Download/Issues/Mining/Reference Guide to Treatment Technologi Es for MIW.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Download/Issues/Mining/Reference Guide to Treatment Technologi Es for MIW.Pdf Removal of Soluble Selenium in the Presence of Nitrate from Coal Mining-Influenced Water by Frank Nkansah - Boadu BSc., Kwame Nkrumah University of Science and Technology, 2003 MASc., The University of British Columbia, 2013 A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Chemical and Biological Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2019 © Frank Nkansah - Boadu, 2019 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: Removal of Soluble Selenium in the Presence of Nitrate from Coal Mining-Influenced Water submitted by Frank Nkansah-Boadu in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemical and Biological Engineering Examining Committee: Susan Baldwin, Chemical and Biological Engineering Supervisor Vikramaditya Yadav, Chemical and Biological Engineering Supervisory Committee Member Troy Vassos, Adjunct Professor, Civil Engineering Supervisory Committee Member Anthony Lau, Chemical and Biological Engineering University Examiner Scott Dunbar, Mining Engineering University Examiner ii Abstract Biological treatment to remove dissolved selenium from mining-influenced water (MIW) is inhibited by co-contaminants, especially nitrate. It was hypothesized that selenium reducing microorganisms can be obtained from native mine bacteria at sites affected by MIW due to the selection pressure from elevated selenium concentrations at those sites. Enrichment of these microorganisms and testing of their capacity to remove dissolved selenium from actual coal MIW was the objective of this dissertation. Fifteen sediments were collected from eleven different vegetated or non-vegetated seepage collection ponds and one non-impacted natural wetland. Nine sediments achieved greater than 90% dissolved selenium removal within 72 hours when inoculated into selenate-reducing bacteria growth medium. To find microorganisms capable of removing dissolved selenium in the presence of nitrate, six of the sediments were inoculated into two different types of growth media; one with selenate as the sole electron acceptor and the other with both nitrate and selenate as electron acceptors. Both media were otherwise identical and contained lactate as the electron donor. Decrease in dissolved selenium concentration was observed in all enrichments, but the effect of nitrate on the rate and extent of removal was variable. Nitrate inhibited dissolved selenium removal rates in four of the enrichments. However, in one instance, microorganisms enriched from a natural vegetated marsh receiving coal MIW (Goddard Marsh) were not inhibited by nitrate and the dissolved selenium removal rates were similar in both media. In another instance, the presence of nitrate enhanced dissolved selenium removal by enrichments from a pond receiving coal mine waste seepage (Lagoon A). When enrichments from Lagoon A and Goddard Marsh, respectively, were tested for dissolved selenium removal from actual coal MIW, the former achieved greater (40%) than the latter (10%). Through 16S and whole genome sequencing studies, species capable of removing selenate in the enrichments were classified as Bacteroides, Serratia, Clostridium and Methanosarcina. However, most of these species did not survive in the MIW. The dominant species in the MIW were classified as Sulfurospirillium, Veillonella, Pseudomonas and Bacteroides, which were shown to be capable of reducing selenium, based on putative metagenome assembled genomes (MAGs) obtained for these species. iii Lay Summary Some mining-influenced water (MIW) contains elevated concentrations of dissolved selenium that could be harmful to downstream ecosystems. Biological treatment to remove dissolved selenium through reduction to insoluble forms is the current preferred method. Its effectiveness is challenged by the presence of competing constituents, especially nitrate, which is a common co-contaminant in MIW because of explosives used in mining. In this dissertation, consortia of bacteria were enriched from different sites impacted by coal mine waste seepage. These enriched bacteria were tested for their capacity to remove dissolved selenium from actual MIW. The study found that, even though bacteria with the capability to remove dissolved selenium survived in the MIW, the extent of dissolved selenium removal was lower in the actual MIW than in the enrichment media. Possibly, other constituents of the MIW negatively affected the selenium reducing bacteria or essential nutrients for these bacteria were missing from the MIW. iv Preface This research project would not have been completed without the invaluable support from my research advisors. The supervisory team greatly assisted in the overall completeness of the research scope, identification of the broad research objectives, examination and interpretation of the data and revisions of the chapters. The Chapters 2 - 6 have been revised into three manuscripts for publication. The manuscripts prepared for publication have been strengthened by contribution from the supervisory team, Dr. Susan Baldwin, Dr. Troy David Vassos and Dr. Vikramadiyta Yadav. I critically reviewed relevant literature, designed and performed the experiments, conducted laboratory analyses, analyzed the data, organized and presented the results and prepared draft manuscripts. Jon Taylor performed the sequencing of DNA from the early experiments. David Gurr, Ido Hatam and Susan Baldwin performed the bioinformatic analyses of the 16S and whole genome sequencing data. v Table of Contents Abstract……………………………………………………………………………………... iii Lay Summary ………………………………………………………………………………..iv Preface ………………………………………………………………………………………...v Table Contents ………………………………………………………………………………vi List of Tables ………………………………………………………………………………...xi List of Figures ………………………………………………………………………………xiv List of Abbreviations ……………………………………………………………………...xvii Acknowledgements …………………………………………………………………………xx Dedication. …………………………………………………………………………………xxii Chapter 1 : Introduction ..................................................................................... 1 1.1 Background .................................................................................................. 1 1.2 Research Goal .............................................................................................. 5 1.2.1 Research Questions .....................................................................................................5 1.3 Structure of the Dissertation ......................................................................... 6 1.4 Literature Review ......................................................................................... 7 1.4.1 Selenium Chemistry ....................................................................................................7 1.4.2 Biogeochemical Selenium Cycle .................................................................................9 1.4.3 Selenium Oxyanion Reduction Pathways by Bacteria ................................................ 14 1.4.4 The Effect of Nitrate on Dissimilatory Selenate Reduction ....................................... 15 1.4.5. Effect of Salinity on Nitrate Reduction and Selenate Reduction ................................ 18 1.4.6 Microbial Species Capable of Selenium Oxyanion Reduction and the Enzymes involved ............................................................................................................................. 20 1.4.7 Specific Dissimilatory Selenate Reductase Enzyme ................................................... 24 vi 1.4.8: Denitrification Pathway ............................................................................................ 27 1.4.9 Dissimilatory Sulfate Reduction Pathway .................................................................. 29 1.4.10 Bioreactors used for Removal of Dissolved Selenium .............................................. 31 1.4.11 Challenges with using Bioreactors for Removal of Dissolved Selenium from MIW . 35 1.4.12 Sources of Inocula used to Achieve Dissolved Selenium Removal in Bioreactors .... 37 1.4.13 Microbial Diversity in Selenate Reduction Bioreactors ............................................ 39 Chapter 2 : Assessment of Dissolved Selenium Removal Potential of Mine Site Sediment Bacteria ...............................................................................................41 2.1 Synopsis ......................................................................................................41 2.2 Materials and Methods ................................................................................43 2.2.1 Sites, Sampling and Chemical Characteristics ............................................................ 43 2.2.2 Growth Medium and Culturing .................................................................................. 46 2.3 Results ........................................................................................................48 2.3.1 Sample Location Characteristics ................................................................................ 48 2.3.2 Batch Studies of Dissolved Selenium Removal ......................................................... 52 2.3.3 Correlation of Dissolved Selenium Removal with Chemical Characteristics .............. 53 2.4 Discussion ...................................................................................................55
Recommended publications
  • Downloads/Bin/Fastq Quality Filter -Q20 -P90 -Q33
    Biological Reduction of Selenium Oxyanions in the Presence of Nitrate anions using Anaerobic Microbes by Gaurav Subedi B.Sc., Jacobs University Bremen, 2010 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Chemical and Biological Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2016 © Gaurav Subedi, 2016 Abstract Biological selenium reduction has emerged as a viable solution for the removal of toxic selenium from the environment. However, the presence of nitrate hinders selenium reduction by acting as a competitive electron acceptor. The present thesis investigated the use of local mine-impacted sediment as an inoculum for selenium reduction and studied the affect of nitrate on the removal of selenium. Sediment samples, impacted by mining activities, were collected from two vastly different sites of the Elk River Valley. These sediments namely; Goddard Marsh and Mature Tailing Coal, were enriched for selenium reducing bacterial consortium under high selenium and varying nitrate concentrations to put additional selection pressure. Ultimately, two cultures from Goddard Marsh enriched under low and high nitrate condition as well as one culture from Mature Tailing Coal enriched under moderate nitrate condition were used to access the affect of nitrate on selenium reduction using central composite design matrix. The extent of Se reduction was highest in the Goddard Marsh enrichment with no nitrate while enrichment with moderate and high nitrate reduced selenium poorly. ANOVA results from the CCD experiment in Goddard Marsh enrichment with no nitrate indicated no affect of nitrate in Se reduction. Two primer sets targeting the selenate redutase (serA) from Thauera selenatis and nitrite reductase (nirK) from denitrifying population were used to quantify the population of selenium reducing and denitrifying population in the CCD experiment.
    [Show full text]
  • Pdfs/ Ommended That Initial Cultures Focus on Common Pathogens, Pscmanual/9Pscssicurrent.Pdf)
    Clinical Infectious Diseases IDSA GUIDELINE A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiologya J. Michael Miller,1 Matthew J. Binnicker,2 Sheldon Campbell,3 Karen C. Carroll,4 Kimberle C. Chapin,5 Peter H. Gilligan,6 Mark D. Gonzalez,7 Robert C. Jerris,7 Sue C. Kehl,8 Robin Patel,2 Bobbi S. Pritt,2 Sandra S. Richter,9 Barbara Robinson-Dunn,10 Joseph D. Schwartzman,11 James W. Snyder,12 Sam Telford III,13 Elitza S. Theel,2 Richard B. Thomson Jr,14 Melvin P. Weinstein,15 and Joseph D. Yao2 1Microbiology Technical Services, LLC, Dunwoody, Georgia; 2Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; 3Yale University School of Medicine, New Haven, Connecticut; 4Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; 5Department of Pathology, Rhode Island Hospital, Providence; 6Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill; 7Department of Pathology, Children’s Healthcare of Atlanta, Georgia; 8Medical College of Wisconsin, Milwaukee; 9Department of Laboratory Medicine, Cleveland Clinic, Ohio; 10Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan; 11Dartmouth- Hitchcock Medical Center, Lebanon, New Hampshire; 12Department of Pathology and Laboratory Medicine, University of Louisville, Kentucky; 13Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts; 14Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois; and 15Departments of Medicine and Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey Contents Introduction and Executive Summary I.
    [Show full text]
  • Thermanaerovibrio Acidaminovorans Gen
    [nternationd Journal ofSystematic Bacterio/ogy (1999), 49,969-974 Printed in Great Britain Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, 'Selenomonas acidaminophila ' and Eubacterium acidaminophilum, as inferred from partial 16s rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. H. Sandra Baena,lr2 Marie-LaureFardeau,' T. S. WOO,^ Bernard Ollivier,l Marc Labat' and Bharat K. C. Pate13 Author for correspondence: Bharat K. C. Patel. Tel: +61 417 726 671. Fax: +61 7 3875 7656. e-mail : [email protected] 1 Laboratoire ORSTOM de 16s rRNA gene sequences of three previously described amino-acid-fermenting Microbiologie des anaerobes, Selenomonas acidaminovorans, 'Selenomonas acidaminophila and AnaBrobies, Universite de Provence, CESB-ESILCase Eubacterium acidaminophilum, were determined. All three were found to 925,163 Avenue de cluster within the Clostridium and related genera of the subphylum of the Luminy, 13288 Marseille Gram-positive bacteria. The thermophile, S. acidaminovorans, formed ap Cedex 9, France individual line of descent and was equidistantly placed between 2 Departamento de Biologia, Dethiosulfovibriopeptidovorans and Anaerobaculum íhermoterrenum Pontificia Universidad Javeriana, PO6 56710, (similarity of 85%), both of which also form single lines of descent. '5. SantaFe de Bogota, acidaminophila ' was related to Clostridium quercicolum, a member of cluster Colombia IX, with a similarity of 90%, whereas E. acidaminophilum was closely related School of Biomolecular to Clostridium litorale (similarity of 96%) as a member of cluster XI. Based on and Biomedical Sciences, the phylogenetic data presented in this report and the phenotypic descriptions Faculty of Science, Griffith University, Brisbane, of these bacteria published previously, it is recommended that S.
    [Show full text]
  • Supplementary Figure Legends for Rands Et Al. 2019
    Supplementary Figure legends for Rands et al. 2019 Figure S1: Display of all 485 prophage genome maps predicted from Gram-Negative Firmicutes. Each horizontal line corresponds to an individual prophage shown to scale and color-coded for annotated phage genes according to the key displayed in the right- side Box. The left vertical Bar indicates the Bacterial host in a colour code. Figure S2: Projection of virome sequences from 183 human stool samples on A. Acidaminococcus intestini RYC-MR95, and B. Veillonella parvula UTDB1-3. The first panel shows the read coverage (Y-axis) across the complete Bacterial genome sequence (X-axis; with bp coordinates). Predicted prophage regions are marked with red triangles and magnified in the suBsequent panels. Virome reads projected outside of prophage prediction are listed in Table S4. Figure S3: The same display of virome sequences projected onto Bacterial genomes as in Figure S2, But for two different Negativicute species: A. Dialister Marseille, and B. Negativicoccus massiliensis. For non-phage peak annotations, see Table S4. Figure S4: Gene flanking analysis for the lysis module from all prophages predicted in all the different Bacterial clades (Table S2), a total of 3,462 prophages. The lysis module is generally located next to the tail module in Firmicute prophages, But adjacent to the packaging (terminase) module in Escherichia phages. 1 Figure S5: Candidate Mu-like prophage in the Negativicute Propionispora vibrioides. Phage-related genes (arrows indicate transcription direction) are coloured and show characteristics of Mu-like genome organization. Figure S6: The genome maps of Negativicute prophages harbouring candidate antiBiotic resistance genes MBL (top three Veillonella prophages) and tet(32) (bottom Selenomonas prophage remnant); excludes the ACI-1 prophage harbouring example characterised previously (Rands et al., 2018).
    [Show full text]
  • ROLE of NOVEL QUORUM SENSING MOLECULES (DKPS-DIKETOPIPERAZINES) AS ACTIVATORS of BACTERIAL VIRULENCE and HOST RESPONSE Alex Gill
    ROLE OF NOVEL QUORUM SENSING MOLECULES (DKPS-DIKETOPIPERAZINES) AS ACTIVATORS OF BACTERIAL VIRULENCE AND HOST RESPONSE Alex Gillone A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Master of Science in the Department of Periodontology in the School of Dentistry. Chapel Hill 2016 Approved by: Steven Offenbacher Silvana P. Barros Roland Arnold © 2016 Alex Gillone ALL RIGHTS RESERVED ii ABSTRACT Alex Gillone: Role of Novel Quorum sensing molecules (DKPs-Diketopiperazines) as activators of bacterial virulence and host response. (Under the direction of Steven Offenbacher) Objectives: The aim of this project was to establish the functional role of novel quorum sensing molecules (Diketopiperazines – DKPs) on activation of bacterial virulence properties and the potential effects on host cells as activators of the innate immune response. Methods: The effect of DKPs on the growth and virulence properties of the periodontal pathogen, Porphyromonas gingivalis (P.g.) A7436 strain was examined. Secondarily, the effect of DKPs on human monocyte (THP-1) viability, growth and cytokine production upon lipopolysaccharide (LPS) stimulation was determined. THP-1 cells were collected, counted and the cell lysate was evaluated for Interleukin 1β (IL-1β) mRNA expression. Results: Our results demonstrate that DKPs minimally affect the growth of P. g. DKP alone did not significantly alter THP-1 viability (p=0.20), indicating it was not toxic to the cells. However, analysis of the IL-1β mRNA expression indicates that DKP inhibited the inflammatory response of LPS-stimulated THP-1 cells. Conclusions: We have confirmed that DKPs minimally affect the growth of P.
    [Show full text]
  • Phylogenomic Analysis Supports the Ancestral Presence of LPS-Outer Membranes in the Firmicutes
    Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. Luisa Cs Antunes, Daniel Poppleton, Andreas Klingl, Alexis Criscuolo, Bruno Dupuy, Céline Brochier-Armanet, Christophe Beloin, Simonetta Gribaldo To cite this version: Luisa Cs Antunes, Daniel Poppleton, Andreas Klingl, Alexis Criscuolo, Bruno Dupuy, et al.. Phy- logenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes.. eLife, eLife Sciences Publication, 2016, 5, pp.e14589. 10.7554/eLife.14589.020. pasteur-01362343 HAL Id: pasteur-01362343 https://hal-pasteur.archives-ouvertes.fr/pasteur-01362343 Submitted on 8 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes Luisa CS Antunes1†, Daniel Poppleton1†, Andreas Klingl2, Alexis Criscuolo3, Bruno Dupuy4, Ce´ line Brochier-Armanet5, Christophe Beloin6, Simonetta Gribaldo1* 1Unite´ de
    [Show full text]
  • Sabnis Uta 2502D 12838.Pdf (5.069Mb)
    INVESTIGATION OF HOW MICROBES INVOLVED IN ANEROBIC DIGESTION OF VINASSE CHANGE AS FUNCTIONS OF TEMPERATURE, VINASSE COMPOSITIONS AND TIME by MADHU SANJOG SABNIS Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON August 2014 Copyright © by Madhu Sanjog Sabnis 2014 All Rights Reserved ii Acknowledgements I would like to express my wholehearted gratitude to my advisor Dr. Melanie Sattler and Dr. Jorge Rodrigues who has always been an invaluable guide and academic mentor. I really appreciate Dr. Melanie Sattler for her encouragement, support, and advice throughout my research work. I cannot express my gratitude to Dr. Rodrigues for providing excellent ideas and advice that propelled my research. The supervising committee members Dr. James Grover, Dr. Andrew Hunt, and Dr. Sahadat Hossain, are most appreciated and gratefully acknowledged for their valuable suggestion towards this study. A special and personal acknowledgement is due to the Dr. Melanie Sattler; for her unrestricted personal guidance throughout this study, for bringing out the best out of my ability. I would like to thank Mr. Paul Shover for his tremendous help with my experimental set-up work. I also thank Shammi Rahman for helping me throughout my research. I would like to thank Victor Pylro and Jill Castoe who helped me during my experimental analysis and sequencing process. Last but not the least; I thank God and my loving family - Mom, Dad, brother, sister, and my family-in-law. They are my real strength and have always believed in my abilities to not only dream but strive to make those dreams a concrete reality.
    [Show full text]
  • HL7 Implementation Guide for CDA Release 2: NHSN Healthcare Associated Infection (HAI) Reports, Release 2 (U.S
    CDAR2L3_IG_HAIRPT_R2_D2_2009FEB HL7 Implementation Guide for CDA Release 2: NHSN Healthcare Associated Infection (HAI) Reports, Release 2 (U.S. Realm) Draft Standard for Trial Use February 2009 © 2009 Health Level Seven, Inc. Ann Arbor, MI All rights reserved HL7 Implementation Guide for CDA R2 NHSN HAI Reports Page 1 Draft Standard for Trial Use Release 2 February 2009 © 2009 Health Level Seven, Inc. All rights reserved. Co-Editor: Marla Albitz Contractor to CDC, Lockheed Martin [email protected] Co-Editor/Co-Chair: Liora Alschuler Alschuler Associates, LLC [email protected] Co-Chair: Calvin Beebe Mayo Clinic [email protected] Co-Chair: Keith W. Boone GE Healthcare [email protected] Co-Editor/Co-Chair: Robert H. Dolin, M.D. Semantically Yours, LLC [email protected] Co-Editor Jonathan Edwards CDC [email protected] Co-Editor Pavla Frazier RN, MSN, MBA Contractor to CDC, Frazier Consulting [email protected] Co-Editor: Sundak Ganesan, M.D. SAIC Consultant to CDC/NCPHI [email protected] Co-Editor: Rick Geimer Alschuler Associates, LLC [email protected] Co-Editor: Gay Giannone M.S.N., R.N. Alschuler Associates LLC [email protected] Co-Editor Austin Kreisler Consultant to CDC/NCPHI [email protected] Primary Editor: Kate Hamilton Alschuler Associates, LLC [email protected] Primary Editor: Brett Marquard Alschuler Associates, LLC [email protected] Co-Editor: Daniel Pollock, M.D. CDC [email protected] HL7 Implementation Guide for CDA R2 NHSN HAI Reports Page 2 Draft Standard for Trial Use Release 2 February 2009 © 2009 Health Level Seven, Inc. All rights reserved. Acknowledgments This DSTU was produced and developed in conjunction with the Division of Healthcare Quality Promotion, National Center for Preparedness, Detection, and Control of Infectious Diseases (NCPDCID), and Centers for Disease Control and Prevention (CDC).
    [Show full text]
  • Synonymy of Enterobacter Cancerogenus (Urosevik 1966) Dickey and Zumoff 1988 and Enterobacter Taylorae Farmer Et Al
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1994, p. 586-587 Vol. 44, No. 3 0020-7713/94/$04.00+0 Copyright 0 1994, International Union of Microbiological Societies Taxonomic Notes: Synonymy of Enterobacter cancerogenus (UroSevik 1966) Dickey and Zumoff 1988 and Enterobacter taylorae Farmer et al. 1985 and Resolution of an Ambiguity in the Biochemical Profile H. C. SCHQ)NHEYDER,l* K. T. JENSEN,2 AND W. FREDERIKSEN3 Department of Clinical Microbiology, Aalborg Hospital, DK-9000 Aalborg, Department of Clinical Microbio!ogy, Esbjerg Hospital, DK-6700 Esbjerg, and Department of Clinical Microbiology, Statens Seruminstitut, DK-2300 Copenhagen S, Denmark The descriptions of Enterobacter taylorae and Enterobacter cancerogenus show differences in key reactions (ornithine decarboxylase and D-sorbitol fermentation) that have not received attention and are inconsistent with the synonymy proposed by Grimont and Ageron (P. A. D, Grimont and E. Ageron, Res. Microbiol. 140459-465, 1989). A reassessment of the biochemical properties confirms that they are synonymous. We believe that the priority of E. cancerogenus should be maintained in diagnostic and clinical microbiology even if the epithet could be misunderstood in a clinical setting. In 1985 the name Enterobacter taylorae was proposed by TABLE 1. Comparison of biochemical reactions of type strains for Farmer et al. (2) for isolates related to Enterobacter cloacae E. cancerogenus and E. taylorae ~ ~ ~~ that did not ferment saccharose, raffinose, adonitol, myo- E. taylorae CDC E. cancerogenus inositol, or D-sorbitol. However, in 1989 Grimont and Ageron 2126-81 (= NCPPB 2176T ATCC 35317=) from (3) reported that E. taylorae and Enterobacter cancerogenus from source": form one genomic group with one biotype.
    [Show full text]
  • Clinical and Genomic Characterization of Two Vaginal Megasphaera Species
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2015 Clinical and Genomic Characterization of Two Vaginal Megasphaera Species Abigail L. Glascock Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Bioinformatics Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/4033 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. i CLINICAL AND GENOMIC CHARACTERIZATION OF VAGINAL MEGASPHAERA SPECIES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by ABIGAIL LEIGH GLASCOCK Bachelor of Science, James Madison University, 2010 Director: JENNIFER M. FETTWEIS, PH.D. ASSISTANT PROFESSOR, CENTER FOR THE STUDY OF BIOLOGICAL COMPLEXITY, DEPARTMENT OF OBSTETRICS AND GYNECOLOGY, SCHOOL OF MEDICINE Virginia Commonwealth University Richmond, Virginia December 2015 ii © Abigail Leigh Glascock, 2015 All Rights Reserved iii Acknowledgment First and foremost, I would like to extend my sincerest gratitude to my advisor, Dr. Jennifer M. Fettweis. Dr. Fettweis has served as a dedicated and caring mentor to me since I first arrived at VCU in 2010 as a laboratory technician. She has sacrificed countless hours of her time and spent many late nights in the lab discussing my research, reviewing my writing, scientific posters and presentations, and guiding me towards a successful and fulfilling science career. She has been supportive and proactive every step of the way in helping me to become a better scientist.
    [Show full text]
  • WO 2015/077278 Al 28 May 2015 (28.05.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/077278 Al 28 May 2015 (28.05.2015) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A 63/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/066296 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 19 November 2014 (19.1 1.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/906,676 20 November 2013 (20. 11.2013) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: NOVOZYMES BIOAG A/S [DK/DK]; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Krogshoejvej 36, DK-2880 Bagsvaerd (DK).
    [Show full text]
  • Diversity of the Human Gastrointestinal Microbiota Novel Perspectives from High Throughput Analyses
    Diversity of the Human Gastrointestinal Microbiota Novel Perspectives from High Throughput Analyses Mirjana Rajilić-Stojanović Promotor Prof. Dr W. M. de Vos Hoogleraar Microbiologie Wageningen Universiteit Samenstelling Promotiecommissie Prof. Dr T. Abee Wageningen Universiteit Dr J. Doré INRA, France Prof. Dr G. R. Gibson University of Reading, UK Prof. Dr S. Salminen University of Turku, Finland Dr K. Venema TNO Quality for life, Zeist Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG. Diversity of the Human Gastrointestinal Microbiota Novel Perspectives from High Throughput Analyses Mirjana Rajilić-Stojanović Proefschrift Ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M. J. Kropff, in het openbaar te verdedigen op maandag 11 juni 2007 des namiddags te vier uur in de Aula Mirjana Rajilić-Stojanović, Diversity of the Human Gastrointestinal Microbiota – Novel Perspectives from High Throughput Analyses (2007) PhD Thesis, Wageningen University and Research Centre, Wageningen, The Netherlands – with Summary in Dutch – 214 p. ISBN: 978-90-8504-663-9 Abstract The human gastrointestinal tract is densely populated by hundreds of microbial (primarily bacterial, but also archaeal and fungal) species that are collectively named the microbiota. This microbiota performs various functions and contributes significantly to the digestion and the health of the host. It has previously been noted that the diversity of the gastrointestinal microbiota is disturbed in relation to several intestinal and not intestine related diseases. However, accurate and detailed defining of such disturbances is hampered by the fact that the diversity of this ecosystem is still not fully described, primarily because of its extreme complexity, and high inter-individual variability.
    [Show full text]