Sabnis Uta 2502D 12838.Pdf (5.069Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Sabnis Uta 2502D 12838.Pdf (5.069Mb) INVESTIGATION OF HOW MICROBES INVOLVED IN ANEROBIC DIGESTION OF VINASSE CHANGE AS FUNCTIONS OF TEMPERATURE, VINASSE COMPOSITIONS AND TIME by MADHU SANJOG SABNIS Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON August 2014 Copyright © by Madhu Sanjog Sabnis 2014 All Rights Reserved ii Acknowledgements I would like to express my wholehearted gratitude to my advisor Dr. Melanie Sattler and Dr. Jorge Rodrigues who has always been an invaluable guide and academic mentor. I really appreciate Dr. Melanie Sattler for her encouragement, support, and advice throughout my research work. I cannot express my gratitude to Dr. Rodrigues for providing excellent ideas and advice that propelled my research. The supervising committee members Dr. James Grover, Dr. Andrew Hunt, and Dr. Sahadat Hossain, are most appreciated and gratefully acknowledged for their valuable suggestion towards this study. A special and personal acknowledgement is due to the Dr. Melanie Sattler; for her unrestricted personal guidance throughout this study, for bringing out the best out of my ability. I would like to thank Mr. Paul Shover for his tremendous help with my experimental set-up work. I also thank Shammi Rahman for helping me throughout my research. I would like to thank Victor Pylro and Jill Castoe who helped me during my experimental analysis and sequencing process. Last but not the least; I thank God and my loving family - Mom, Dad, brother, sister, and my family-in-law. They are my real strength and have always believed in my abilities to not only dream but strive to make those dreams a concrete reality. I'm greatly indebted to my brother for his ceaseless encouragement and blessings, without which I wouldn't have committed myself to pursue higher studies. Finally, I would like to mention my special thank to my husband Sanjog Sabnis for his continual help, love and support to accomplish my goal. July 18, 2014 iii Abstract INVESTIGATION OF HOW MICROBES INVOLVED IN ANEROBIC DIGESTION OF VINASSE CHANGE AS FUNCTIONS OF TEMPERATURE, VINASSE COMBINATIONS AND TIME MADHU SANJOG SABNIS, PhD The University of Texas at Arlington, 2014 Supervising Professor: Melanie Sattler Recent fossil fuel supply crunches and price spikes have prompted increased interest in ethanol as an alternative transportation fuel. However, vinasse, the liquid residue left from the distillation of ethanol, poses serious disposal challenges due to its high acidity, chemical oxygen demand, and concentrations of solids, nitrogen, phosphorous, and potassium. On average, 12-14 liters of vinasse are produced per liter of ethanol. Brazilian production of ethanol is estimated as 15.1 billion liters per year, meaning that the vinasse treatment and disposal problem for Brazil is particularly significant. Degradation via anaerobic microbes has been demonstrated as a viable option for vinasse treatment, which also produces renewable energy in the form of methane as a byproduct. Methane and other gases, produced in the anaerobic digestion of vinasse, are enough to generate 3.6 to 10.60 megawatts of electricity when vinasse BOD ranges from 1.06 to 3.12 lb/cu ft. The objective of this research was to investigate the microbes involved in the various stages of anaerobic degradation of vinasse, and how the numbers and species of iv microbes varied as functions of time, vinasse composition, and reactor temperature. This information will be useful for future seeding of industrial-scale vinasse treatment processes with appropriate microbes. Vinasse from production of ethanol from corn and milo was obtained from two U.S. companies; additional synthetic vinasse with various concentrations of parameters (COD, N, P, K, S) was prepared in the laboratory. Vinasse was placed in 6.8L glass bioreactors seeded with 10% sewage sludge obtained from an anaerobic process at a wastewater treatment plant. The reactors were operated at three mesophilic temperatures (30, 35 & 40˚C) in batch mode for 15-89 days, depending on methane production. Three molecular techniques, DNA extraction PCR, and Miseq, were used to determine microbial communities in each reactor as a function of time. Post-sequencing microbial community analysis was performed using QIIME software. As temperature increased, the run time generally decreased, as expected. Overall, the synthetic vinasse combinations had higher percentages of Archaea in the runs compared to real vinasse compositions. The synthetic vinasse thus produced higher levels of methane compared to the real vinasse combinations. The synthetic and real vinasse combinations at 30, 35, and 40°C contain higher percentages of Bacteroidetes, Firmicutes, and Proteobacteria and lower percentages of Archaea, Acidobacteria, Tenericutes, Spirochaetes, Synergistetes, Chloroflexi, Lentisphaerae, WWE1, Verrucomicrobia, Tenericutes, Spirochaetes, Synergistetes, and Plantomycetes. There were no overall trends of microbial phyla observed with time. v Table of Contents Acknowledgements .............................................................................................................iii Abstract .............................................................................................................................. iv List of Illustrations ............................................................................................................... x List of Tables ................................................................................................................... xviii Chapter 1 Introduction......................................................................................................... 1 1.1 Background ............................................................................................................ 1 1.2 Research Objective ................................................................................................ 2 1.3 Dissertation Organization ....................................................................................... 2 Chapter 2 Literature Review ............................................................................................... 4 2.1 Background on Vinasse .......................................................................................... 4 2.2 Anaerobic Process Basics .................................................................................... 13 2.3 Factors Affecting Anaerobic Processes ............................................................... 14 2.3.1 Temperature................................................................................................ 14 2.3.2 pH ................................................................................................................ 15 2.3.3 Nutrient Content .......................................................................................... 16 2.3.4 Toxic Substance Concentrations ................................................................ 16 2.3.5 Batch or Continuous Operation................................................................... 16 2.3.6 Reactor Mixing ............................................................................................ 17 2.4 Methods for Microbe Determination ..................................................................... 18 2.5 Previous Studies of Microbial Communities in Anaerobic Bioreactors ................ 28 2.6 Factors Affecting Anaerobic Digestion and Biogas Production ............................ 32 Chapter 3 Materials & Methods ........................................................................................ 38 3.1 Introduction ........................................................................................................... 38 3.2 Task 1 Experimental Design................................................................................. 39 vi 3.2.1 Temperature................................................................................................ 41 3.3 Task 2 Setting Up Laboratory-Scale Reactors .............................................. 41 3.3.1 Vinasse collection ....................................................................................... 41 3.3.2 Synthetic Vinasse ....................................................................................... 42 3.3.3 Real Vinasse ............................................................................................... 43 3.3.4 Reactors ...................................................................................................... 44 3.4 Task 3 Operating and Monitoring Laboratory Scale Bioreactors ......................... 46 3.4.1 Gas Measurement ...................................................................................... 46 3.4.2 Monitoring of pH, Temperature and Gas Fitting Connections .................... 47 3.5 Task 4 Sample Collection ..................................................................................... 48 3.5.1 Septa ........................................................................................................... 48 3.5.2 Syringes and Needles ................................................................................. 49 3.5.3 Gas Sampling Bag ...................................................................................... 49 3.5.4 Centrifuge Tubes for Sample Storage ........................................................ 50 3.5.5 Techniques for Microbe Determination ......................................................
Recommended publications
  • Significance of Vinasses Waste Management in Agriculture and Environmental Quality- Review
    Vol. 9(38), pp. 2862-2872, 18 September, 2014 DOI: 10.5897/AJAR2014.8819 Article Number: 94224DC47396 African Journal of Agricultural ISSN 1991-637X Copyright © 2014 Research Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Full Length Research Paper Significance of vinasses waste management in agriculture and environmental quality- Review Rajagopal Vadivel*, Paramjit Singh Minhas, Suresh Kumar P., Yogeswar Singh, Nageshwar Rao D.V.K. and Avinash Nirmale National Institute of Abiotic Stress Management, Malegaon Khurd, Baramati taluk, Pune- 413115 Maharashtra, India. Received 4 May, 2014; Accepted 16 June, 2014 Vinasse is a waste material from distillery industries which has lot of organic and inorganic loads. It is utilized in agriculture for cheap nutrients source, ameliorating agents and animal feed beyond the limitation of high biochemical oxygen demand (BOD; 46100 to 96000 mgL-1), chemical oxygen demand (COD; 104000 to 134400 mgL-1) and total dissolved salts (30.5 to 45.2 dSm-1) content even after the pollutant removal treatments. Vinasse treatments with combined approach of aerobic and anaerobic methods are more effective by both cost and pollutant on removal efficiency. Optimized dose of vinasse application has significance over soil properties, crop qualities and yield improvement. Globally, it has high potential to substitute potassium and nitrogen nutrients to the present level of annual consumption. It also contributes a substantial amount of phosphorous, calcium, sulphur and micronutrients to crops. In developed countries, starchy vinasse used as animal feed on a lean season to animals that improved the feed digestibility and animal quality where feed shortages are experienced.
    [Show full text]
  • Better Sugar; Better Business Mill Issues and Co-Products
    BETTER SUGAR; BETTER BUSINESS MILL ISSUES AND CO-PRODUCTS M. Regis Lima Verde Leal WWF WORKSHOP - LONDON, JUNE 23-24, 2005 WORLD CROP LAND CROP AREA (MMHA) Sugar cane 20.1 Wheat 207.5 Rice 153.0 Maize 144.8 Soybeans 91.6 Notes: Rice - 42,5MMha in India and 29,4mmha in China Wheat - 27,3mmha in India and 21,7mmha in China Corn - 29,7MMha in USA and 25,6mmha in China Source: FAO, 2004 MAIN SUGAR CANE PRODUCERS COUNTRY AREA SUGAR CANE (1000HA) (1000 TONNES) Brazil 5,455 411,009 India 4,100 244,800 China 1,316 93,200 Thailand 1,050 63,707 Pakistan 1,049 52,040 Cuba 700 24,000 Mexico 639 45,126 Australia 415 36,892 Other 5,377 347,097 TOTAL 20,100 1,317,871 Source: FAO, 2004 BRAZILIAN CROP LAND AND PRODUCTION CROP AREA PRODUCTION (MMHA) (MM TONNES) Soy Beans 21.5 49.5 Corn 12.3 41.8 Sugar Cane 5.6 416.3 Beans 4.0 3.0 Rice 3.7 13.3 Wheat 2.8 5.7 Coffee 2.4 2.5 Other 5.7 - TOTAL 58.0 - Source: IBGE, 2004 BRAZIL LAND USE TYPE AREA (MMHA) Total Country 851 Brazilian Native Amazon 370 Secondary Amazon and other Native Forests 180 Planted Forests (cellulose and energy) 6 Pasture 197 Arable Land 59 Permanent Crop 7.6 Agricultural Area 263 Land for Crops/Low Impacts (*) 90 Source: FAO, 2002 and EMBRAPA (*) BRAZILIAN MODEL FOR SUGAR CANE INDUSTRY •JOINT PRODUCTION OF SUGAR AND ETHANOL 1990 2002 Sugar only mills 27 15 Ethanol distilleries 180 104 Sugar/Ethanol mills 168 199 Total 375 318 •LAND OWNERSHIP Mills = 65% Independent Cane Growers (70,000) = 35% •HARVESTING SEASON Center-South : May - November North-Northeast: September - March •MILL SIZE:
    [Show full text]
  • Tropical Maize and Lipid Cane As Sustainable Bioenergy Crops
    Tropical Maize and Lipid Cane As Sustainable Bioenergy Crops Vijay Singh University of Illinois RCN Conference on Pan American Biofuels & Bioenergy Sustainability July 22-25, 2014 Golden Tulip Recife Palace Recife, Brazil What is Tropical Maize? Tropical Maize is Corn Reproductive Asynchrony Tropical Maize = Tropical x Temperate Maize Hybrid High Biomass High Stalk Sugars Less Nitrogen requirement History of tropical maize From Stoskopf, 1981 Nutrient Use Efficiency TM produces more biomass and more sugar than commercial corn hybrids with < 50% N fertilizer requirement US Sweetener Industry Tropical Maize Preparing the syrup by using a press HPLC profile of the tropical maize syrup. Three main sugars content—Sucrose, Glucose and Fructose Chen, M., Kaur, P., Dien, B.S., Below, F.E., Vincent, M.L. and Singh, V. 2013. Accumulation of fermentation sugars during tropical maize development. World Journal of Microbiology and Biotechnology 29:1509-1515. Tropical Maize 10 8 6 4 YEPS Ethanol concentration (% v/v) 2 corn syrup (autoclaved) corn syrup (autoclaved; pH4.5) corn syrup (initial) 0 0 20406080 Fermentation time (hour) Chen, M., Kaur, P., Dien, B.S., Below, F.E., Vincent, M.L. and Singh, V. 2013. 7 Accumulation of fermentation sugars during tropical maize development. World Journal of Fig.1. The ethanol production from maize syrup and YEPS medium Microbiology and Biotechnology 29:1509-1515. Tropical Maize 18 15.6 16 14.5 14 12.7 12 10.0 10 8.1 8 6 1.00x corn syrup 4 1.25x corn syrup Ethanol concentration (% v/v) (% concentration Ethanol 1.50x corn syrup 2 1.75x corn syrup 2.25x corn syrup 0 0 20406080100 Fermentation time (hour) Fig.
    [Show full text]
  • Microbial Insights of Enhanced Anaerobic Conversion of Syngas
    Liu et al. Biotechnol Biofuels (2020) 13:53 https://doi.org/10.1186/s13068-020-01694-z Biotechnology for Biofuels RESEARCH Open Access Microbial insights of enhanced anaerobic conversion of syngas into volatile fatty acids by co-fermentation with carbohydrate-rich synthetic wastewater Chao Liu1,2, Wen Wang1* , Sompong O‑Thong2,3, Ziyi Yang1, Shicheng Zhang2,4, Guangqing Liu1 and Gang Luo2,4* Abstract Background: The co‑fermentation of syngas (mainly CO, H2 and CO2) and diferent concentrations of carbohydrate/ protein synthetic wastewater to produce volatile fatty acids (VFAs) was conducted in the present study. Results: It was found that co‑fermentation of syngas with carbohydrate‑rich synthetic wastewater could enhance the conversion efciency of syngas and the most efcient conversion of syngas was obtained by co‑fermentation of syngas with 5 g/L glucose, which resulted in 25% and 43% increased conversion efciencies of CO and H2, compared to syngas alone. The protein‑rich synthetic wastewater as co‑substrate, however, had inhibition on syngas conver‑ sion due to the presence of high concentration of NH4+‑N (> 900 mg/L) produced from protein degradation. qPCR analysis found higher concentration of acetogens, which could use CO and H2, was present in syngas and glucose co‑fermentation system, compared to glucose solo‑fermentation or syngas solo‑fermentation. In addition, the known acetogen Clostridium formicoaceticum, which could utilize both carbohydrate and CO/H2 was enriched in syngas solo‑ fermentation and syngas with glucose co‑fermentation. In addition, butyrate was detected in syngas and glucose co‑fermentation system, compared to glucose solo‑fermentation. The detected n‑butyrate could be converted from acetate and lactate/ethanol which produced from glucose in syngas and glucose co‑fermentation system supported by label‑free quantitative proteomic analysis.
    [Show full text]
  • Recruitment of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Systems
    fmicb-10-02160 September 12, 2019 Time: 16:22 # 1 ORIGINAL RESEARCH published: 13 September 2019 doi: 10.3389/fmicb.2019.02160 Recruitment of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Systems Nicolás Toro*, Mario Rodríguez Mestre, Francisco Martínez-Abarca and Alejandro González-Delgado Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain Type VI CRISPR–Cas systems contain a single effector nuclease (Cas13) that exclusively targets single-stranded RNA. It remains unknown how these systems acquire spacers. It has been suggested that type VI systems with adaptation modules can acquire spacers from RNA bacteriophages, but sequence similarities suggest that spacers may provide Edited by: Kira Makarova, immunity to DNA phages. We searched databases for Cas13 proteins with linked RTs. National Center for Biotechnology We identified two different type VI-A systems with adaptation modules including an Information (NLM), United States RT-Cas1 fusion and Cas2 proteins. Phylogenetic reconstruction analyses revealed that Reviewed by: these adaptation modules were recruited by different effector Cas13a proteins, possibly Yuri Wolf, National Center for Biotechnology from RT-associated type III-D systems within the bacterial classes Alphaproteobacteria Information (NLM), United States and Clostridia. These type VI-A systems are predicted to acquire spacers from RNA Omar
    [Show full text]
  • Liquor Production of Chinese Strong-Flavored Different-Aged
    Prokaryotic Communities in Pit Mud from Different-Aged Cellars Used for the Production of Chinese Strong-Flavored Liquor Yong Tao, Jiabao Li, Junpeng Rui, Zhancheng Xu, Yan Zhou, Xiaohong Hu, Xiang Wang, Menghua Liu, Daping Li and Xiangzhen Li Appl. Environ. Microbiol. 2014, 80(7):2254. DOI: 10.1128/AEM.04070-13. Published Ahead of Print 31 January 2014. Downloaded from Updated information and services can be found at: http://aem.asm.org/content/80/7/2254 These include: http://aem.asm.org/ SUPPLEMENTAL MATERIAL Supplemental material REFERENCES This article cites 38 articles, 12 of which can be accessed free at: http://aem.asm.org/content/80/7/2254#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on March 11, 2014 by guest Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Prokaryotic Communities in Pit Mud from Different-Aged Cellars Used for the Production of Chinese Strong-Flavored Liquor Yong Tao,a Jiabao Li,a Junpeng Rui,a Zhancheng Xu,b Yan Zhou,c Xiaohong Hu,c Xiang Wang,a Menghua Liu,b Daping Li,a Xiangzhen Lia Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, People’s Republic of Chinaa; Sichuan Jiannanchun Group Co. Ltd., Sichuan, People’s Republic of Chinab; College of Life Science, Sichuan University, Sichuan, People’s Republic of Chinac Chinese strong-flavored liquor (CSFL) accounts for more than 70% of all Chinese liquor production.
    [Show full text]
  • Development of the Equine Hindgut Microbiome in Semi-Feral and Domestic Conventionally-Managed Foals Meredith K
    Tavenner et al. Animal Microbiome (2020) 2:43 Animal Microbiome https://doi.org/10.1186/s42523-020-00060-6 RESEARCH ARTICLE Open Access Development of the equine hindgut microbiome in semi-feral and domestic conventionally-managed foals Meredith K. Tavenner1, Sue M. McDonnell2 and Amy S. Biddle1* Abstract Background: Early development of the gut microbiome is an essential part of neonate health in animals. It is unclear whether the acquisition of gut microbes is different between domesticated animals and their wild counterparts. In this study, fecal samples from ten domestic conventionally managed (DCM) Standardbred and ten semi-feral managed (SFM) Shetland-type pony foals and dams were compared using 16S rRNA sequencing to identify differences in the development of the foal hindgut microbiome related to time and management. Results: Gut microbiome diversity of dams was lower than foals overall and within groups, and foals from both groups at Week 1 had less diverse gut microbiomes than subsequent weeks. The core microbiomes of SFM dams and foals had more taxa overall, and greater numbers of taxa within species groups when compared to DCM dams and foals. The gut microbiomes of SFM foals demonstrated enhanced diversity of key groups: Verrucomicrobia (RFP12), Ruminococcaceae, Fusobacterium spp., and Bacteroides spp., based on age and management. Lactic acid bacteria Lactobacillus spp. and other Lactobacillaceae genera were enriched only in DCM foals, specifically during their second and third week of life. Predicted microbiome functions estimated computationally suggested that SFM foals had higher mean sequence counts for taxa contributing to the digestion of lipids, simple and complex carbohydrates, and protein.
    [Show full text]
  • Download/Issues/Mining/Reference Guide to Treatment Technologi Es for MIW.Pdf
    Removal of Soluble Selenium in the Presence of Nitrate from Coal Mining-Influenced Water by Frank Nkansah - Boadu BSc., Kwame Nkrumah University of Science and Technology, 2003 MASc., The University of British Columbia, 2013 A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Chemical and Biological Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2019 © Frank Nkansah - Boadu, 2019 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: Removal of Soluble Selenium in the Presence of Nitrate from Coal Mining-Influenced Water submitted by Frank Nkansah-Boadu in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemical and Biological Engineering Examining Committee: Susan Baldwin, Chemical and Biological Engineering Supervisor Vikramaditya Yadav, Chemical and Biological Engineering Supervisory Committee Member Troy Vassos, Adjunct Professor, Civil Engineering Supervisory Committee Member Anthony Lau, Chemical and Biological Engineering University Examiner Scott Dunbar, Mining Engineering University Examiner ii Abstract Biological treatment to remove dissolved selenium from mining-influenced water (MIW) is inhibited by co-contaminants, especially nitrate. It was hypothesized that selenium reducing microorganisms can be obtained from native mine bacteria at sites affected by MIW due to the selection pressure from elevated selenium concentrations at those sites. Enrichment of these microorganisms and testing of their capacity to remove dissolved selenium from actual coal MIW was the objective of this dissertation. Fifteen sediments were collected from eleven different vegetated or non-vegetated seepage collection ponds and one non-impacted natural wetland.
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]
  • Characterization of an Adapted Microbial Population to the Bioconversion of Carbon Monoxide Into Butanol Using Next-Generation Sequencing Technology
    Characterization of an adapted microbial population to the bioconversion of carbon monoxide into butanol using next-generation sequencing technology Guillaume Bruant Research officer, Bioengineering group Energy, Mining, Environment - National Research Council Canada Pacific Rim Summit on Industrial Biotechnology and Bioenergy December 8 -11, 2013 Butanol from residue (dry): syngas route biomass → gasification → syngas → catalysis → synfuels (CO, H2, CO2, CH4) (alcohols…) Biocatalysis vs Chemical catalysis potential for higher product specificity may be less problematic when impurities present less energy intensive (low pressure and temperature) Anaerobic undefined mixed culture vs bacterial pure culture mesophilic anaerobic sludge treating agricultural wastes (Lassonde Inc, Rougemont, QC, Canada) PRS 2013 - 2 Experimental design CO Alcohols Serum bottles incubated at Next Generation RDP Pyrosequencing mesophilic temperature Sequencing (NGS) pipeline 35°C for 2 months Ion PGMTM sequencer http://pyro.cme.msu.edu/ sequences filtered CO continuously supplied Monitoring of bacterial and to the gas phase archaeal populations RDP classifier atmosphere of 100% CO, http://rdp.cme.msu.edu/ 1 atm 16S rRNA genes Ion 314TM chip classifier VFAs & alcohol production bootstrap confidence cutoff low level of butanol of 50 % Samples taken after 1 and 2 months total genomic DNA extracted, purified, concentrated PRS 2013 - 3 NGS: bacterial results Bacterial population - Phylum level 100% 80% Other Chloroflexi 60% Synergistetes %
    [Show full text]
  • Electronic Supplementary Information
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019 Electronic Supplementary Information Microbial community and antibiotic resistance profiles of biomass and effluent are distinctly affected by antibiotic addition to an anaerobic membrane bioreactor Ali Zarei-Baygi*, Moustapha Harb#,*, Phillip Wang*, Lauren Stadler^, and Adam L. Smith*† * Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA # Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon ^ Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA †Corresponding author (Adam L. Smith) Phone: +1 213.740.0473 Email: [email protected] Number of pages: 15 Number of figures: 6 Number of tables: 6 S1 Quantification of antibiotics by LC-MS For antibiotics quantification, 10 mL samples were collected for each sampling time point from the influent and effluent of the AnMBR. Both collected samples and standard solutions were filtered through 0.2 µm PTFE syringe filters (Whatman) using 10 mL syringes with Luer lock tips and stored in certified 2 mL amber LC vials (Agilent) at 4 ºC refrigerator for no more than 3 days prior to analysis. Stock solutions of sulfamethoxazole and erythromycin were prepared in HPLC-grade methanol at concentrations of 20 mg/L and stored at -20 ºC. Ampicillin stock solution was prepared in HPLC-grade water at 4 mg/L due to its lack of solubility in methanol and stored at 4 ºC. For each antibiotic, a six-point standard calibration curve was constructed within the appropriate range (i.e., 0.1-30 µg/L to target effluent antibiotics and 30- 400 µg/L to target influent antibiotics).
    [Show full text]