium also plays an important role in bioremediation. Since there is no guarantee of a continuous supply of halogenated substrates in its natural environment, the question arises of how D. mccartyi maintains the synthesis and activity of dehalogenating enzymes under these conditions. Acetylation is a means by which energy- restricted microorganisms can modulate and maintain protein levels and their functionality. Here, we analyzed the proteome and N"-lysine acetylome of D. mccartyi strain CBDB1 during growth with 1,2,3-trichlorobenzene as an electron acceptor. The high abundance of the membrane-localized organohalide respiration complex, consisting of the reductive dehalogenases CbrA and CbdbA80, the Citation: Greiner-Haas, F.; Bergen, uptake hydrogenase HupLS, and the organohalide respiration-associated molybdoenzyme OmeA, M.v.; Sawers, G.; Lechner, U.; was shown throughout growth. In addition, the number of acetylated proteins increased from Türkowsky, D.
    [Show full text]
  • Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella Thermoacetica and Moorella Thermoautotrophica
    Downloaded from orbit.dtu.dk on: Oct 09, 2021 Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella thermoacetica and Moorella thermoautotrophica Redl, Stephanie Maria Anna; Poehlein, Anja; Esser, Carola; Bengelsdorf, Frank R.; Jensen, Torbjørn Ølshøj; Jendresen, Christian Bille; Tindall, Brian J.; Daniel, Rolf; Dürre, Peter; Nielsen, Alex Toftgaard Published in: Frontiers in Microbiology Link to article, DOI: 10.3389/fmicb.2019.03070 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Redl, S. M. A., Poehlein, A., Esser, C., Bengelsdorf, F. R., Jensen, T. Ø., Jendresen, C. B., Tindall, B. J., Daniel, R., Dürre, P., & Nielsen, A. T. (2020). Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella thermoacetica and Moorella thermoautotrophica. Frontiers in Microbiology, 10, [3070]. https://doi.org/10.3389/fmicb.2019.03070 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Microbial Dechlorinating Consortia & Brief Introduction to Metagenomics
    Microbial Dechlorinating Consortia & Brief Introduction to Metagenomics Elizabeth A. Edwards Department of Chemical Engineering and Applied Chemistry And Cell and Systems Biology University of Toronto Centre for Applied Bioscience and Bioengineering Co-Authors and Acknowledgments Edwards lab Ivy Yang, Courtney Toth, Katherine Picott, Olivia Bulka, Fei Luo, Nadia Morson, Olivia Molenda, Mahbod Sandra Dworatzek Hajighasemi, Laura Hug, Shuiquan Tang, Marie Phil Dennis Manchester, Luz Puentes, Camilla Nesbo, Xioaming Jeff Roberts & Jen Webb Liang, Line Lomheim, Kai Wei, Jine Jine Li, Cleo Ho, Ahsan Islam, Cheryl Devine, Alfredo Perez de Mora, Anna Zila, Sarah McRae, Laurent Laquitaine, Winnie Chan, Ariel Grostern, Melanie Duhamel, Alison Waller… Dr. David Major, Evan Cox And many more Michaye McMaster & others Collaborators Frank Löffler (U. Tenn) Krishna Mahadevan (U of Toronto) Barb Sherwood Lollar, Brent Sleep (U of Toronto) Alfred Spormann (Stanford) Ruth Richardson & Stephen Zinder (Cornell) Lorenz Adrian (UFZ); Craig Criddle (Stanford) 1 Fate of contaminants in the environment: role of Biology CF TCE spill Typically Dissolved plume of oxygen contaminant Clay lens becomes depleted Groundwater Flow Impermeable layer Bioremediation Bioremediation: the remediation (clean up) of contaminated sites (soil, sediment, groundwater) using microorganisms in an engineered system • ex situ (on-site): in above-ground bioreactors • in situ (in-place): the subsurface is the bioreactor • Biostimulation vs. Bioaugmentation Three challenges: 1) Mixing
    [Show full text]